
Final Examination
CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013),

Stanford University

• The exam runs for 3 hours.

• The exam contains eight problems. You must complete the first problem and six of problems 2-8.
CIRCLE THE PROBLEMS YOU WANT GRADED ON THE CHART BELOW; OTHERWISE WE WILL GRADE
THE FIRST SIX QUESTIONS ON WHICH YOU HAVE PROVIDED ANY WRITTEN ANSWER.

• The exam is closed-book. You may use two double-sided 81/2′′ × 11′′ sheets of notes.

• Write your solutions in the space provided. If you need more space, write on the back of the sheet
containing the problem and indicate that you have done so.

• Do not spend too much time on any problem. Read them all before beginning.

• Show your work, as partial credit will be awarded.

Circle the six additional problems you want graded.
Problem 1 2 3 4 5 6 7 8 EC Total

Score

The Stanford Honor Code
1. The Honor Code is an undertaking of the students, individually and collectively:

(a) that they will not give or receive aid in examinations; that they will not give or receive
unpermitted aid in class work, in the preparation of reports, or in any other work that is to
be used by the instructor as the basis of grading;

(b) that they will do their share and take an active part in seeing to it that others as well as
themselves uphold the spirit and letter of the Honor Code.

2. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring
examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty
mentioned above. The faculty will also avoid, as far as practicable, academic procedures that create temp-
tations to violate the Honor Code.

3. While the faculty alone has the right and obligation to set academic requirements, the students and
faculty will work together to establish optimal conditions for honorable academic work.
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YOU MUST COMPLETE THIS PROBLEM.

Problem 1 (Short answer).

(a) Do all square matrices A ∈ Rn×n admit a factorization A = LU? Explain. [2 points]

(b) Recall Heun’s method for time-stepping ODEs:

~yk+1 = ~yk +
h
2
(F[~yk] + F[~yk + hF[~yk]]).

For the one-variable model ODE y′ = ay with a < 0, calculate the restriction on h for stability
of Heun’s method. [2 points]
Note: Justin got this bound slightly wrong in lecture, so double-check your work!
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(c) Suppose A, B ∈ Rn×n and~a,~b ∈ Rn. Find a linear system of equations satisfied by minima of
the energy ‖A~x−~a‖2

2 + ‖B~x−~b‖2
2 with respect to ~x. [2 points]

(d) Propose a method for finding the least-norm projection of a vector ~v onto the column space of
A ∈ Rm×n with m > n. [2 points]

(e) Recall the Rayleigh quotient iteration strategy for finding eigenvectors of a matrix:

σk =
~v>k−1A~vk−1

‖~vk−1‖2
2

~wk = (A− σk I)−1~vk−1

~vk =
~wk

‖~wk‖

We showed that this strategy can converge much more quickly than the basic power method.
Why, however, might it still be more efficient to use the power method in some cases? [2
points]
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CIRCLE WHICH SIX OF PROBLEMS 2-8 YOU WANT GRADED ON PAGE 1.

Problem 2 (Optimization for deconvolution). Suppose we take a grayscale photograph of size n×
m and represent it as a vector ~v ∈ Rnm of values in [0, 1]. We used the wrong lens, however, and
our photo is blurry! We wish to use deconvolution machinery to undo this effect.

(i) Find the KKT conditions for the following optimization problem: [5 points]

minimize~x∈Rnm ‖A~x−~b‖2
2

such that 0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , nm}

(ii) Suppose we are given a matrix G ∈ Rnm×nm taking sharp images to blurry ones. Propose an
optimization in the form of (i) for recovering a sharp image from our blurry ~v. [2 points]

(iii) We do not know the operator G, making the model in (ii) difficult to use. Suppose, however,
that for each r ≥ 0 we can write a matrix Gr ∈ Rnm×nm approximating a blur with radius r.
Using the same camera, we now take k pairs of photos (~v1, ~w1), . . . , (~vk, ~wk), where ~vi and ~wi
are of the same scene but ~vi is blurry (taken using the same lens as our original bad photo)
and ~wi is sharp. Propose a nonlinear optimization for approximating r using this data. [3
points]
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CIRCLE WHICH SIX OF PROBLEMS 2-8 YOU WANT GRADED ON PAGE 1.

Problem 3 (Quantum mechanics). Suppose we wish to write simulation software for quantum
physics. The Schrödinger equation and others involve complex numbers in C, so we must extend
the machinery we have developed in CS 205A to this case. Recall that a complex number x ∈ C

can be written as x = a + bi, where a, b ∈ R and i =
√
−1.

(a) Suppose we wish to solve A~x = ~b, but now A ∈ Cn×n and ~x,~b ∈ Cn. Explain how a linear
solver that takes only real-valued systems can be used to solve this equation. [5 points]
Hint: Write A = A1 + A2i, where A1, A2 ∈ Rn×n. Similarly decompose ~x and~b. In the end you will
solve a 2n× 2n real-valued system.

(b) Suppose we discretize Schrödinger’s equation for a particular quantum simulation yielding
an ODE ~x′ = A~x, for ~x(t) ∈ Cn and A ∈ Cn×n. Furthermore, suppose that A is self-adjoint and
negative definite, that is, A satisfies the following properties:

• Self-adjoint: aij = āji, where a + bi = a− bi.

• Negative definite: ~̄x>A~x ≤ 0 (and is real) for all ~x ∈ Cn\{~0}. Here we define (~̄x)i ≡ x̄i.

Derive a backward Euler strategy for solving this ODE and show that each step can be carried
out using conjugate gradients. [5 points]
Hint: Before discretizing, convert the ODE to a real-valued system by applying the same decomposition
as suggested for (a) to ~x(t) and A.
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CIRCLE WHICH SIX OF PROBLEMS 2-8 YOU WANT GRADED ON PAGE 1.

Problem 4 (Polar decomposition). In this problem we will add one more matrix factorization to
our linear algebra toolbox and derive an algorithm by N. Higham for its computation. The de-
composition is used in animation applications interpolating between motions of a rigid object
while projecting out undesirable shearing artifacts.

(a) Show that any matrix A ∈ Rn×n can be factored A = WP, where W is orthogonal and P is
symmetric and positive semidefinite. This factorization is known as the polar decomposition.
[2 points]
Hint: Write A = UΣV> and show VΣV> is positive semidefinite.

(b) The polar decomposition of an invertible A ∈ Rn×n can be computed using a simple iterative
scheme:

X0 ≡ A Xk+1 =
1
2
(Xk + (X−1

k )>)

(i) Use the SVD to write A = UΣV>, and define Dk = U>XkV. Show D0 = Σ and Dk+1 =
1
2 (Dk + (D−1

k )>). [2 points]

(ii) From (i), each Dk is diagonal. If dki is the i-th diagonal element of Dk, show [2 points]

d(k+1)i =
1
2

(
dki +

1
dki

)
.

(iii) Assume dki → ci as k → ∞ (this convergence assumption requires proof in real life!).
Show ci = 1. [2 points]

(iv) Use (iii) to show Xk → UV>. [2 points]
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CIRCLE WHICH SIX OF PROBLEMS 2-8 YOU WANT GRADED ON PAGE 1.

Problem 5 (Conjugate gradients).

(a) If we use infinite-precision arithmetic (so rounding is not an issue), can the conjugate gradients
algorithm be used to recover exact solutions to A~x =~b for symmetric positive definite matrices
A? Why or why not? [3 points]

(b) Suppose A ∈ Rn×n is invertible but not symmetric or positive definite.

(i) Show that A>A is symmetric and positive definite. [1 point]

(ii) Propose a strategy for solving A~x =~b using the conjugate gradients algorithm based on
your observation in (i). [3 points]

(iii) How quickly do you expect conjugate gradients to converge in this case? Why? [3 points]
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CIRCLE WHICH SIX OF PROBLEMS 2-8 YOU WANT GRADED ON PAGE 1.

Problem 6 (Interpolation).

(a) List one advantage and one disadvantage of each of the following bases for polynomials of
degree n:

(i) Monomial basis [1 point]:

(ii) Lagrange basis [1 point]:

(iii) Newton basis [1 point]:

(b) Suppose we wish to interpolate a function f : R → R given k data points (xi, f (xi)). When
might it be preferable to use piecewise polynomial interpolation over a single polynomial of
degree k? What is a possible drawback? [4 points]

(c) Write the degree-four polynomial interpolating between the data points (−2, 15), (0,−1),
(1, 0), and (3,−2). [3 points]
Hint: Your answer does not have to be written in the monomial basis.
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CIRCLE WHICH SIX OF PROBLEMS 2-8 YOU WANT GRADED ON PAGE 1.

Problem 7 (Quadrature).

(a) Derive α, β, and x1 such that the following quadrature rule holds exactly for polynomials of
degree ≤ 2 : [5 points] ∫ 2

0
f (x) dx ≈ α f (0) + β f (x1)

(b) What is a composite quadrature rule? When are composite quadrature rules useful? [2 points]

(c) Suppose we are given a quadrature rule of the form
∫ 1

0 f (x) dx ≈ a f (0) + b f (1) for some
a, b ∈ R. Propose a composite rule for approximating

∫ 1
0 f (x) dx given n + 1 closed sample

points y0 ≡ f (0), y1 ≡ f (1/n), y2 ≡ f (2/n), . . . , yn ≡ f (1). [3 points]
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CIRCLE WHICH SIX OF PROBLEMS 2-8 YOU WANT GRADED ON PAGE 1.

Problem 8 (ODE).

(a) Suppose we wish to simulate a spring by solving the ODE d2y/dt2 = −y with y(0) = 0 and
y′(0) = 1. We obtain the three plots of y(t) below by using forward Euler, backward Euler,
and symplectic Euler. Label which plot is which. [3 points]

(b) Suppose we wish to solve the ODE dy/dt = − sin y numerically. For time step h > 0, write the
implicit backward Euler equation for approximating yk+1 at t = (k + 1)h given yk at t = kh. [3
points]

(c) Write the Newton iteration for solving the equation from part (b) for yk+1. [4 points]
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THIS EXTRA CREDIT PROBLEM IS COMPLETELY OPTIONAL.

Extra credit. A few open-ended conceptual problems on partial differential equations.

(a) Suppose we wish to solve the Laplace equation ∇2 f = 0 on the unit disc D = {(x, y) :
x2 + y2 ≤ 1}. We will impose Dirichlet boundary conditions f (x, y) ≡ g(x, y) for all (x, y)
with x2 + y2 = 1, where g(x, y) is given as input.

The two-dimensional Laplacian operator we introduced in lecture was based on a grid struc-
ture:

(∇2y)ij ≈
1
h
(y(i−1)j + yi(j−1) + y(i+1)j + yi(j+1) − 4yij)

Obviously this grid does not align with the boundary of the disc ∂D!

Propose a way to discretize and solve this equation on D by changing our discretization of
∇2y and/or working out reasonable boundary conditions on the grid. [5 points]

(b) In CS 205A we studied solutions of differential equations, but another more advanced area of
analysis involves integral equations. A “Fredholm equation of the first type” is given by:

f (x) =
∫ b

a
K(x, t)φ(t) dt,

where K : [a, b] × [a, b] → R and f : [a, b] → R are given and φ : [a, b] → R is unknown.
Propose a discretization for approximating φ. Is your matrix sparse? [5 points]
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