CS233: Geometric and
Topological Data Analysis

Representations for 3D
Geometry: Voxels,

Point Clouds, Meshes,
CSG

2 May 2018

Slides ack: Olga Sorkine-Hornung, Daniele Panozzq,
Maks Ovsjanikov, Mario Botsch, Olga Diamanti

Last Time: Persistent
Homology Applications

Mapper

(G = d-neighborhood graph

3D Shape Segmentation

0.8
0.7
0.6
(08
0.4
0.3
0.2

~ = :
020304 05060708

leld Analysis

Scalar F

estimated

Geometry
Representations in 3D

Images Have Canonical
Representations

Freeform: Layer 1

Regular representations
aid ML algorithms, e.g.
convolutional deep networks

Convolution Fully connected

L L} (®,
LO (Input) L1 L2 L3 L4 FS Fé
512x512 256x256 128x128 64x64 32x32 (Output)

In 3D There Is Representation
Diversity

Point Cloud Mesh Volumetric Projected View
ﬂ RGB(D)
Trigse arg rreeulelr _ _
(SUrese oS = Constructive Solid
Geometry (CSG)

/ o\

.0&%
4

Because 3D has Many Sources

@ Acquired real-world objects:
@ Discrete sampling
@ Points, meshes

@ Modeling “by hand™

@ Higher-level representations,
amendable to modification, control

@ Parametric surfaces, subdivision
surfaces, implicits

@ Procedural modeling
@ Algorithms, grammars

@ Primitives, Polygons,
Application- dependent elements

Representation Considerations

@ How should we represent

geometry?

@ Be derivable from sensor data
@ Support storage efficiency

@ Support editing:

@ Modification, simplification,
smoothing, filtering, repair...

@ Support creativity:
@ Input metaphors, Uls...
@ Support rendering:
@ Rasterization, raytracing...

@ Support ML:
@ Share info across related shapes

10

Boundary or Volumetric?

+ B-Reps + V-Reps

+ more efficient ¢+ more regular

+ closer to semantics, # supports unions and
supports local editing Intersections

11

Int Clouds

Po

12

Output of Acquisition

KINECT i
N EP
, it
III - "
\ X d .'

Triangulation, time-of-flight,
structured light scanners

but also from classic computer
algorithms like stereo

Point Cloud Issues

@ Standard 3D data from a variety of

sources/scanners
@ Potentially noisy

@ Can have holes
@ Registration of multiple images is required

Point Clouds,
Often an Intermediate Representation

@ Points = unordered set of 3-tuples

@ Often converted to other reps
@ Meshes, implicits, parametric surfaces
@ Easier to process, edit and/or render

@ Efficient point processing / modeling requires spatial
partitioning data structure

@ E.g., to figure out neighborhoods

shading needs normals!

3D Point Cloud Processing

Implicit

Scanning
reconstruction

devices

E _____

Range Scanners
Triangulation Scanners Normal Estimation

physical compurer vision acquired Wesing marening Gubss - Feconstructed
point cloud model

model
Traditional 3D Acquisition Pipeline

ML directly on Point Cloud Data

16

@ Points
@ Polygonal meshes

e KD

T AT

9w :
) 0,

17

B-Reps

@ Parametric surfaces
@ Implicit functions
@ Subdivision surfaces

18

Parametric Curves and
Surfaces

19

Parametric Representation:
Curves

@ Range ofafunction f: X =Y, X CR™Y CR"

t=20
@ Planar curve: m=1,n =2

s(t) = (x(t),y(t))

@ Space curve: M =1,n=3

s(t) = (z(t),y(t), 2(t))

20

Parametric Representation:
Surfaces

@ Range ofafunction f: X =Y, X CR™Y CR"

@ Surfacein3D: m=2,n=3

U

21

1-D Parametric Curves

@ Example: Explicit curve/circle in 2D

p:R — R?
tes p(t) = (2(0), (1) /

p(t) = r(cos(t),sin(t))
t € 10,2m)

N

— CS348a

22

Parametric Curves

@ Bezier curves, splines 1 .
n n AW n—i ful £
0 =3 B0 5= (])da-o

Basis functions

Curve and control polygon

Parametric Surfaces

@ Spherein 3D
s:R* — R’

s(u,v) = r (cos(u) cos(v), sin(u) cos(v), sin(v))

(u,v) € |0,2m) X |[—7/2,7/2]

24

Tensor Product
Parametric Surfaces

@ Curve swept by another curve

s(u,v) = sz‘,jBi(U)Bj (v)

@ Bezier surface:

s(u,v) = Y pi B (u)B](v)

1=0 7=0

Control Polygon

@ Also : triangular patch surfaces, subdivision surfaces

25

Tensor Product vs.

lar Patch Surfaces

Triangu

tensor product,

triangular patch,
triangular mesh

regular quad mesh

26

Parametric Curves and Surfaces

@ Advantages

-
-

Easy to generate points on the curve/surface
Separates x/y/z components

@ Disadvantages

o
o

o

Hard to determine inside/outside

Hard to determine if a point is on
the curve/surface

Hard to express more complex curves/surfaces!
=>cue: piecewise parametric surfaces (eg. mesh)

27

Splined Surfaces for CAD

& Modeler™ Kew i ek LigntWave e U0 {(Win J2)

g ST
| TninFilet

Zboct 2nd dosedec! ponks dhecile of i |eac

B T T T T

Ry e e i e

Implicit Curves and
Surfaces

29

Implicit Curves and Surfaces

@ Kernel of ascalar function f : R™ — R
@ Curvein2D: S ={zeR’|f(z) =0}
@ Surface in3D: S = {z € R’|f(x) = 0}

@ Space partitioning

{z €]
{z €]

Rm
Rm

{z €]

Rm

f(x) > 0} Outside
f(x) = 0} Curve/Surface
f(x) < 0} Inside

30

Implicit Curves and Surfaces

@ Kernel of a scalar function f : R™ — R
@ Curvein2D: S ={zeR’|f(z)=0}
@ Surface in3D: S = {z € R’|f(x) = 0}

@ Zero level set of
signed distance function

31

J

Implicit Curves and Surfaces

Implicit circle and sphere

f(:v,y)=x2+y2—?°2

flxz,y, z) =$2+y2—|—22 — p?

32

Boolean Set Operations

@ Union: U fi(x) = min f;(x

- oo

@ Intersection: m fi(z) = max f;(z)

33

Boolean Set Operations

@ Positive = outside, negative
= Inside

@ Boolean subtraction:

f>0 f<O0O

g>0|h>0 [h<O

g<0| hAh>0 h>0

@ Much easier than for
parametric surfaces!

h = mazx(f, —g)

L "“'*-:h «"’-"Mrm_ﬁ—m
BN V.

34

Implicit Curves and Surfaces

@ Advantages
@ Easy to determine inside/outside

@ Easy to determine if a point is on
the curve/surface

@ Disadvantages
@ Hard to generate points on the curve/surface
@ Do not lend to (real-time) rendering

35

Volumetric
Representations

V-Rep: Volumetric Grids

@ Binary volumetric
grids

@ Can be produced by
thresholding the
distance function, or
from the scanned
points directly

Also represents space of little informational value
37

V-Rep: CSG

@ Constructive Solid
Geometry

@ Boolean ops over
geometric primitives
(spheres, boxes,
cylinders, cones, ...)

38

Polygonal Meshes

Polygonal Meshes

@ Boundary representations of objects using
polygonal primitives

40

Meshes as Approximations of
Smooth Surfaces

#faces vs. approximation

@ Pilecewise linear approximation =

1

@ Erroris O(h?) [O(h) for points] *¢ \

7.5

25% 6.5% 1.7% 0.4%

41

Polygonal Meshes

@ Polygonal meshes are a good representation
@ approximation O(h?)
@ arbitrary topology
@ adaptive refinement

@ efficient rendering

Planar Polygons

¥

LEI

Vertices: Vo,Vis---,Un—1
Edges: {(an Ul)a veey (U’n—Qa vn—l)}

Closed:vg = v,,—1

Planar: all vertices on a plane
Simple: not self-intersecting

43

Polygonal Meshes

@ A finite set M of closed,

simple polygons Q; Is a
polygonal mesh
@ The intersection of two

polygons in M is either
empty, a vertex, or an edge

M ={V,E, F)

-

vertices edges faces

44

Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

45

Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh

46

Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh

a7

Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh

48

Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh

49

Polygonal Mesh

@ Vertex degree or valence

number of incident edges

50

Polygonal Mesh

@ Vertex degree or valence

number of incident edges

51

Polygonal Mesh

@ Boundary: the set of all
edges that belong to only
one polygon
@ Either empty or forms

closed loops

@ If empty, then the
polygonal mesh is closed

52

Triangulation

@ Polygonal mesh where every
face Is a triangle

@ Sim
@ Sim
@ Sim

@ Eac

D
D
D

N

Ifles data structures
Ifles rendering

Ifles algorithms

face planar and convex

@ Any polygon can be
triangulated

53

Triangulation

@ Polygonal mesh where every
face Is a triangle

@ Sim
@ Sim
@ Sim

@ Eac

D
D
D

N

Ifles data structures
Ifles rendering

Ifles algorithms

face planar and convex

@ Any polygon can be
triangulated

54

Triangle Meshes

@ Geometry: vertex positions
V=Av,...,v,}
E={e,...,ex}, e €V XV
F={fi,....fm}, [iEVXV XV

P:{pla"'apn}a piERS

55

Data Structures

@ What should be stored?
@ Geometry: 3D coordinates

@ Connectivity
@ Adjacency relationships

@ Attributes

@ Normal, color, texture
coordinates

@ Per vertex, face, edge

56

Simple Data Structures: Triangle

List
@ STL format (used in CAD)

@ Storage
@ Face: 3 positions
@ 4 bytes per coordinate

@ 36 bytes per face
@on average: f = 2v (Euler)

@ 72*v bytes for a mesh
with v vertices

@ No connectivity information

Triangles

x0 |yO

z0

x1 [x1

z1

X2 |y2

Z2

X3 |y3

Z3

X4 |\y4

z4

X5 |yS

Z5

OO0~ WIN|F|O

X6 |y6

Z6

57

Simple Data Structures: Triangle List

@ Used in formats
OBJ, OFF, WRL

@ Storage
@ Vertex: position
@ Face: vertex indices
@ 12 bytes per vertex
@ 12 bytes per face
@ 36*v bytes for the mesh

@ No explicit neighborhood info

Vertices Triangles

vO [XO0|y0|zO| |tO |vO |Vl |v2
vl (x1{x1|z1| |t1 [vO|v1l|v3
V2 | X2|y2|z2| |t2 |v2|Vv4 |v3
v3 X3 |y3|z3| |t3 |VvD|Vv2|Vv6
v4 | X4 |y4 |z4

v5 [X5|y5 |z5

V6 | X6 |y6 |z6

58

Quad-Edge:
Encoding Mesh
Topology

Edge-based
(many variants,
half-edge, etc)

59

(v,e,f)

Brisson:

Cell-Tuple

Gy

60

Summary

Parametric

Implicit

Discrete/Sampled

Splines, tensor-product
surfaces
Subdivision surfaces

Distance fields
Metaballs/blobs

Meshes
Point set surfaces

61

Representation
conversions

Points — Implicit
Implicit — Mesh
Mesh — Points

Implicit Surface Reconstruction

POINTS — IMPLICIT

63

Implicit Function Approach

¢ Define a function
f:R°—R

with value < O outside
the shape and >0
Inside

64

Implicit Function Approach

¢ Define a function
f:R°—R

with value < 0 outside
the shape and > 0
Inside

¢+ Extract the zero-set

{x: f(x)=0;

65

SDF from Points and Normals

¢ |nput: Points + Normals

+ Normals help to ey
distinguish between v >
inside and outside 5 %

+ Computed via locally % ' i
fitting planes at the b I’y
points (but orientation f‘««fﬁfq‘*’

can be tricky)

“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

66

http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

Smooth SDF

¢ Find smooth implicit F.
¢ Scattered data interpolation:

¢ F(pi) =0
+F is smooth A/ I
+Avoid trivial F' = (° ’

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
67

Smooth SDF

¢ Scattered data
Interpolation:

* F(p;) =0 A

™M

QO 2O0—>@®

+F is smooth i A/
+Avoid trivial F =0 'y 5
0

E
+ Add off-surface "710 . O
constraints —¢€
F(p; +¢en;) =«
F(p; —en;) = —¢

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
68

Radial Basis Function Interpolation

+ RBF: Weighted sum of shifted, smooth kernels

N—1
Fix)= Y wig(lx—cil) N=3n
1=0

Smooth kernels
(basis functions)
centered at constrained
points.

For example:

p(r) =1

Scalar weights
Unknowns

69

Radial Basis Function Interpolation

dist(X) = Z W.Q; (X) = Z W;SO(HX —¢ H)

i i
Kernel centers: on- and off-surface points

How do we find the weights?

Radial Basis Function Interpolation

+ Interpolate the constraints:

{Csz‘, C3i+1, C3«z+2} — {Pe:, p; +€n;, p; — 611?:}

vj:oa"'aN_la szSO(”CJ_Cz”):dJ € .E

Radial Basis Function Interpolation

+ Interpolate the constraints:

{c3i,€3i11,C3i42}F = {Pi, Pi +EN;, Pi — N}

¢+ Symmetric linear system to get the weights:

(ollco—col) .. @lllco —cnil) (o) (&)
olen-1—col) ... elllen—t—en_al)) \ww_1) \dy-s

3n equations
3n variables

72

RBF Kernels

p(r) =r

¢ Triharmonic:
+ Globally supported
¢ eads to dense symmetric linear system
+C? smoothness
+Works well for highly irreqgular sampling

73

RBF Kernels

+ Polyharmonic spline
¢ go(r)—frklog(), k=2,4,6.

* o(r)=r" k=1,3,5.
S Multiquadratlc T
= VP4 P q
+ Gaussian !
—Brz 0.4}
p(r) =e Ny 5‘
+ B-Spline (compact support) o=

p(r) = piecewise-polynomial(r)

74

RBF Reconstruction Examples

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
75

Off-Surface Points

Insufficient number/ Properly chosen off-surface points
badly placed off-surface points

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

76

Marching Cubes

IMPLICIT — MESH

77

Extracting the Surface

+ Wish to compute a manifold mesh of the level set

F(x)=0->
surface

F(x) <0 >

inside

F(x)>0->
outside

78

Sample the SDF

Sample the SDF

80

Sample the SDF

00006606006
000000000
000825906
(06500 0O
0000000 1) ®
0000000\

81

Marching Cubes

Converting from implicit to explicit representations.
Goal: Given an implicit representation: {}(j s.t. f(x)

Create a triangle mesh that approximates the surface.

[James Sharman]

Lorensen and Cline, SIGGRAPH ‘87

0}

82

Marching Squares (2D)

Given a function: f(x)

e f(x) <0 inside
* f(x) > 0 outside

1. Discretize space.

2. Evaluate f(x) on a grid.

83

Marching Squares (2D)

Given a function: f(x)

e f(x) <0 inside
* f(x) > 0 outside

Discretize space.
Evaluate f(x) on a grid.
Classify grid points (+/-)
Classify grid edges

Compute intersections

o Gl gs D NE e

Connect intersections

Marching Squares (2D)

Computing the intersections:

« Edges with a sign switch contain
Intersections.

f(@1) <0, f(z2) > 0=

f(x1 +t(xe —x1)) =0
for some 0 <t <1

o Simplest way to compute t: assume f
IS linear between x1 and x2:

f(x1)

= f(z2) — f(z1)

Marching Squares (2D)

Connecting the intersections:

e Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.

Marching Squares (2D)

Connecting the intersections:

e Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.
« Group those leading to the same intersections

87

Marching Squares (2D)

Connecting the intersections:

e Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.
* Group those leading to the same intersections.

o Group equivalent after rotation.

e Connect intersections

BN B3N

88

Marching Squares (2D)

Connecting the intersections:

Ambiguous cases: % %

Break contour Join contour

Two options:
1) Can resolve ambiguity by subsampling inside the cell.

2) If subsampling is impossible, pick one of the two possibilities. o

Marching Cubes (3D)

Same machinery: cells — cubes (voxels), lines — triangles

o 256 different cases - 15 after symmetries, 6 ambiguous cases
e More subsampling rules — 33 unique cases

¥

=

]

SR

7o
!

the 15 cases explore ambiguity to avoid holes!

]
=

90
Chernyaev, Marching Cubes 33,’95

Marching Cubes (3D)

Main Strengths:

* Very multi-purpose.

« Extremely fast and parallelizable.
« Relatively simple to implement.

* Virtually parameter-free

Main Weaknesses:

e Can create badly shaped (skinny) triangles.
 Many special cases (implemented as big lookup tables).
 No sharp features.

91

Recap: Points—Implicit—Mesh

92

Sampling

MESH-> POINT CLOUD

93

From Surface to Point Cloud
Why?

@ Points are simple but expressive!

@ Few points can suffice
@ Flexible, unstructured, few constraints
@ Also: ML applications!

CAD meshes:

many components
bad triangles
connectivity problems

94

From Surface to Point Cloud

Why?

@ Points are simple but expressive!

@ Few points can suffice
@ Flexible, unstructured, few constraints
@ Also: ML applications!

CAD meshes:

many components
bad triangles
connectivity problems

the problem:
sampling the mesh

95

Farthest Point Sampling

@ Introduced for progressive transmission/acquisition of images
@ Quality of approximation improves with increasing number of
samples
@ as opposed eg. to raster scan

@ Key Idea: repeatedly place next sample in the middle of the
least-known area of the domain.

E—

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance”

Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem” o6

Pipeline

1.Create an initial sample point set S
e Image corners + additional random point.
2. Find the point which is the farthest from all pointin S

d(p,S) = Iggg(d(qa S))

= ma (i 0.5)

geA \ 0<i<N

3. Insert the point to S and update the distances
4. While more points are needed, iterate

97

Farthest Point Sampling

@ Depends on a notion of distance on the sampling
domain

@ Can be made adaptive, via a weighted distance

Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling” o8

FPS on surfaces

@ What's an appropriate distance?

99

On-Surface Distances

Distance on
Manifold _

C distance

. Isolines - geodesic

@ Geodesics: Straightest
and locally shortest
curves

isolines - euclidean

100

Discrete Geodesics

@Recall: a mesh is a graph!
@ Approximate '_geodesics as paths along edges

.--M

»

vo= initial vertex
d; = current distance to vertex 1
S =

verticies with known optimal distance

initialize

dyp =0 Dijkstra’s
0_ -

d; = [inf for d in d;] algorithm!
S={}

for each iteration k:
update

k = argmin(dx), for v not in §
S.append (vg)

for neighbors index v; of wg:

di = min ([d;,dy + dw])

101

Dijkstra Geodesics

I =12

[=2

AN
AN

NN

Can be asymmetric - no matter

how fine the mesh!

102

Dijkstra Geodesics

@ Dik|stra as wave front propagation

AZANE LA
NZANSRNZaN|
600 :0 \6

/
1o e'o ‘9
NN, NN NZ
AN NN NN

9

103

Fast Marching Geodesics

@ A better approximation: allow fronts to cross
triangles!

20 aVaVaVaVa aVs.%aVs%
S "AVAVAVATAV/ YaVA\ g
ATV s

Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds” 104

FPS on a Mesh

Peyré and Cohen 2003, Geodesic Remeshing Using Front Propagation

105

Faster Distance Approximations

Carne, Weischedel, and Wardetzky 2017,
The Heat Method for Distance Computation 106

Software

@ Libigl http://libigl.github.io/libigl/tutorial/tutorial.html

@ MATLAB-style (flat) C++ library, based on indexed
face set structure

@ OpenMesh www.openmesh.org
@ Mesh processing, based on half-edge data structure

@ CGAL www.cgal.org
@ Computational geometry

@ MeshLab http://www.meshlab.net/
@ Viewing and processing meshes

http://libigl.github.io/libigl/tutorial/tutorial.html
http://www.openmesh.org/
http://www.cgal.org/
http://www.meshlab.net/

Software

@ Alec Jacobson’s GP toolbox
@ https://github.com/alecjacobson/gptoolbox
@ MATLAB, various mesh and matrix routines
@ Gabriel Peyre’s Fast Marching Toolbox

@ https://www.mathworks.com/matlabcentral/file
exchange/6110-toolbox-fast-marching

@ On-surface distances (more next time!)
@ OpenFlipper https://www.openflipper.org/
@ Various GP algorithms + Viewer

108

https://github.com/alecjacobson/gptoolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.openflipper.org/

The End

109

110

	CS233: Geometric and Topological Data Analysis
	Last Time: Persistent Homology Applications
	Mapper
	3D Shape Segmentation
	Scalar Field Analysis
	Geometry Representations in 3D
	Images Have Canonical Representations
	In 3D There is Representation Diversity
	Because 3D has Many Sources
	Representation Considerations
	Boundary or Volumetric?
	Point Clouds
	Output of Acquisition
	 Point Cloud Issues
	Point Clouds,�Often an Intermediate Representation
	3D Point Cloud Processing
	B-Reps
	B-Reps
	Parametric Curves and Surfaces
	Parametric Representation:�Curves
	Parametric Representation:�Surfaces
	1-D Parametric Curves
	Parametric Curves
	Parametric Surfaces
	Tensor Product�Parametric Surfaces
	Tensor Product vs.�Triangular Patch Surfaces
	Parametric Curves and Surfaces
	Splined Surfaces for CAD
	Implicit Curves and Surfaces
	Implicit Curves and Surfaces
	Implicit Curves and Surfaces
	Implicit Curves and Surfaces
	Boolean Set Operations
	Boolean Set Operations
	Implicit Curves and Surfaces
	Volumetric Representations
	V-Rep: Volumetric Grids
	V-Rep: CSG
	Polygonal Meshes
	Polygonal Meshes
	Meshes as Approximations of �Smooth Surfaces
	Polygonal Meshes
	Planar Polygons
	Polygonal Meshes
	Polygonal Mesh
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Triangulation
	Triangulation
	Triangle Meshes
	Data Structures
	Simple Data Structures: Triangle List
	Simple Data Structures: Triangle List
	Quad-Edge: Encoding Mesh Topology
	Brisson: Cell-Tuple
	Summary
	Representation Conversions
	Points → IMPLicit
	Implicit Function Approach
	Implicit Function Approach
	SDF from Points and Normals
	Smooth SDF
	Smooth SDF
	Radial Basis Function Interpolation
	Slide Number 70
	Slide Number 71
	Slide Number 72
	RBF Kernels
	RBF Kernels
	RBF Reconstruction Examples
	Off-Surface Points
	implicit → mesh
	Extracting the Surface
	Sample the SDF
	Sample the SDF
	Sample the SDF
	Marching Cubes
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Cubes (3D)
	Marching Cubes (3D)
	Recap: Points→Implicit→Mesh
	MESH-> POInt CLOUD
	From Surface to Point Cloud Why?
	From Surface to Point Cloud Why?
	Farthest Point Sampling
	Pipeline
	Farthest Point Sampling
	FPS on surfaces
	On-Surface Distances
	Discrete Geodesics
	Dijkstra Geodesics
	Dijkstra Geodesics
	Fast Marching Geodesics
	FPS on a Mesh
	Faster Distance Approximations
	Software
	Software
	The End
	Slide Number 110

