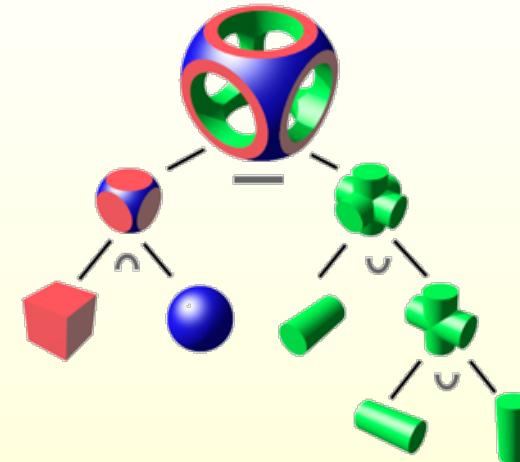
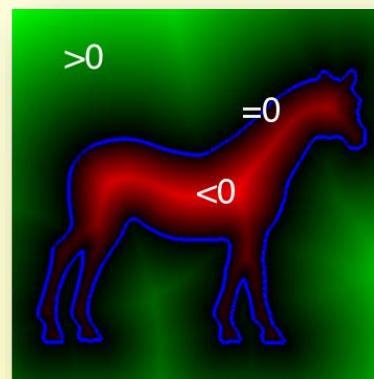
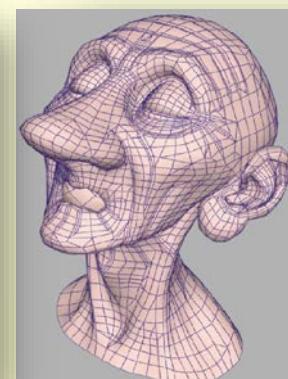


CS233: Geometric and Topological Data Analysis

Representations for 3D
Geometry: Voxels,
Point Clouds, Meshes,
CSG



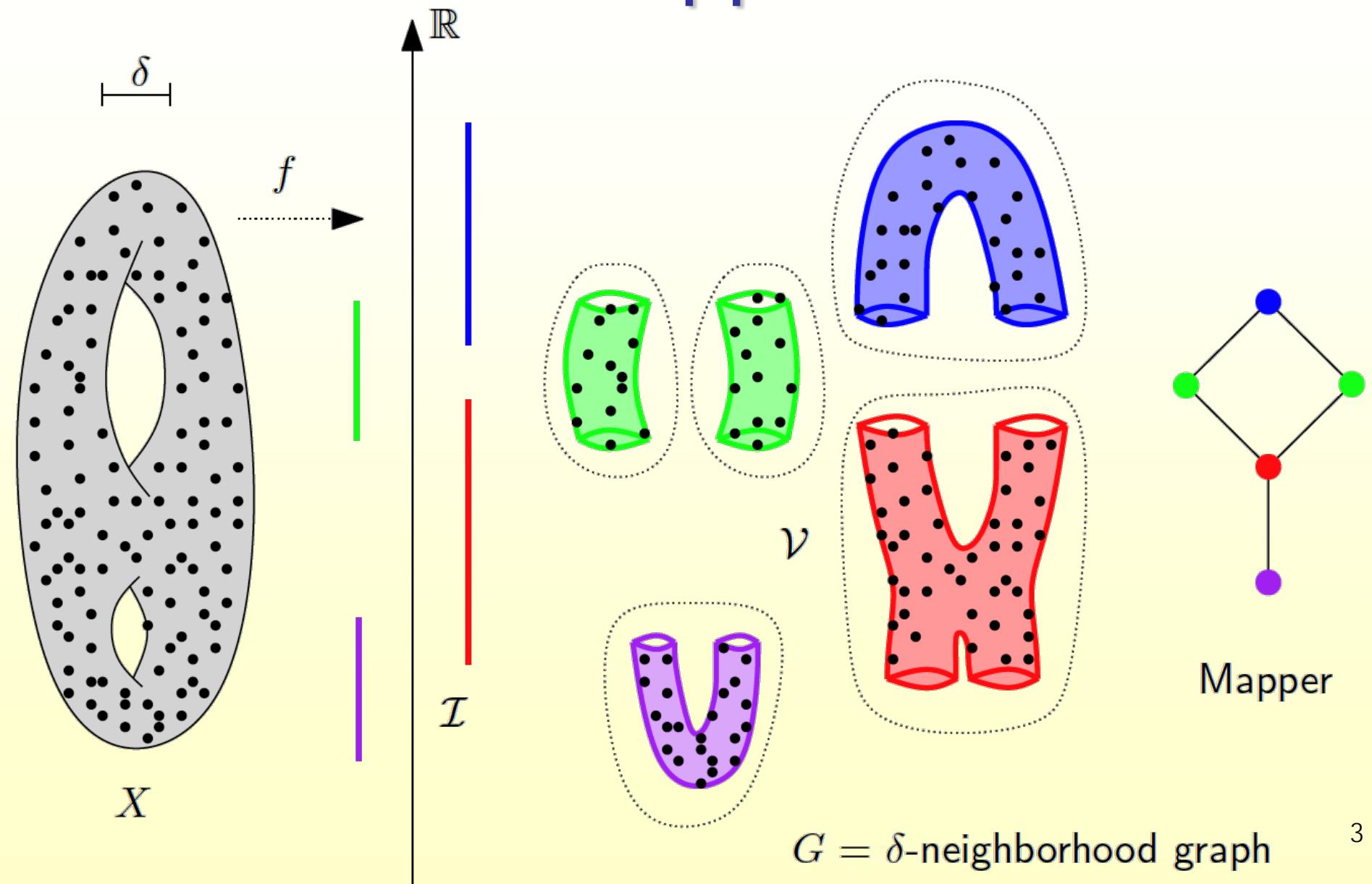
2 May 2018



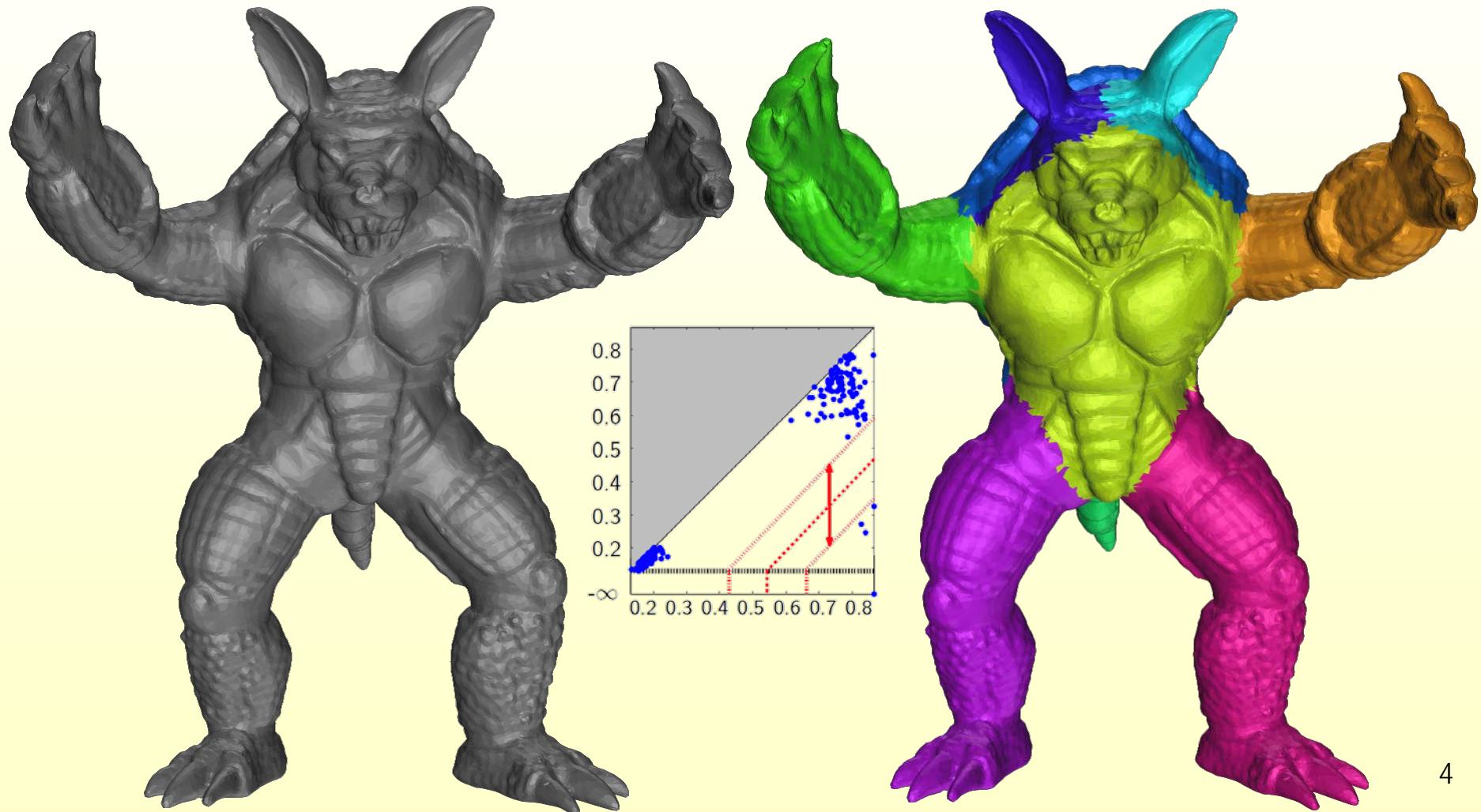
Slides ack: Olga Sorkine-Hornung, Daniele Panozzo, Maks Ovsjanikov, Mario Botsch, Olga Diamanti

Last Time: Persistent Homology Applications

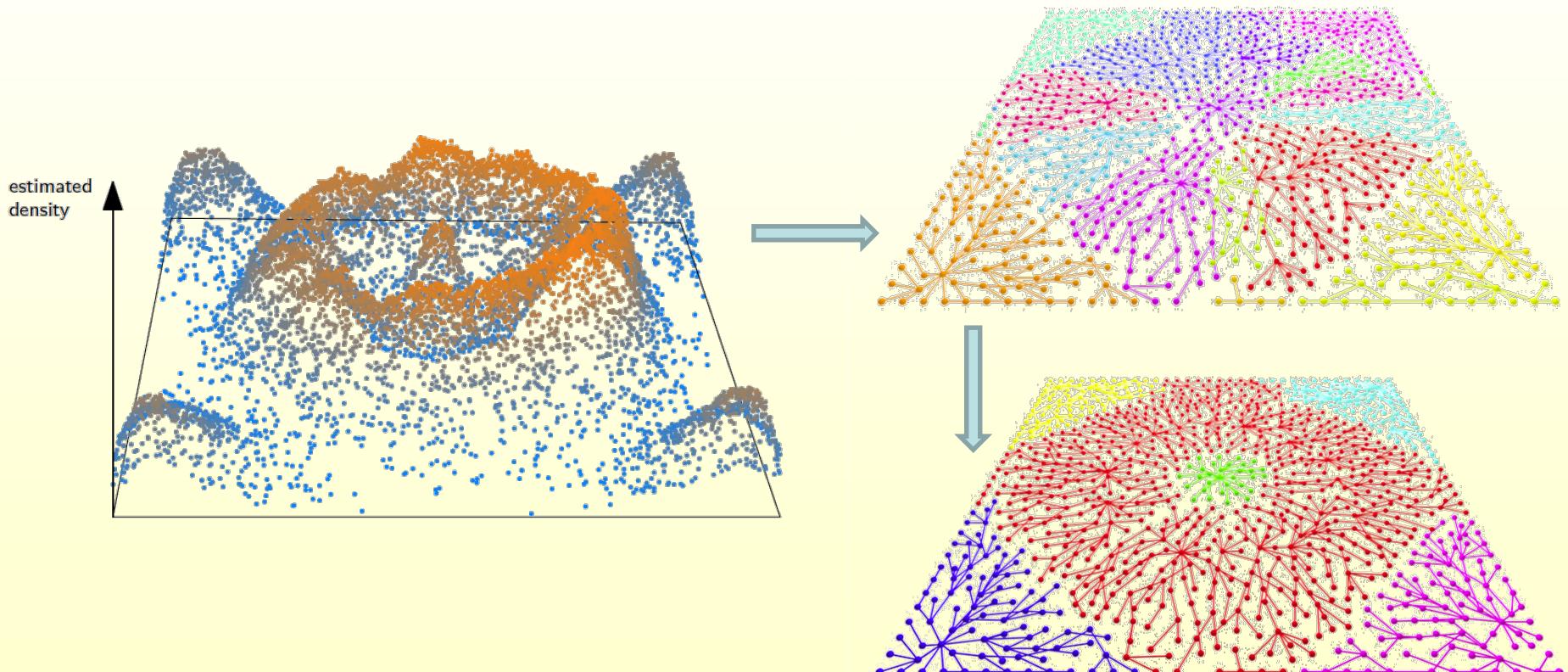
Mapper



3D Shape Segmentation

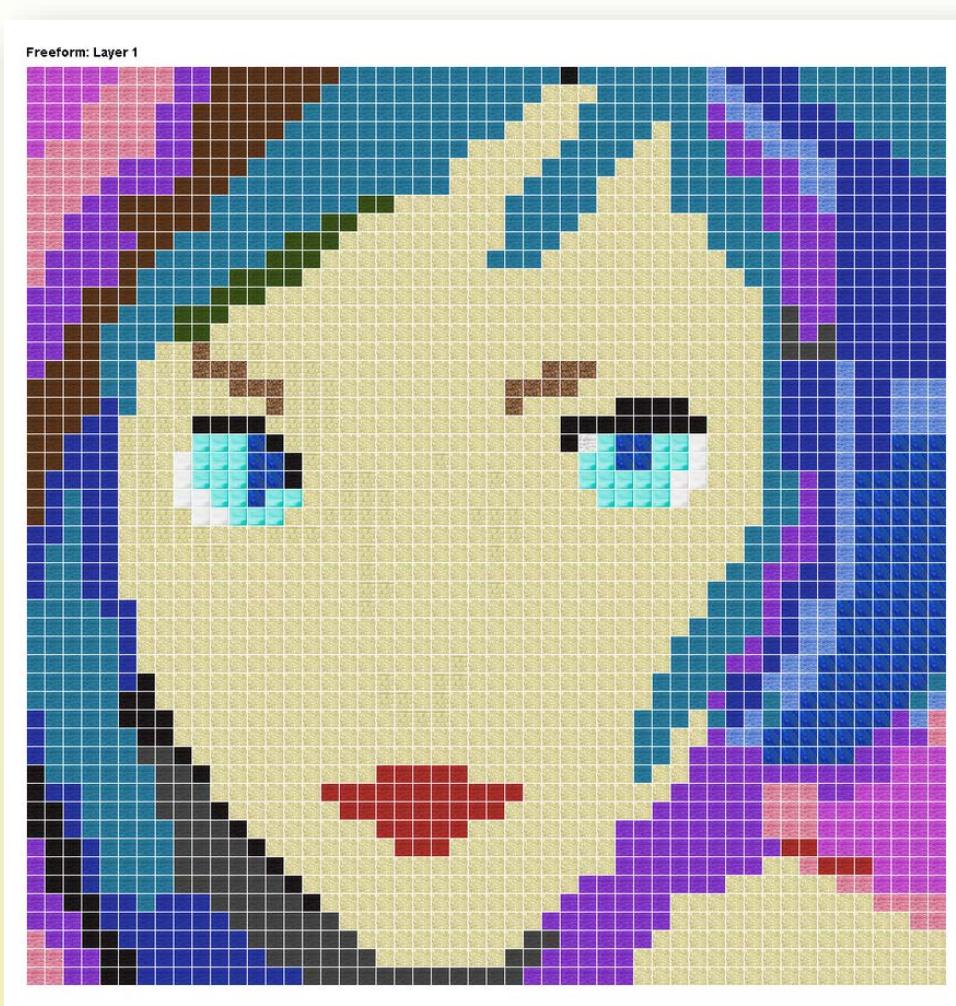


Scalar Field Analysis



Geometry Representations in 3D

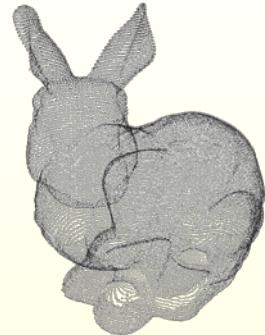
Images Have Canonical Representations



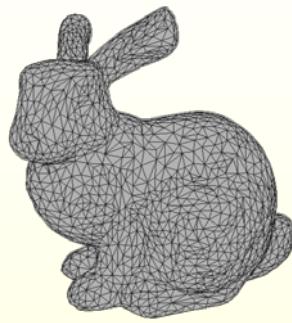
Regular representations aid ML algorithms, e.g. convolutional deep networks



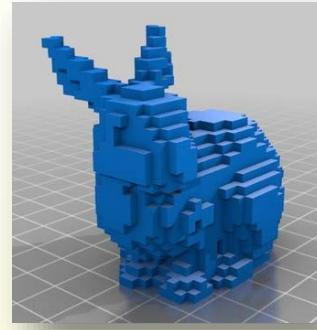
In 3D There is Representation Diversity



Point Cloud



Mesh

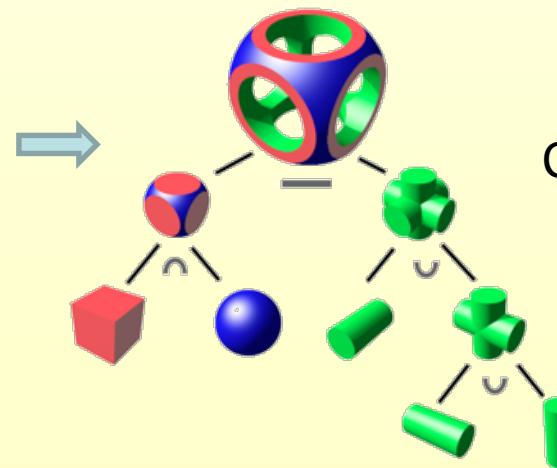


Volumetric

Projected View
RGB(D)

...

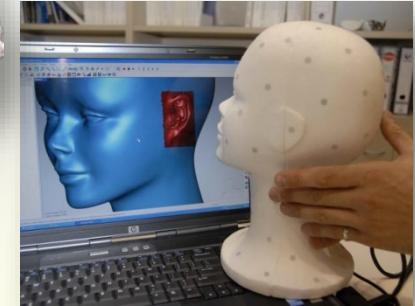
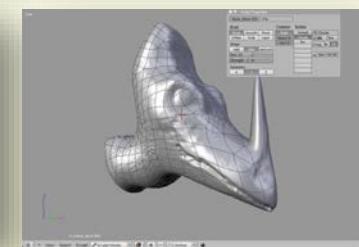
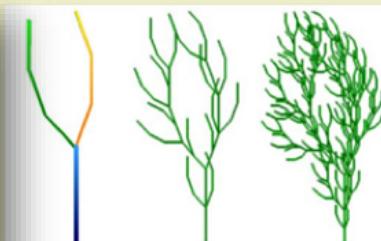
These are irregular representations



Constructive Solid
Geometry (CSG)

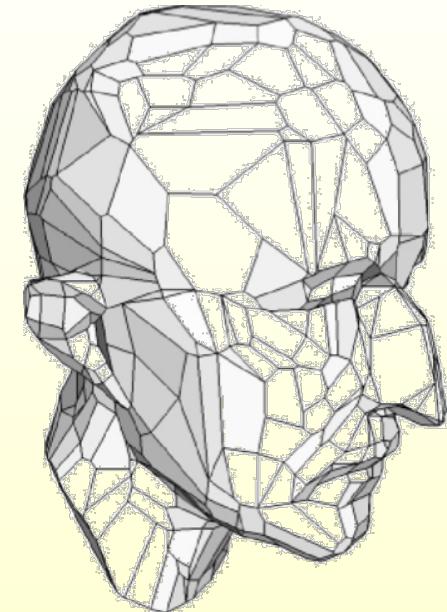
Because 3D has Many Sources

- Acquired real-world objects:
 - Discrete sampling
 - Points, meshes
- Modeling “by hand”:
 - Higher-level representations, amendable to modification, control
 - Parametric surfaces, subdivision surfaces, implicits
- Procedural modeling
 - Algorithms, grammars
 - Primitives, Polygons, Application- dependent elements



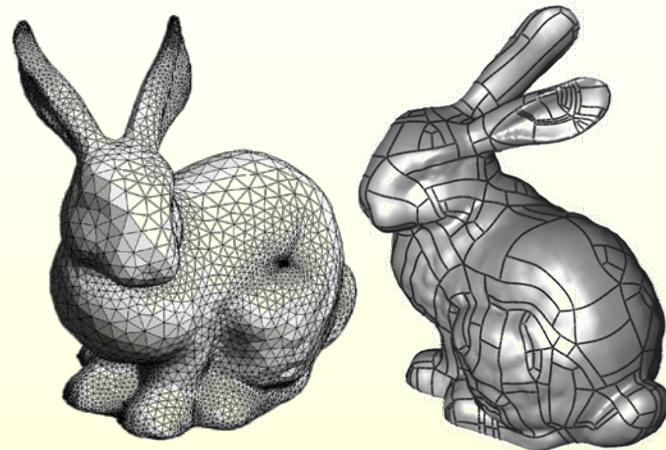
Representation Considerations

- How should we represent geometry?
 - Be derivable from sensor data
 - Support storage efficiency
 - Support editing:
 - Modification, simplification, smoothing, filtering, repair...
 - Support creativity:
 - Input metaphors, UIs...
 - Support rendering:
 - Rasterization, raytracing...
 - Support ML:
 - Share info across related shapes

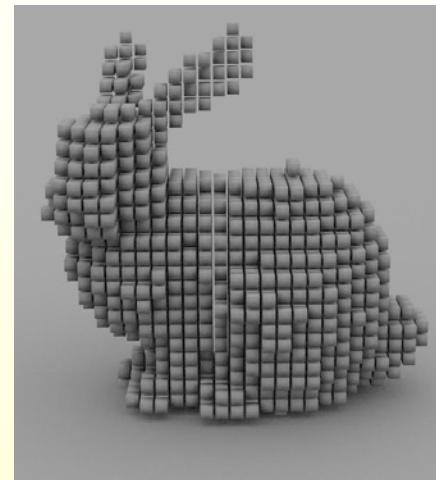


Boundary or Volumetric?

- ◆ B-Reps



- ◆ V-Reps

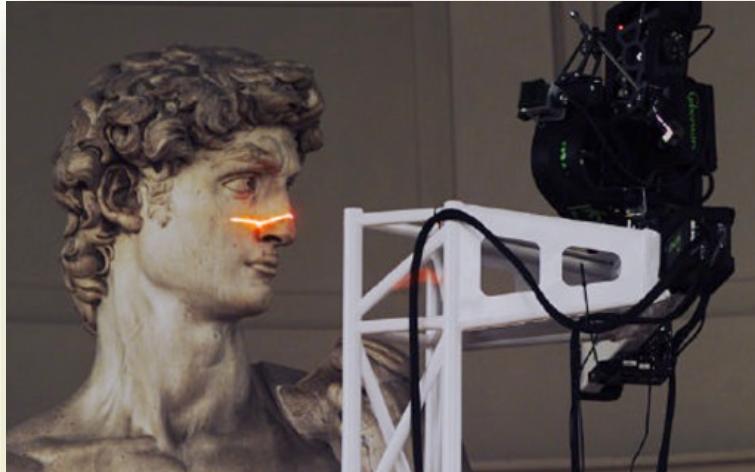
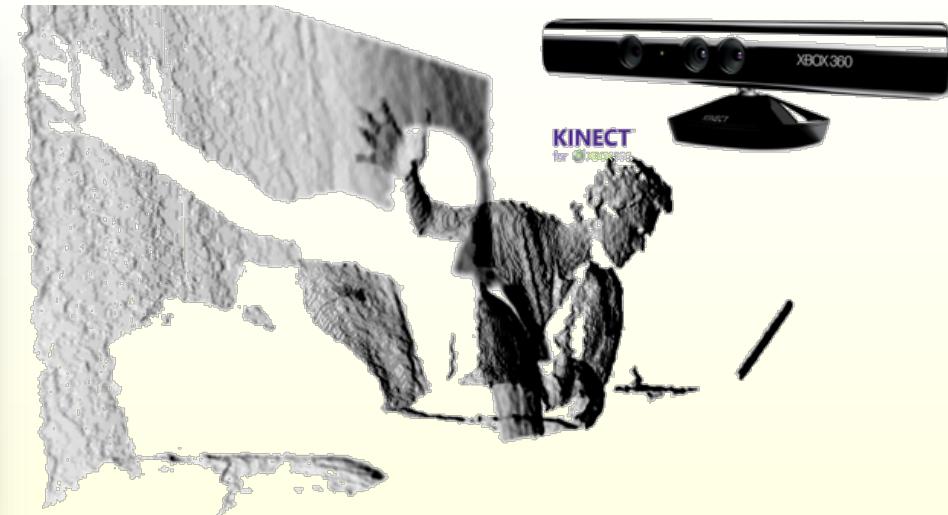


- ◆ more efficient
- ◆ closer to semantics,
supports local editing

- ◆ more regular
- ◆ supports unions and
intersections

Point Clouds

Output of Acquisition

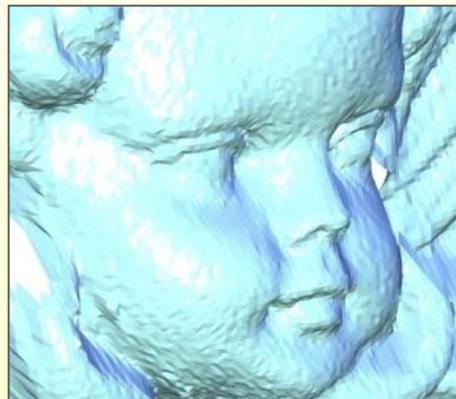


Triangulation, time-of-flight,
structured light scanners

but also from classic computer
algorithms like stereo

Point Cloud Issues

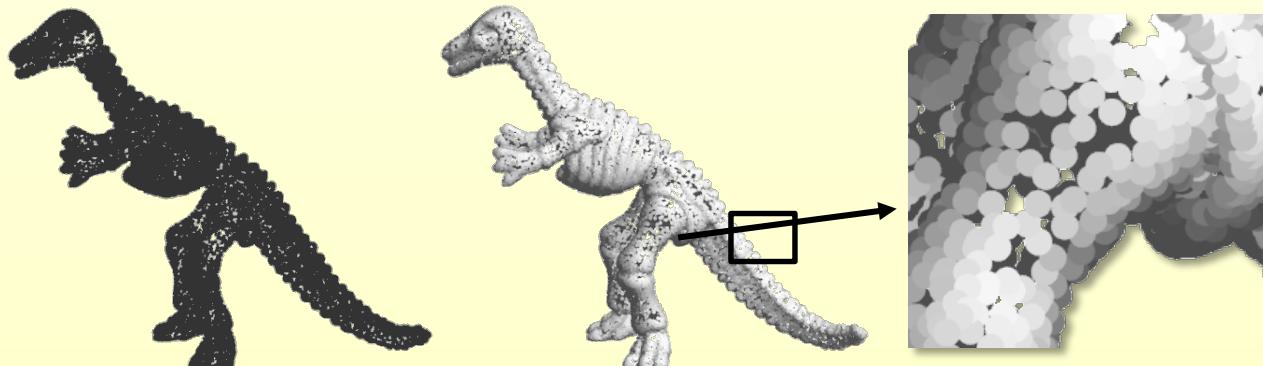
- Standard 3D data from a variety of sources/scanners
- Potentially noisy



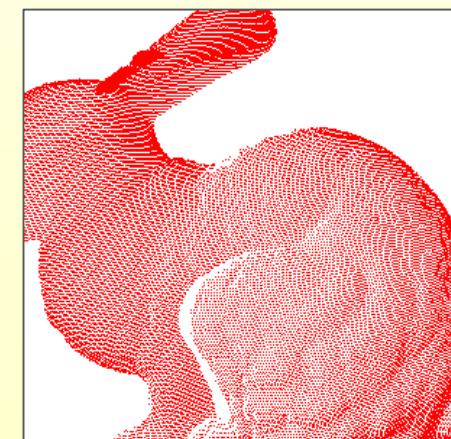
- Can have holes
- Registration of multiple images is required

Point Clouds, Often an Intermediate Representation

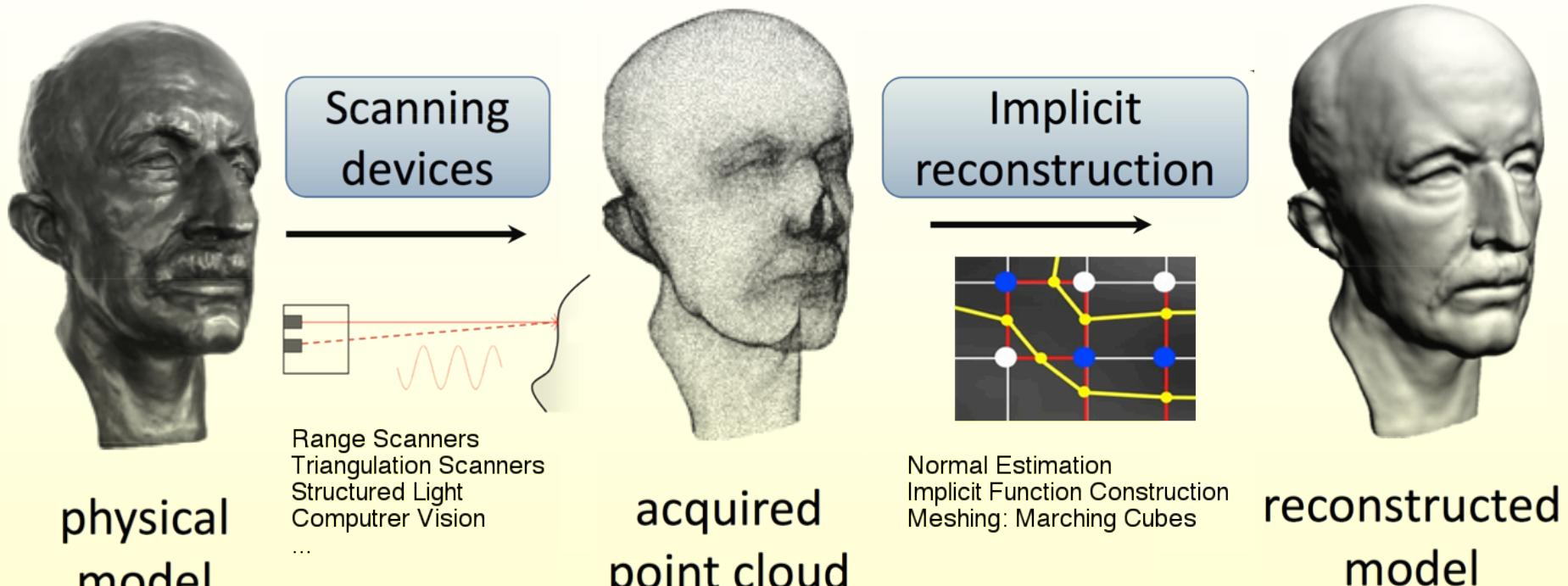
- Points = unordered set of 3-tuples
- Often converted to other reps
 - Meshes, implicits, parametric surfaces
 - Easier to process, edit and/or render
- Efficient point processing / modeling requires spatial partitioning data structure
 - E.g., to figure out neighborhoods



shading needs normals!



3D Point Cloud Processing

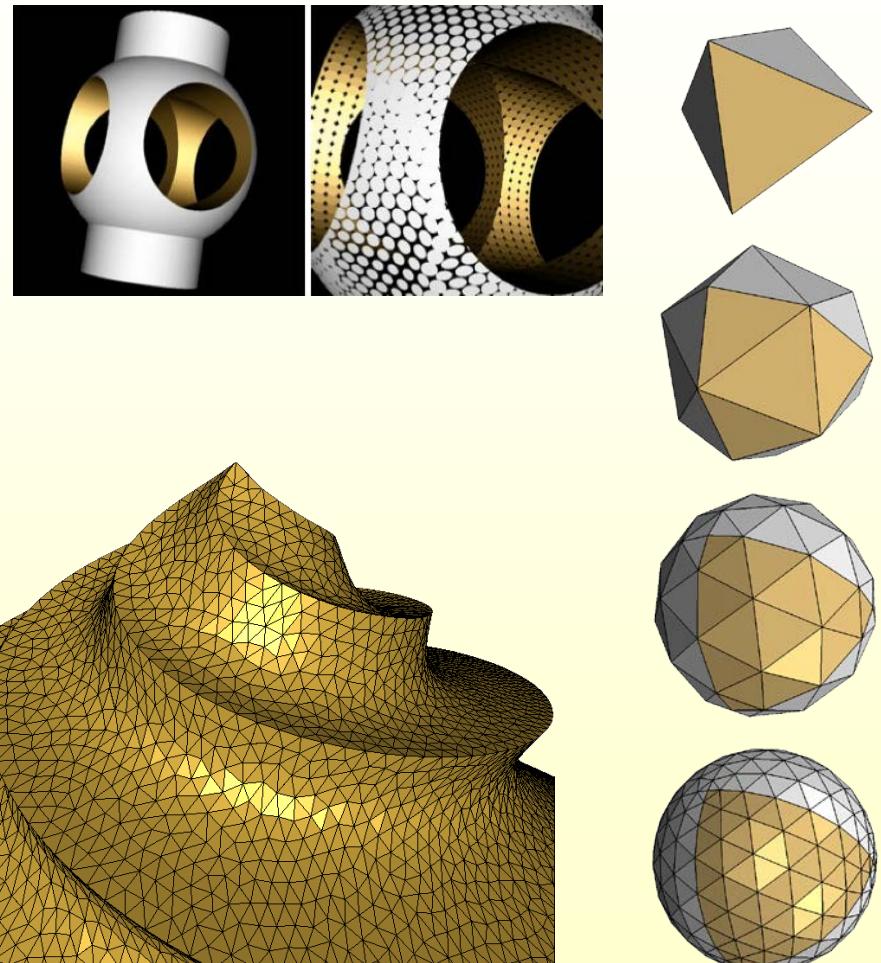
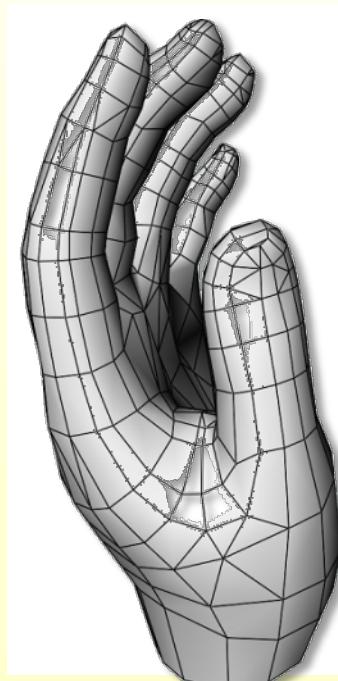


Traditional 3D Acquisition Pipeline

ML directly on Point Cloud Data

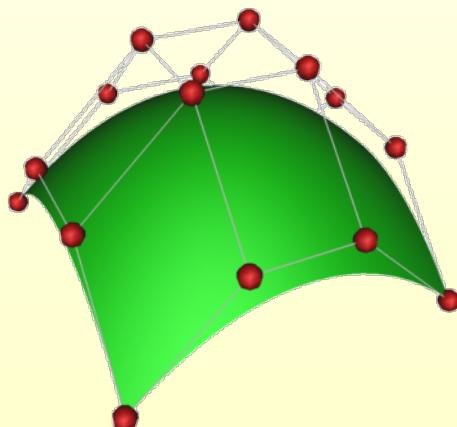
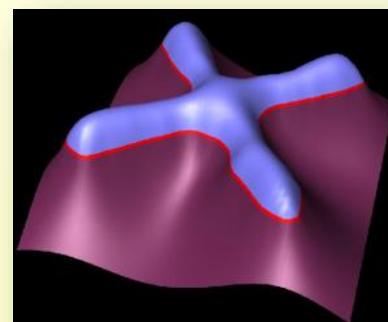
B-Reps

- Points
- Polygonal meshes

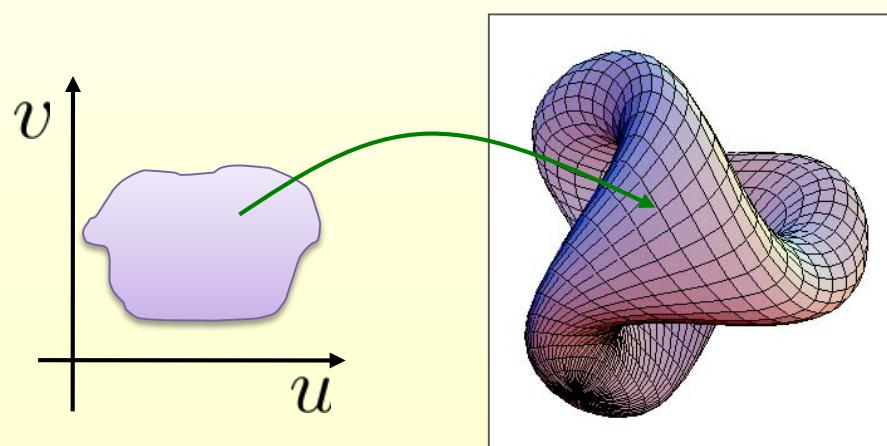


B-Reps

- Parametric surfaces
- Implicit functions
- Subdivision surfaces



Parametric Curves and Surfaces

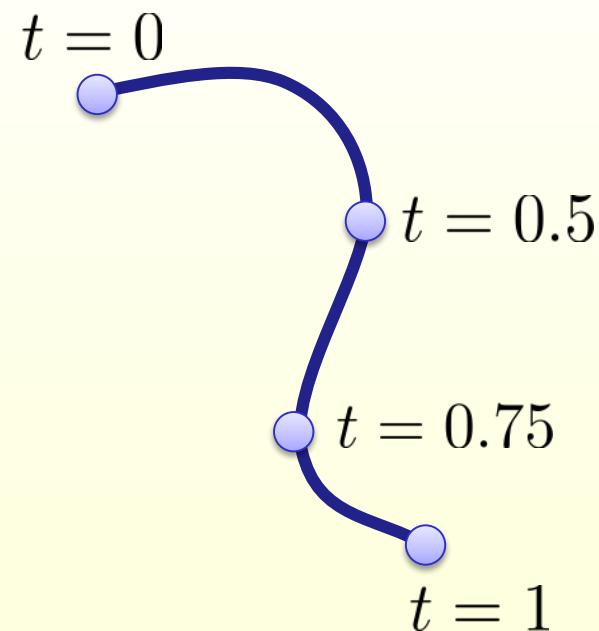


Parametric Representation: Curves

- Range of a function $f : X \rightarrow Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n$

- Planar curve: $m = 1, n = 2$

$$s(t) = (x(t), y(t))$$

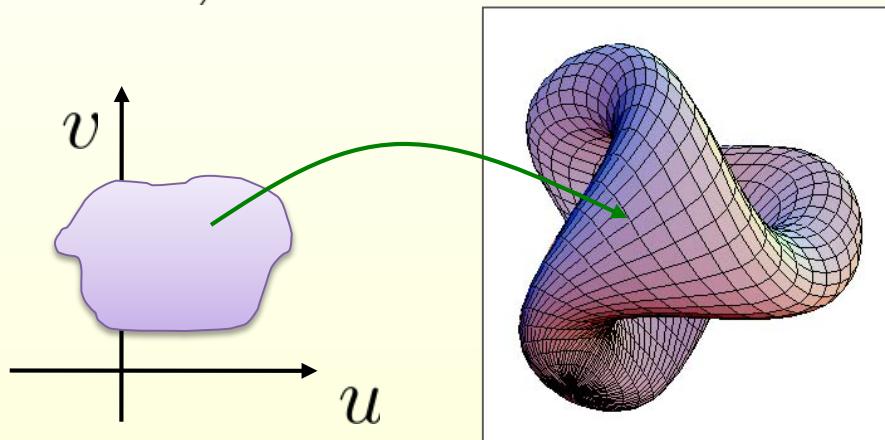


- Space curve: $m = 1, n = 3$

$$s(t) = (x(t), y(t), z(t))$$

Parametric Representation: Surfaces

- Range of a function $f : X \rightarrow Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n$
- Surface in 3D: $m = 2, n = 3$



$$s(u, v) = (x(u, v), y(u, v), z(u, v))$$

1-D Parametric Curves

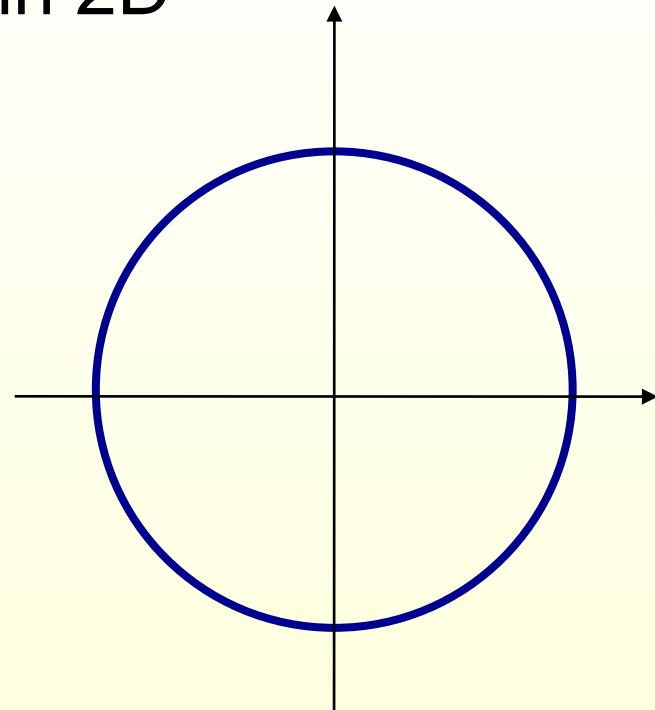
- Example: Explicit curve/circle in 2D

$$\mathbf{p} : \mathbb{R} \rightarrow \mathbb{R}^2$$

$$t \mapsto \mathbf{p}(t) = (x(t), y(t))$$

$$\mathbf{p}(t) = r (\cos(t), \sin(t))$$

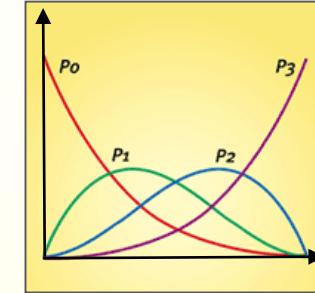
$$t \in [0, 2\pi)$$



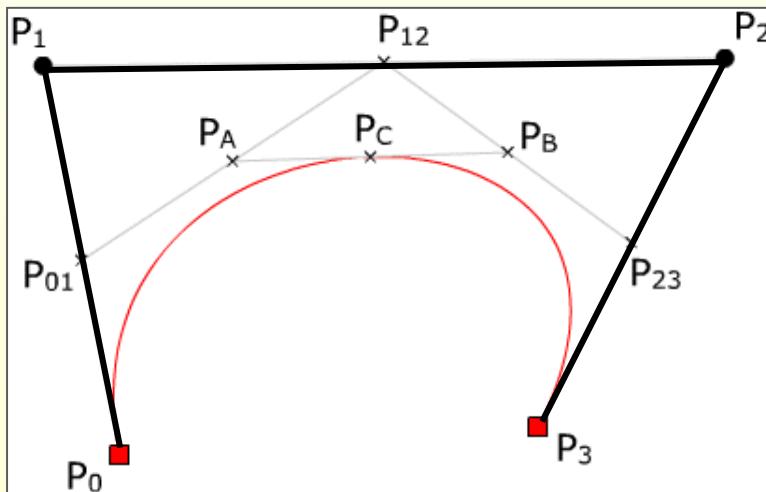
Parametric Curves

Bezier curves, splines

$$s(t) = \sum_{i=0}^n \mathbf{p}_i B_i^n(t) \quad B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$



Basis functions

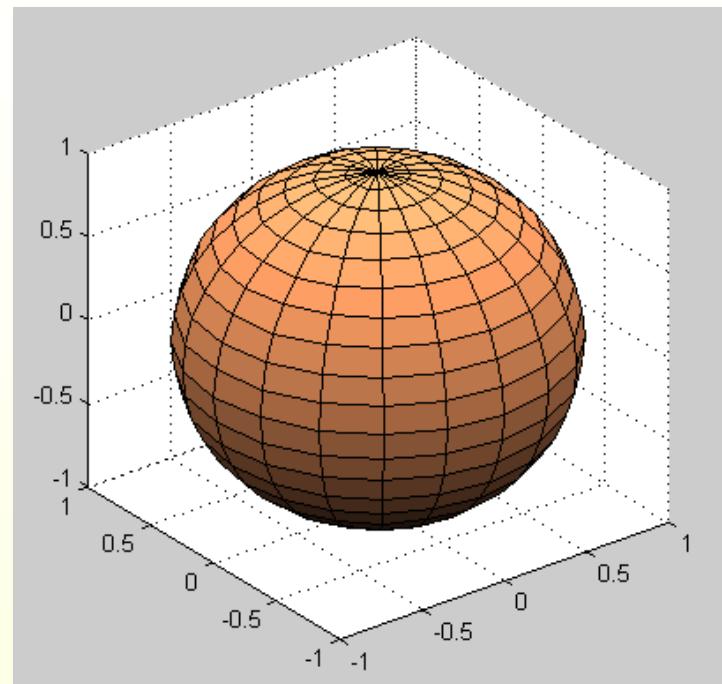


Curve and control polygon

Parametric Surfaces

- Sphere in 3D

$$s : \mathbb{R}^2 \rightarrow \mathbb{R}^3$$



$$s(u, v) = r (\cos(u) \cos(v), \sin(u) \cos(v), \sin(v))$$

$$(u, v) \in [0, 2\pi) \times [-\pi/2, \pi/2]$$

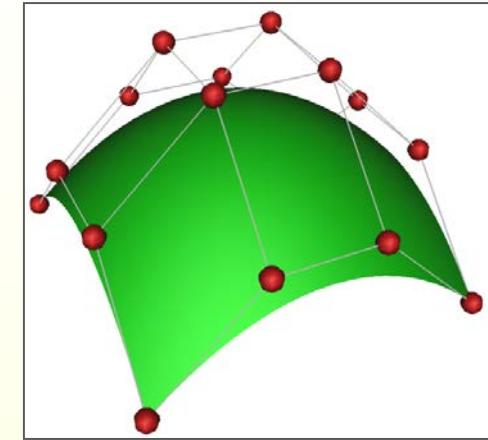
Tensor Product Parametric Surfaces

- Curve swept by another curve

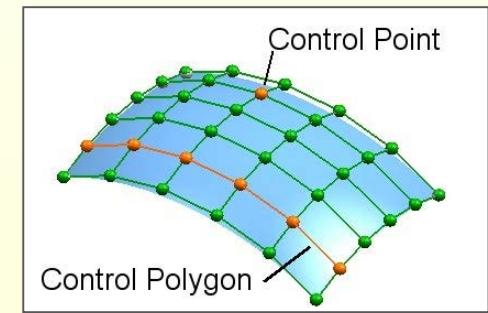
$$s(u, v) = \sum_{i,j} \mathbf{p}_{i,j} B_i(u) B_j(v)$$

- Bezier surface:

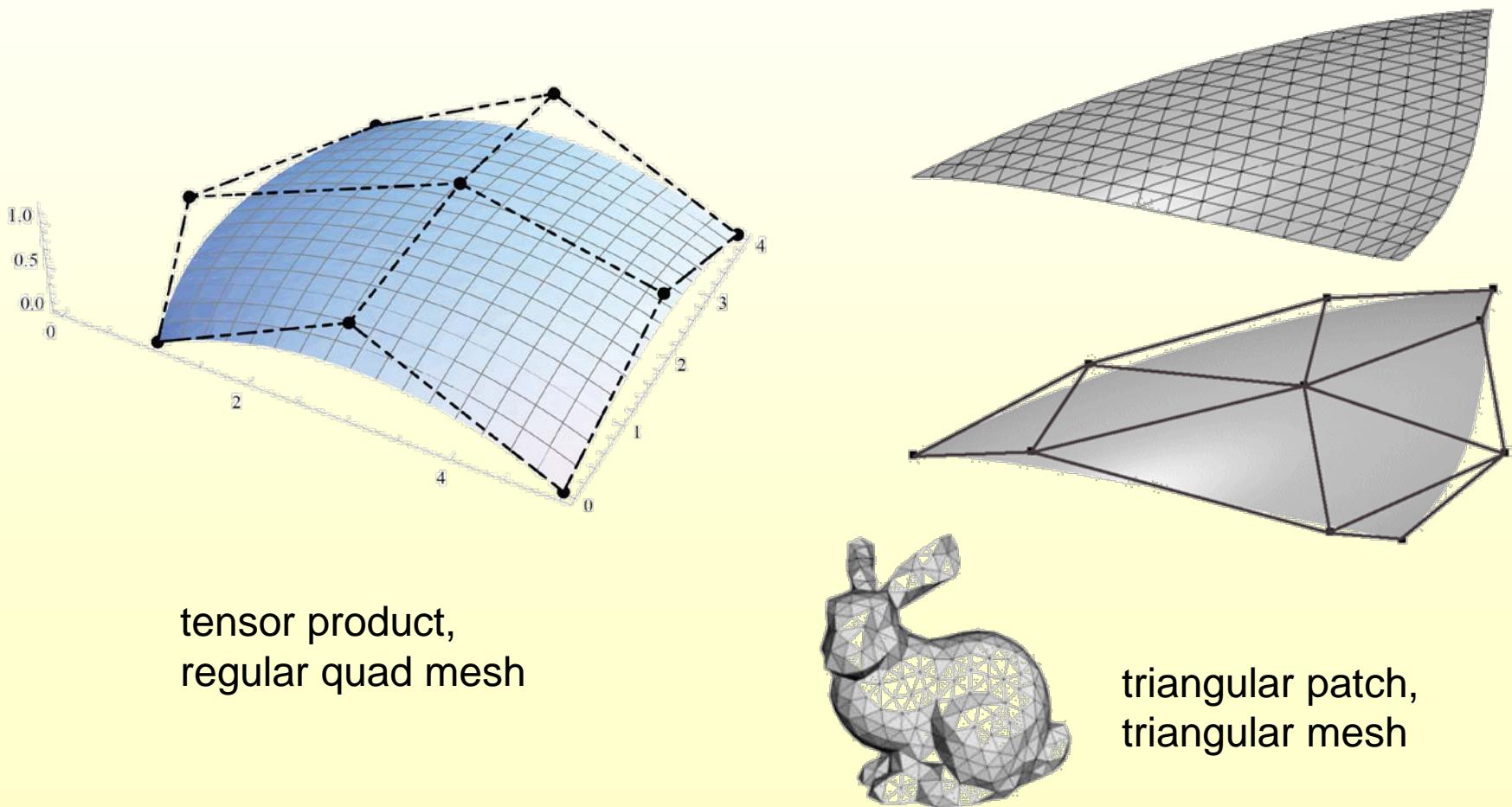
$$s(u, v) = \sum_{i=0}^m \sum_{j=0}^n \mathbf{p}_{i,j} B_i^m(u) B_j^n(v)$$



- Also : triangular patch surfaces, subdivision surfaces



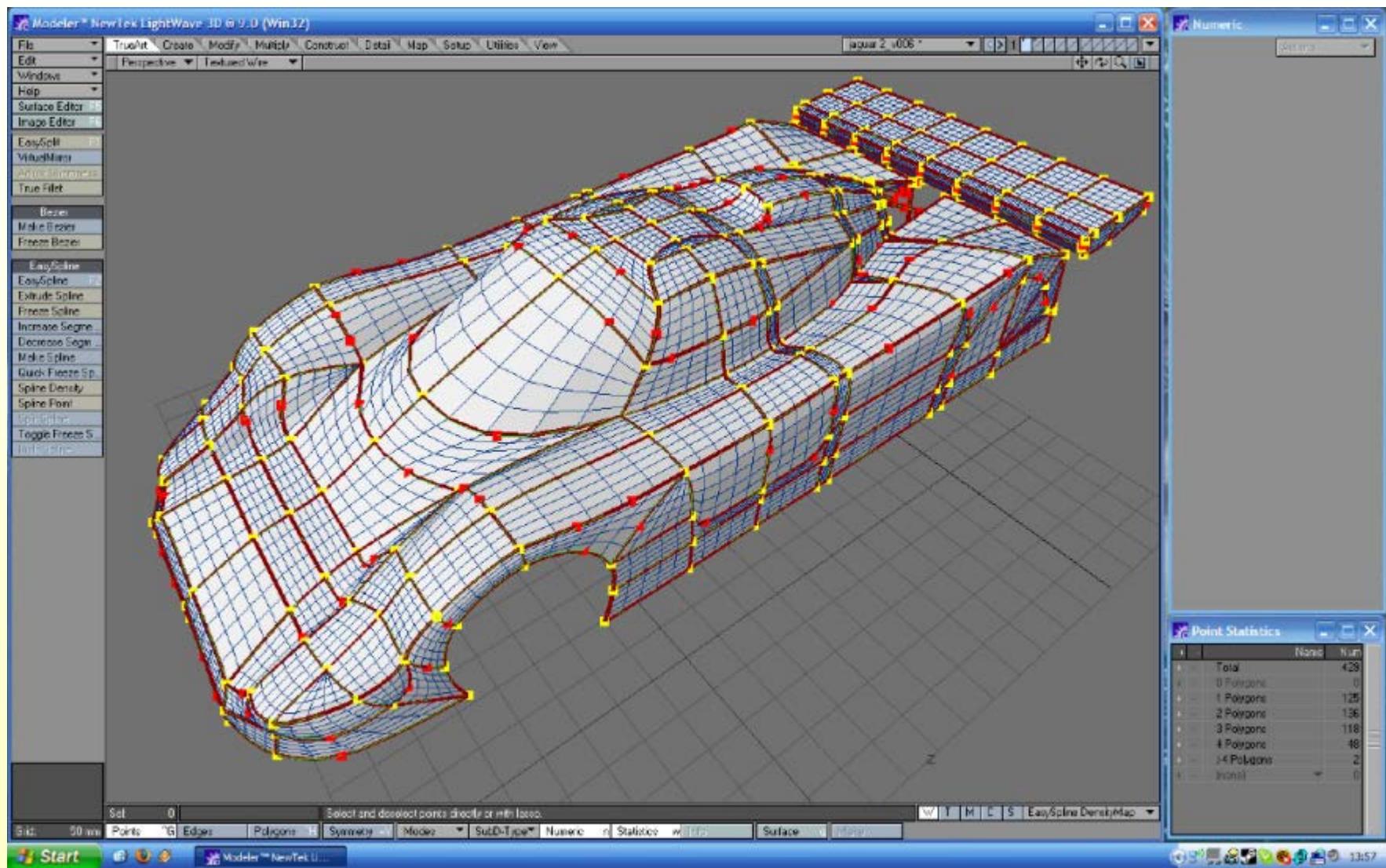
Tensor Product vs. Triangular Patch Surfaces



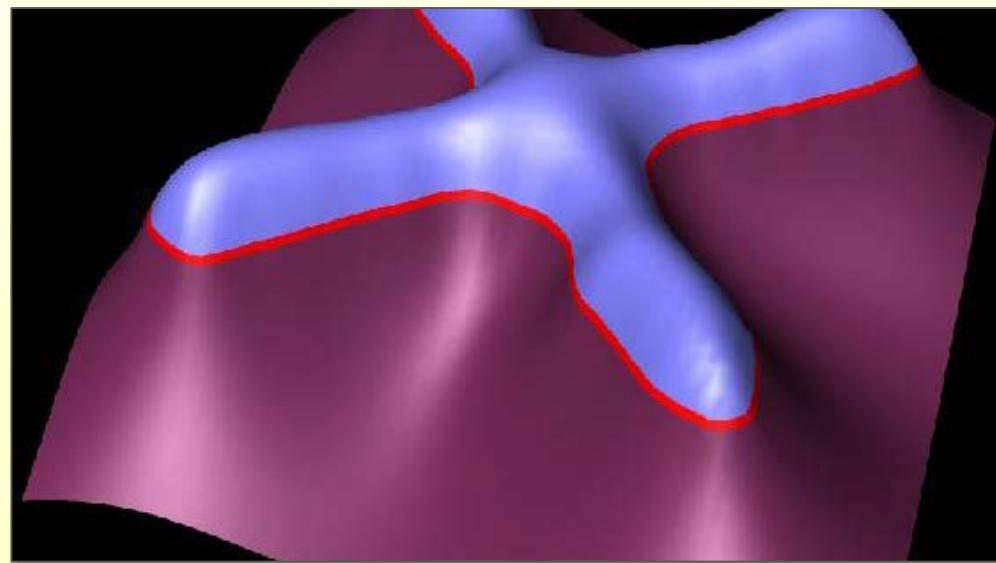
Parametric Curves and Surfaces

- Advantages
 - Easy to generate points on the curve/surface
 - Separates x/y/z components
- Disadvantages
 - Hard to determine inside/outside
 - Hard to determine if a point is **on** the curve/surface
 - Hard to express more complex curves/surfaces!
→cue: piecewise parametric surfaces (eg. mesh)

Splined Surfaces for CAD



Implicit Curves and Surfaces



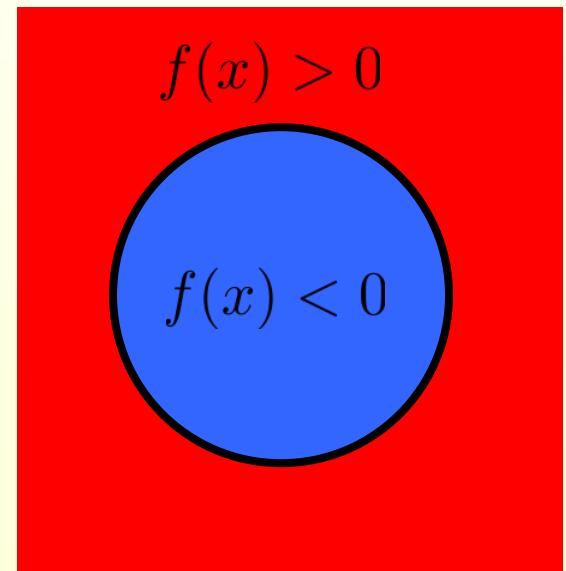
Implicit Curves and Surfaces

- Kernel of a scalar function $f : \mathbb{R}^m \rightarrow \mathbb{R}$
 - Curve in 2D: $S = \{x \in \mathbb{R}^2 | f(x) = 0\}$
 - Surface in 3D: $S = \{x \in \mathbb{R}^3 | f(x) = 0\}$
- Space partitioning

$\{x \in \mathbb{R}^m | f(x) > 0\}$ Outside

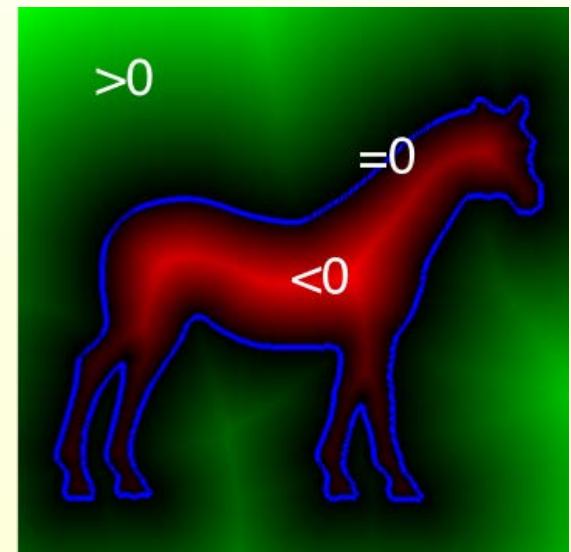
$\{x \in \mathbb{R}^m | f(x) = 0\}$ Curve/Surface

$\{x \in \mathbb{R}^m | f(x) < 0\}$ Inside



Implicit Curves and Surfaces

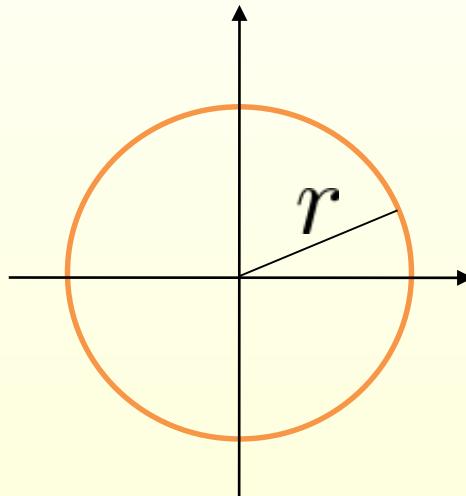
- Kernel of a scalar function $f : \mathbb{R}^m \rightarrow \mathbb{R}$
 - Curve in 2D: $S = \{x \in \mathbb{R}^2 | f(x) = 0\}$
 - Surface in 3D: $S = \{x \in \mathbb{R}^3 | f(x) = 0\}$
- Zero level set of signed distance function



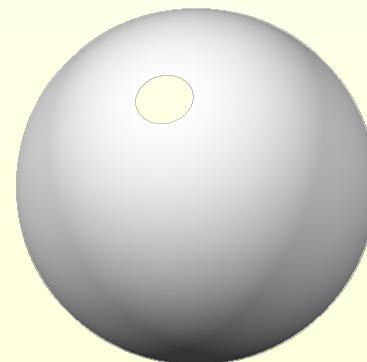
Implicit Curves and Surfaces

- Implicit circle and sphere

$$f(x, y) = x^2 + y^2 - r^2$$



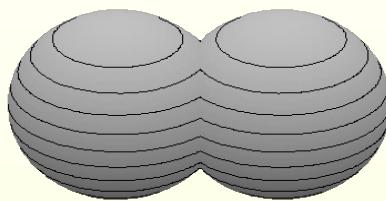
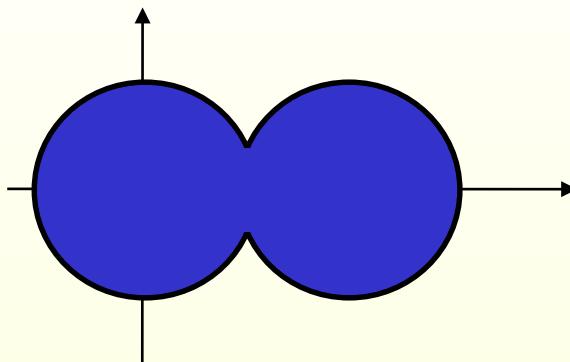
$$f(x, y, z) = x^2 + y^2 + z^2 - r^2$$



Boolean Set Operations

- Union:

$$\bigcup_i f_i(x) = \min f_i(x)$$



- Intersection:

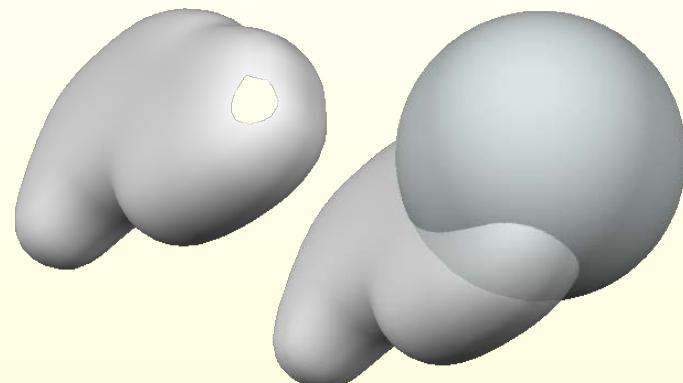
$$\bigcap_i f_i(x) = \max f_i(x)$$

Boolean Set Operations

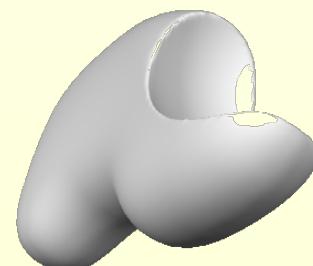
- Positive = outside, negative = inside
- Boolean subtraction:

	$f > 0$	$f < 0$
$g > 0$	$h > 0$	$h < 0$
$g < 0$	$h > 0$	$h > 0$

$$h = \max(f, -g)$$



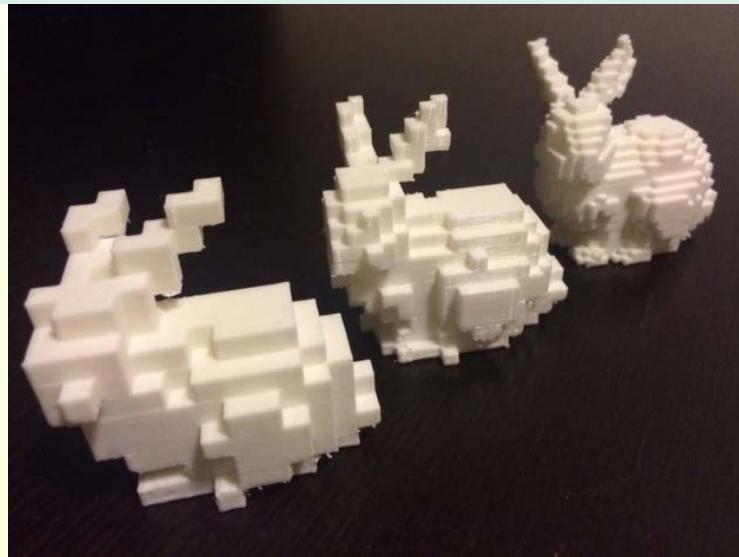
- Much easier than for parametric surfaces!



Implicit Curves and Surfaces

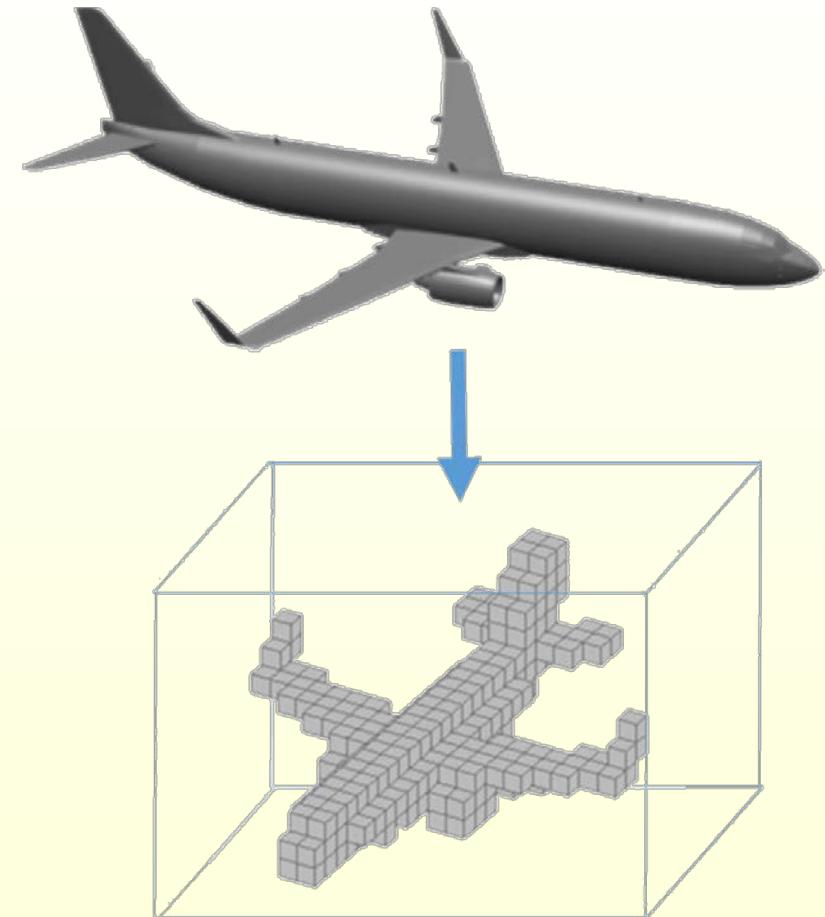
- Advantages
 - Easy to determine inside/outside
 - Easy to determine if a point is **on** the curve/surface
- Disadvantages
 - Hard to generate points on the curve/surface
 - Do not lend to (real-time) rendering

Volumetric Representations



V-Rep: Volumetric Grids

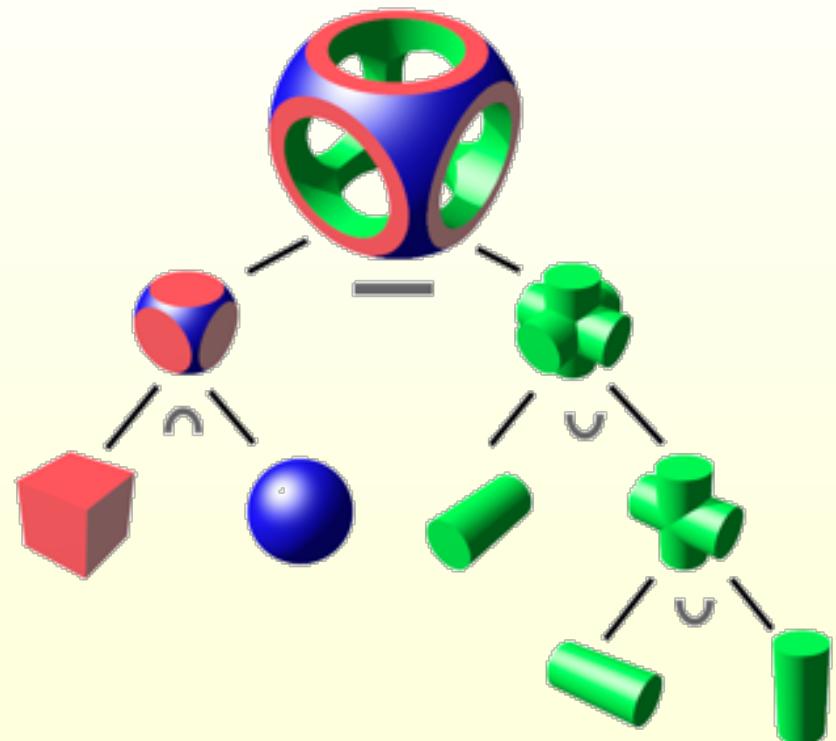
- Binary volumetric grids
- Can be produced by thresholding the distance function, or from the scanned points directly



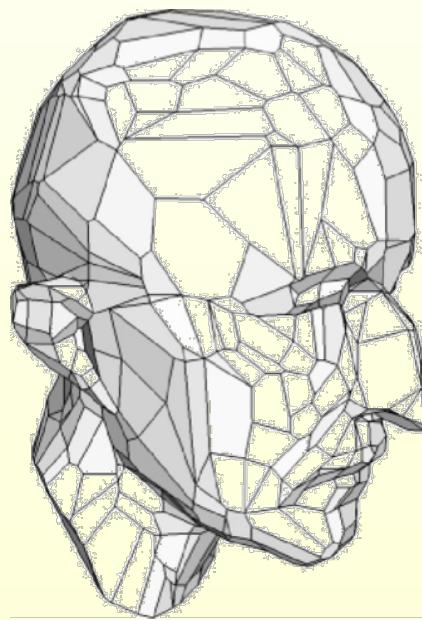
Also represents space of little informational value

V-Rep: CSG

- Constructive Solid Geometry
- Boolean ops over geometric primitives (spheres, boxes, cylinders, cones, ...)

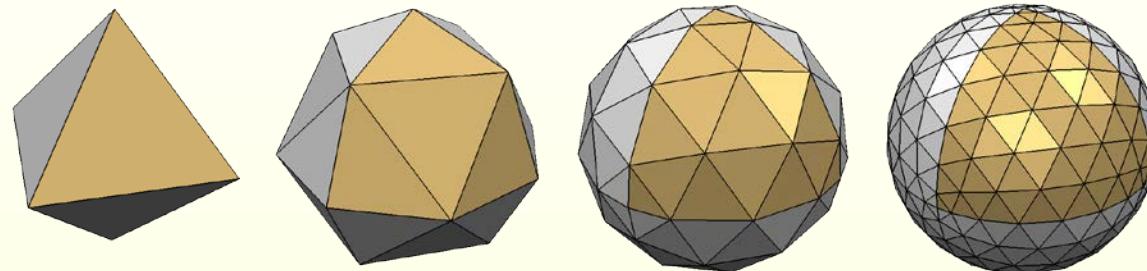
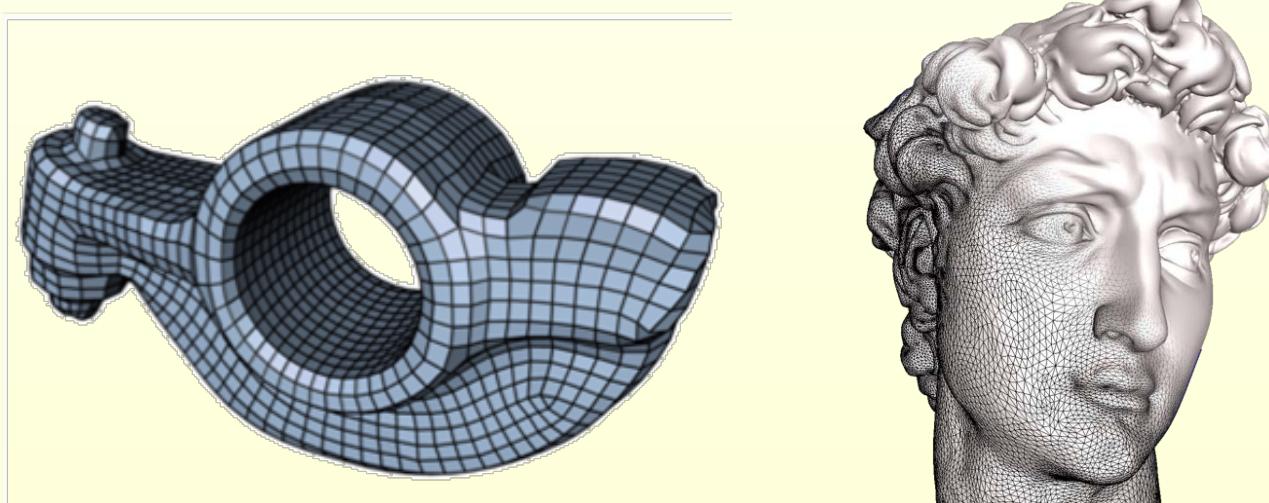


Polygonal Meshes



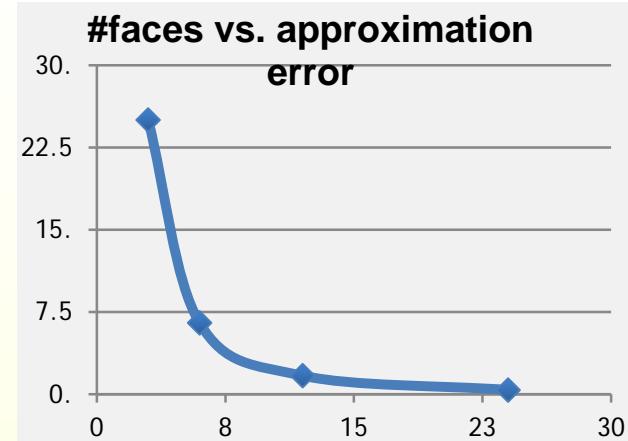
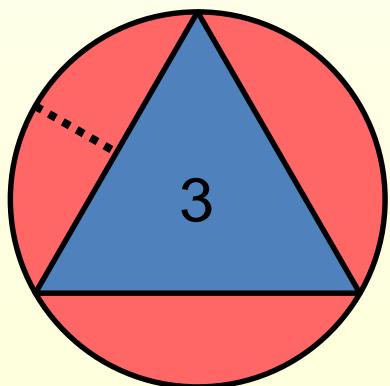
Polygonal Meshes

- Boundary representations of objects using polygonal primitives

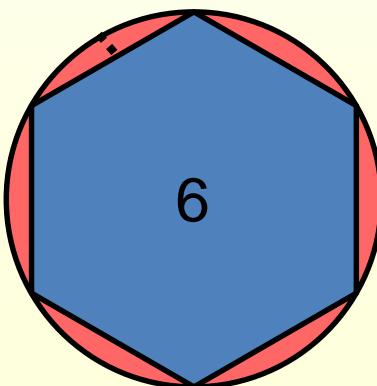


Meshes as Approximations of Smooth Surfaces

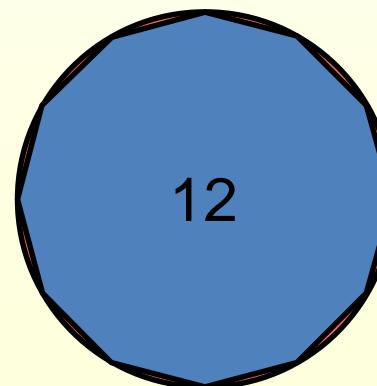
- Piecewise linear approximation
- Error is $O(h^2)$ [$O(h)$ for points]



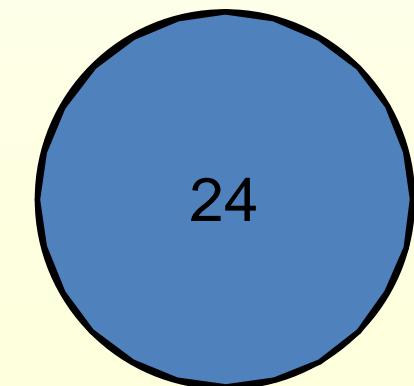
25%



6.5%



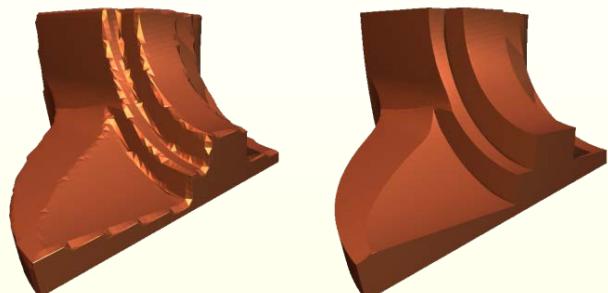
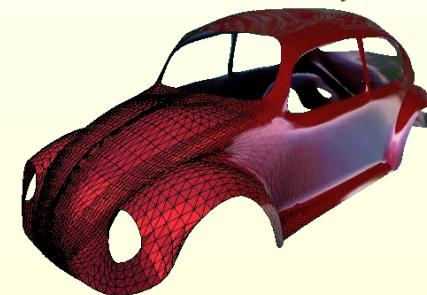
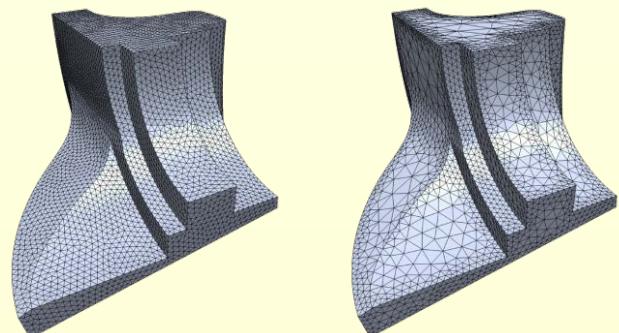
1.7%



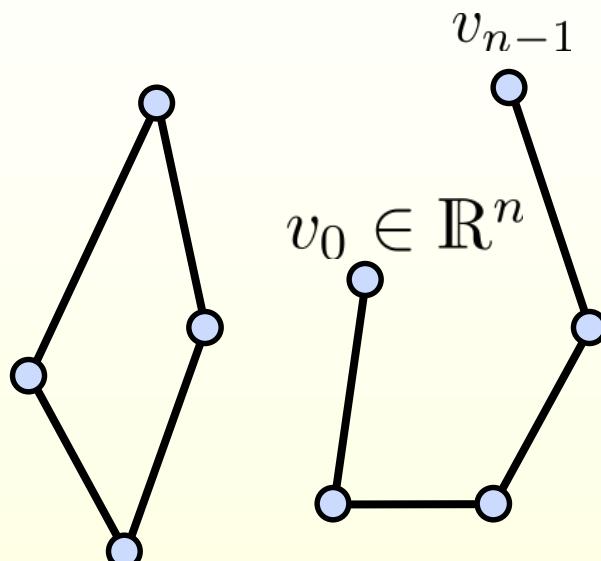
0.4%

Polygonal Meshes

- Polygonal meshes are a good representation
 - approximation $O(h^2)$
 - arbitrary topology
 - adaptive refinement
 - efficient rendering



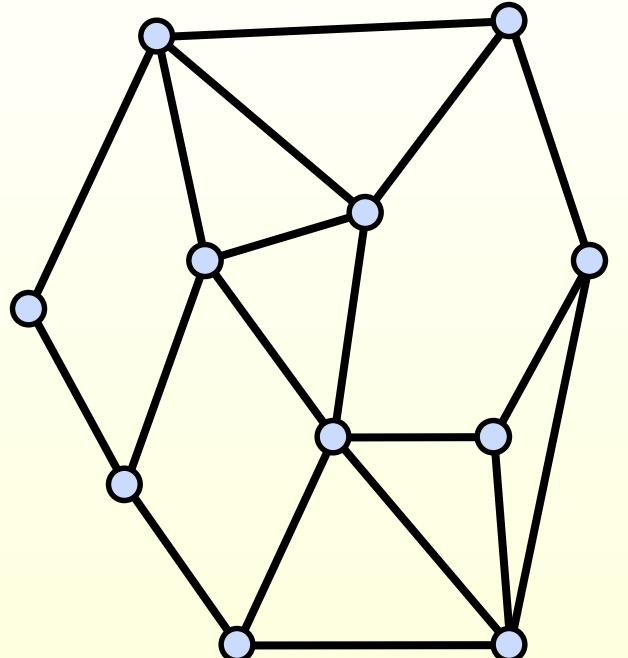
Planar Polygons



The diagram shows two representations of a planar polygon. On the left, a polygon with 5 vertices and 5 edges is shown. On the right, a polygon with n vertices and n edges is shown, with the first vertex labeled $v_0 \in \mathbb{R}^n$ and the last vertex labeled v_{n-1} . To the right of the diagrams, five bullet points define the properties of a planar polygon:

- Vertices: v_0, v_1, \dots, v_{n-1}
- Edges: $\{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$
- Closed: $v_0 = v_{n-1}$
- Planar: all vertices on a plane
- Simple: not self-intersecting

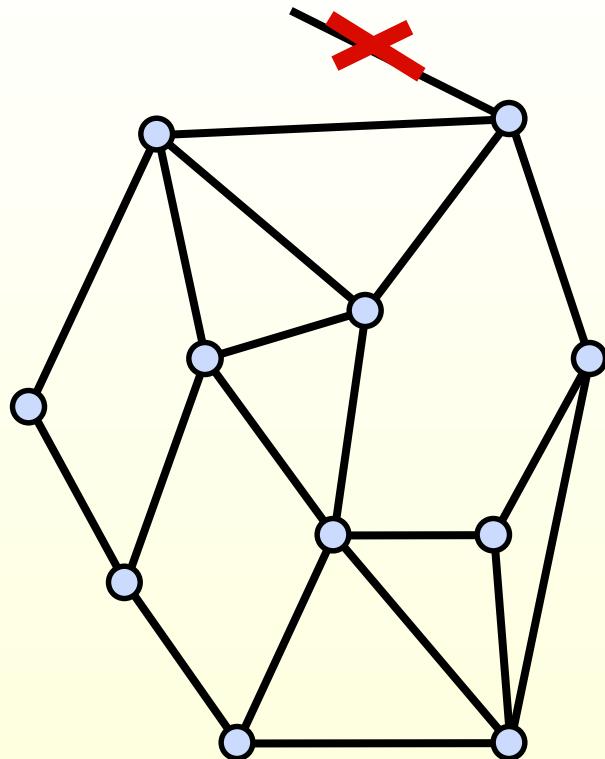
Polygonal Meshes



- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge

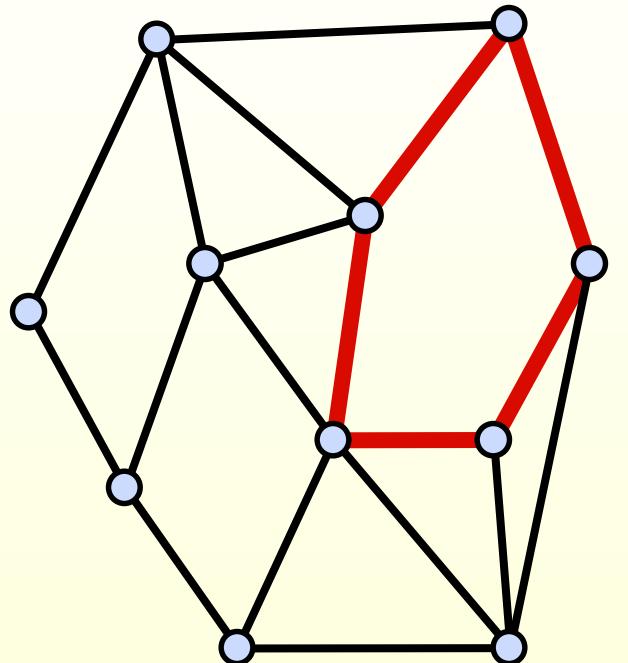
$$M = \langle V, E, F \rangle$$

Polygonal Mesh



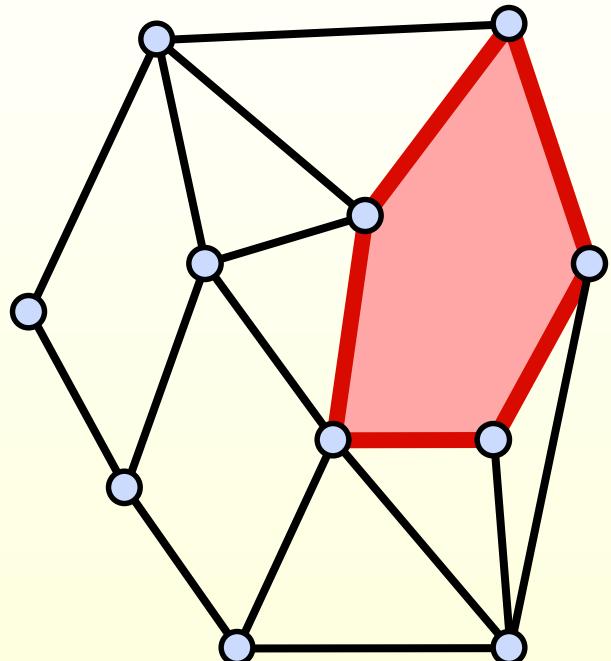
- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon

Polygonal Mesh



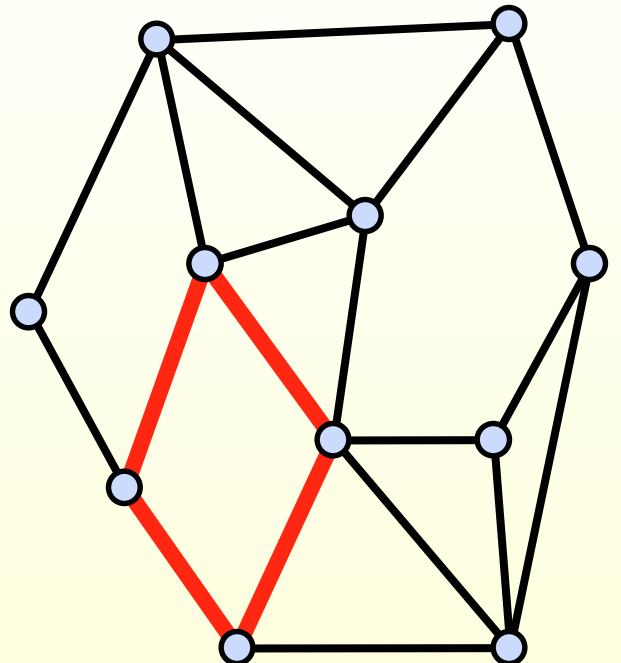
- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

Polygonal Mesh



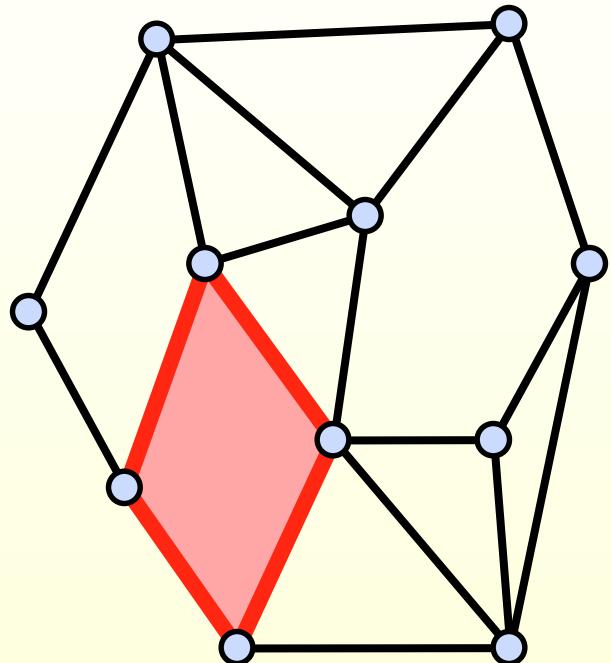
- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

Polygonal Mesh



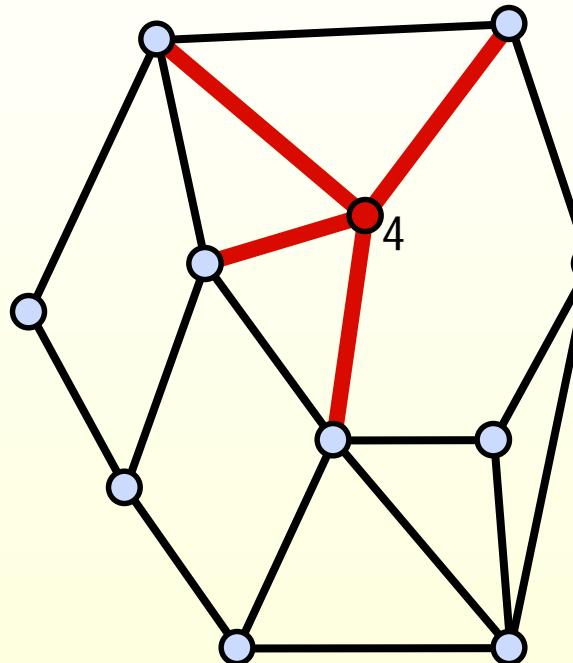
- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

Polygonal Mesh



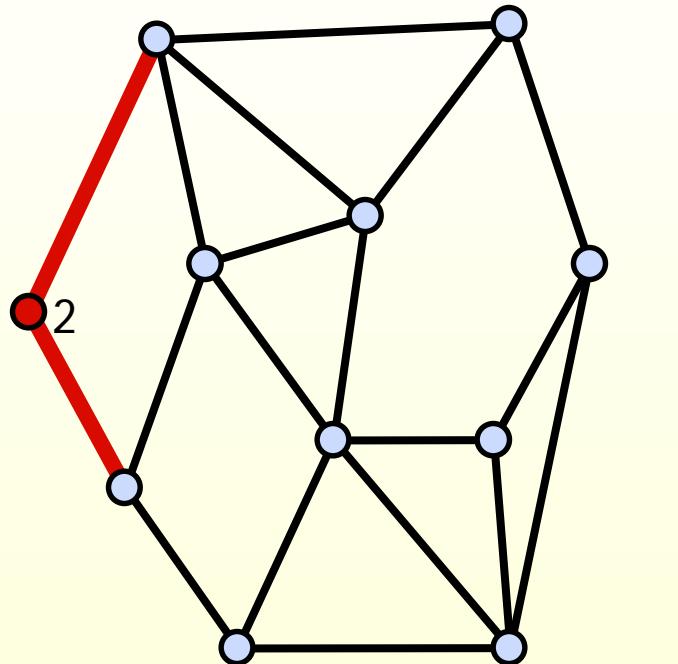
- A finite set M of closed, simple polygons Q_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a **face** of the polygonal mesh

Polygonal Mesh



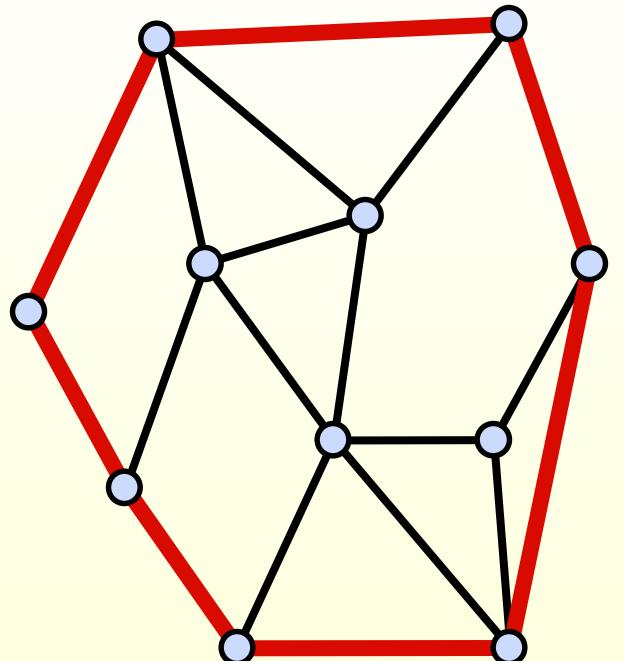
- Vertex **degree** or **valence**
= number of incident edges

Polygonal Mesh

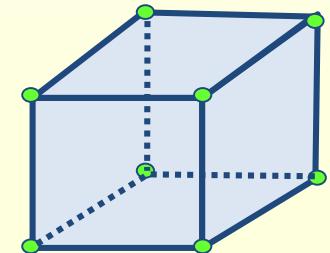


- Vertex **degree** or **valence**
= number of incident edges

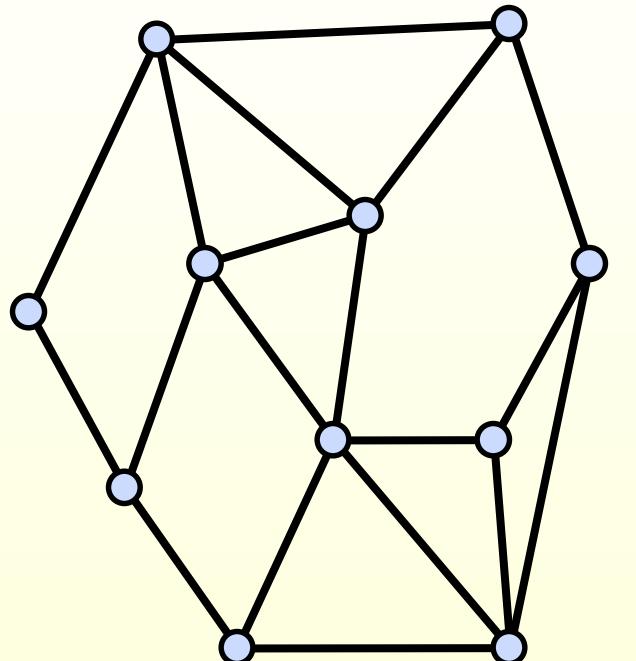
Polygonal Mesh



- **Boundary:** the set of all edges that belong to only one polygon
 - Either empty or forms closed loops
 - If empty, then the polygonal mesh is closed

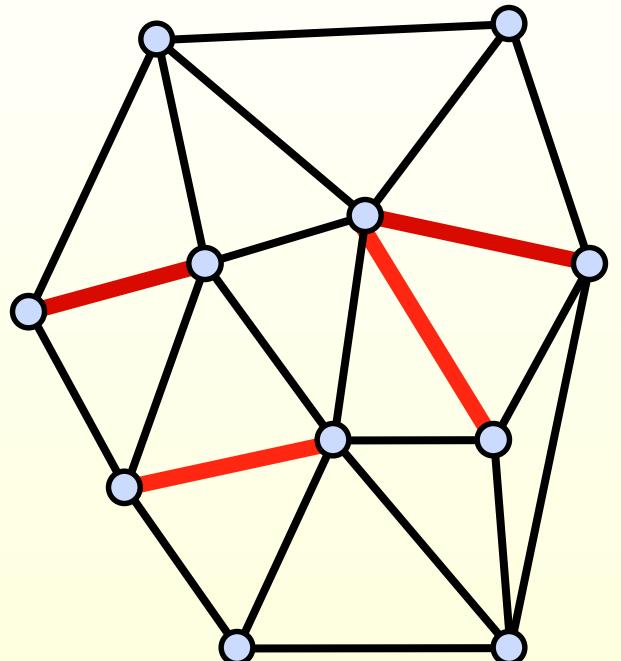


Triangulation



- ➊ Polygonal mesh where every face is a triangle
- ➋ Simplifies data structures
- ➌ Simplifies rendering
- ➍ Simplifies algorithms
- ➎ Each face planar and convex
- ➏ Any polygon can be triangulated

Triangulation



- Polygonal mesh where every face is a triangle
- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

Triangle Meshes

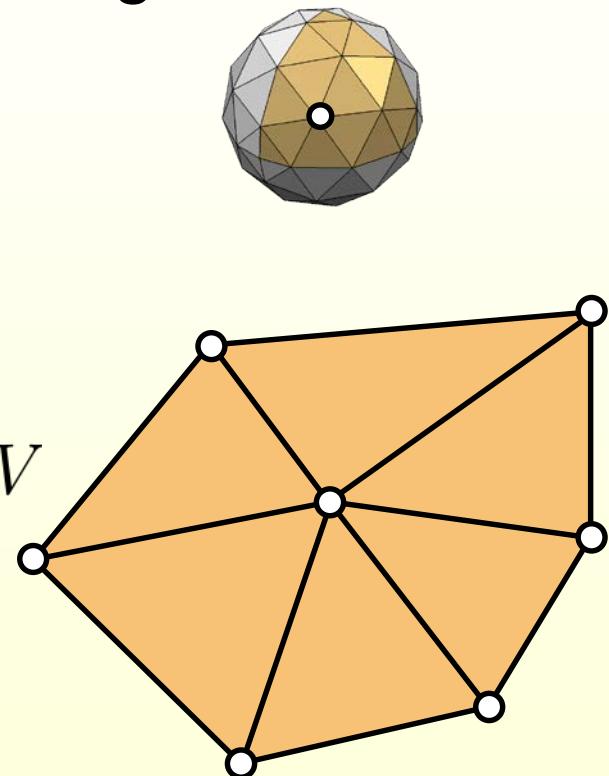
- Connectivity: vertices, edges, triangles
- Geometry: vertex positions

$$V = \{v_1, \dots, v_n\}$$

$$E = \{e_1, \dots, e_k\}, \quad e_i \in V \times V$$

$$F = \{f_1, \dots, f_m\}, \quad f_i \in V \times V \times V$$

$$P = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}, \quad \mathbf{p}_i \in \mathbb{R}^3$$



Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Connectivity
 - Adjacency relationships
- Attributes
 - Normal, color, texture coordinates
 - Per vertex, face, edge

Simple Data Structures: Triangle List

- STL format (used in CAD)
- Storage
 - Face: 3 positions
 - 4 bytes per coordinate
 - 36 bytes per face
 - on average: $f = 2v$ (*Euler*)
 - 72^*v bytes for a mesh with v vertices
- No connectivity information

Triangles			
0	x0	y0	z0
1	x1	x1	z1
2	x2	y2	z2
3	x3	y3	z3
4	x4	y4	z4
5	x5	y5	z5
6	x6	y6	z6
...

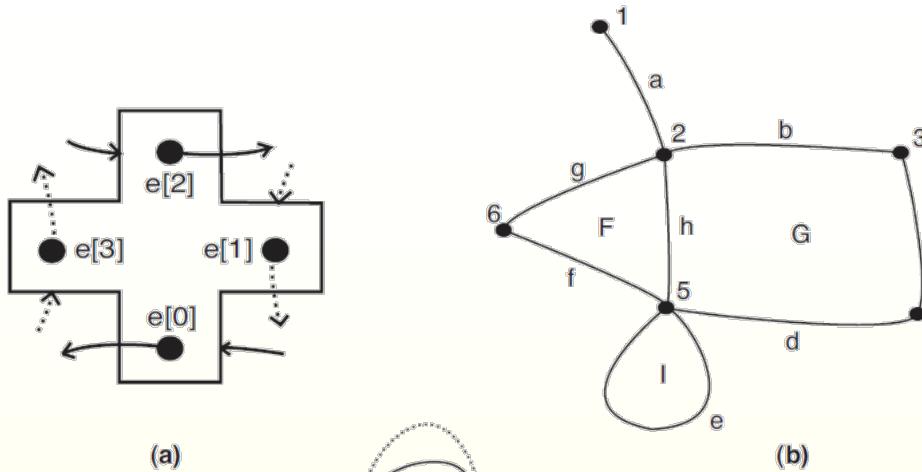
Simple Data Structures: Triangle List

- Used in formats
OBJ, OFF, WRL
- Storage
 - Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex
 - 12 bytes per face
 - 36^*v bytes for the mesh
- No *explicit* neighborhood info

Vertices				Triangles			
v0	x0	y0	z0	t0	v0	v1	v2
v1	x1	x1	z1	t1	v0	v1	v3
v2	x2	y2	z2	t2	v2	v4	v3
v3	x3	y3	z3	t3	v5	v2	v6
v4	x4	y4	z4
v5	x5	y5	z5
v6	x6	y6	z6
...

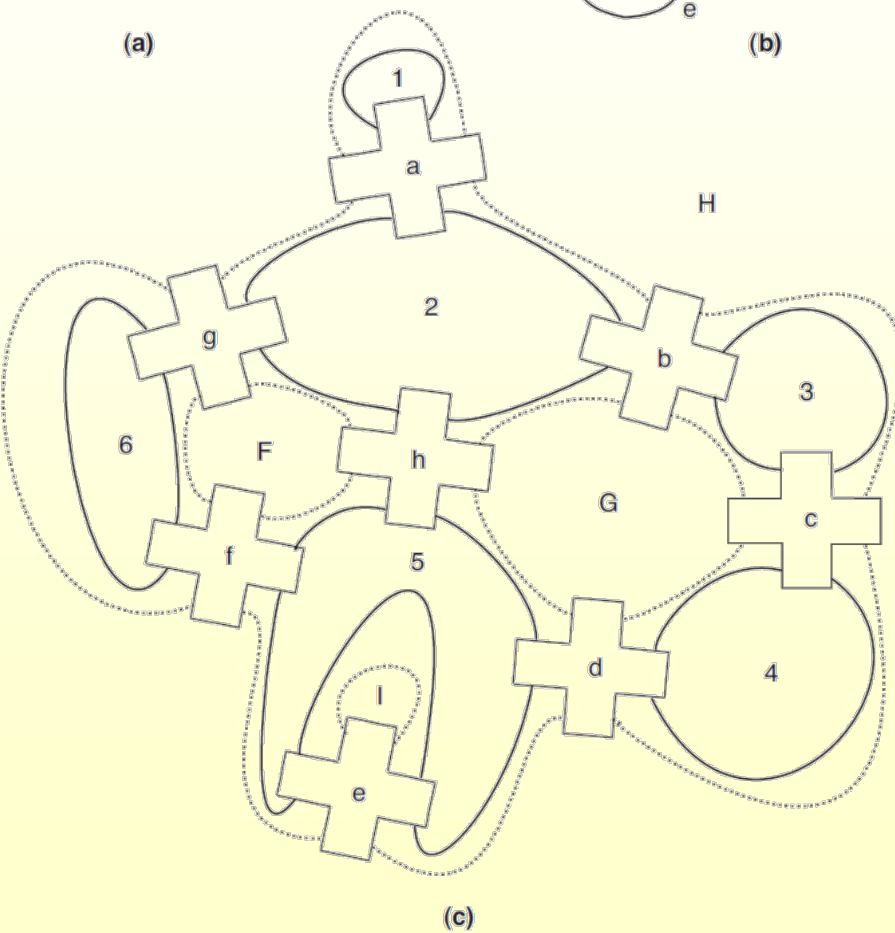
Quad-Edge: Encoding Mesh Topology

Edge-based
(many variants,
half-edge, etc)



H

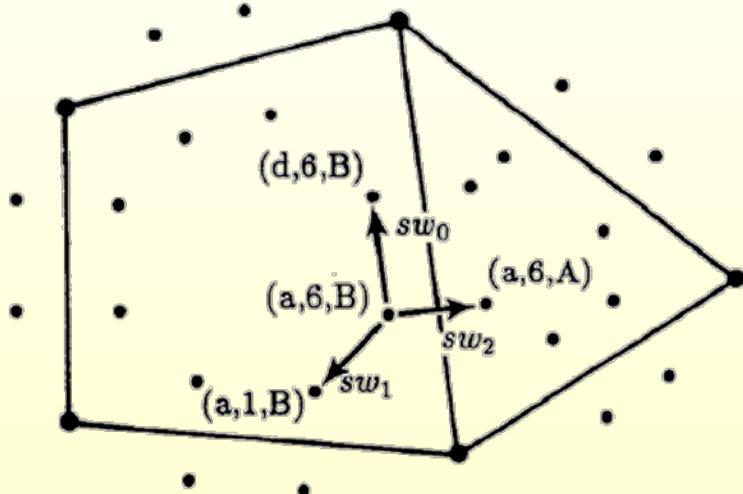
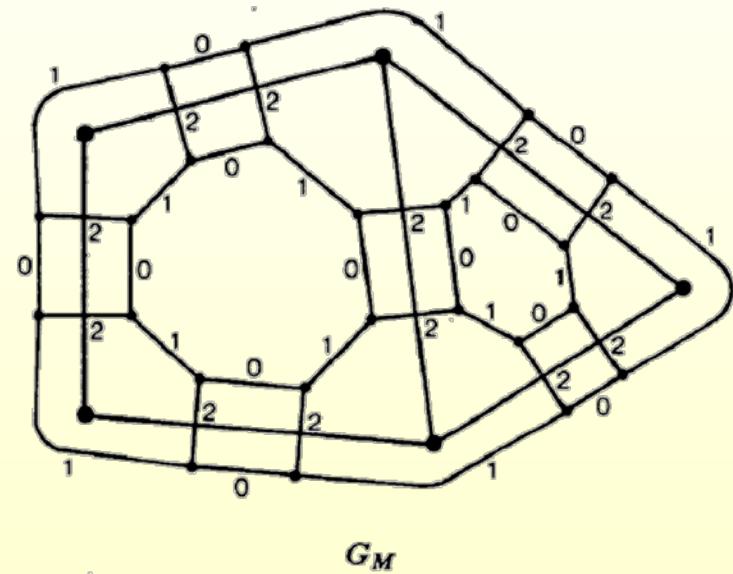
(b)



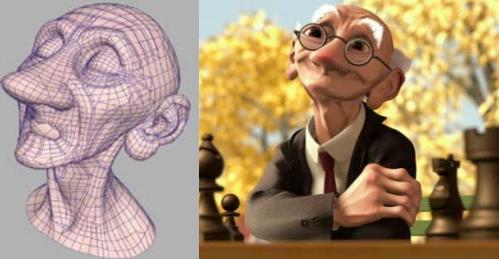
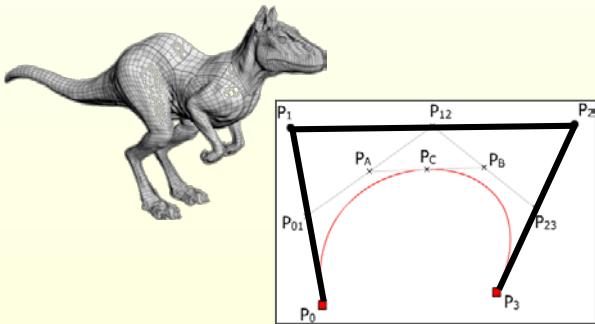
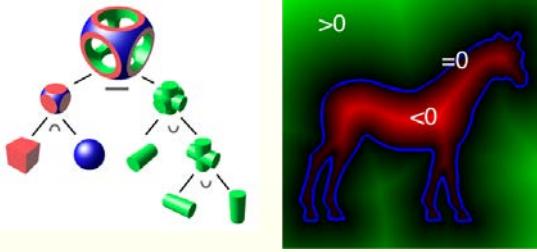
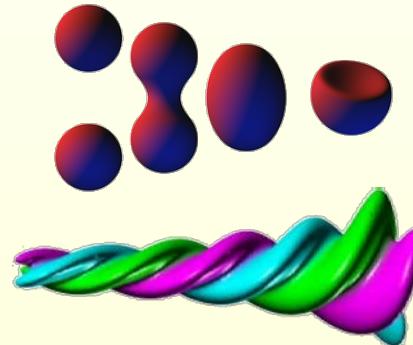
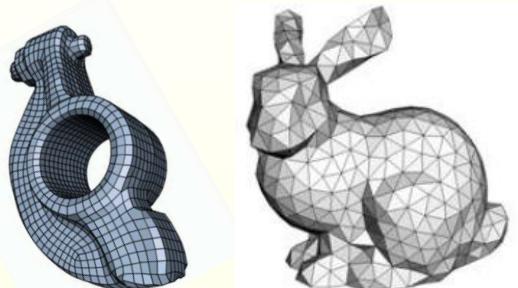
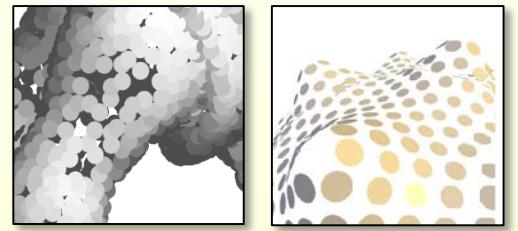
(c)

Brisson: Cell-Tuple

(v, e, f)



Summary

Parametric	Implicit	Discrete/Sampled
  <ul style="list-style-type: none"> • Splines, tensor-product surfaces • Subdivision surfaces 	  <ul style="list-style-type: none"> • Distance fields • Metaballs/blobs 	  <ul style="list-style-type: none"> • Meshes • Point set surfaces

Representation Conversions

Points → Implicit
Implicit → Mesh
Mesh → Points

Implicit Surface Reconstruction

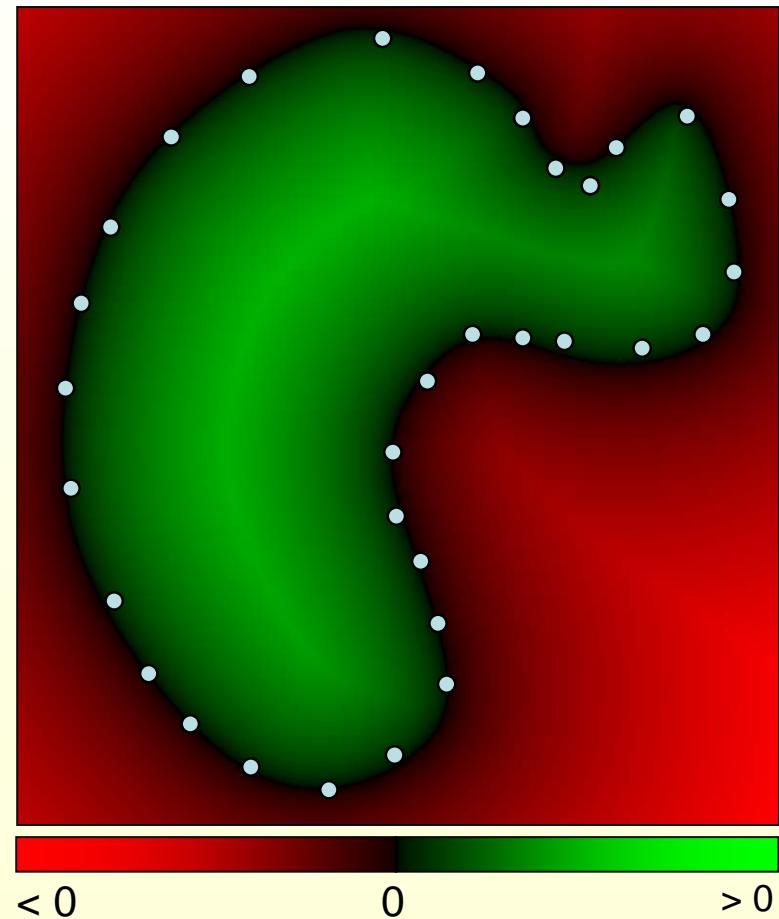
POINTS → IMPLICIT

Implicit Function Approach

- Define a function

$$f : R^3 \rightarrow R$$

with value < 0 outside
the shape and > 0
inside



Implicit Function Approach.

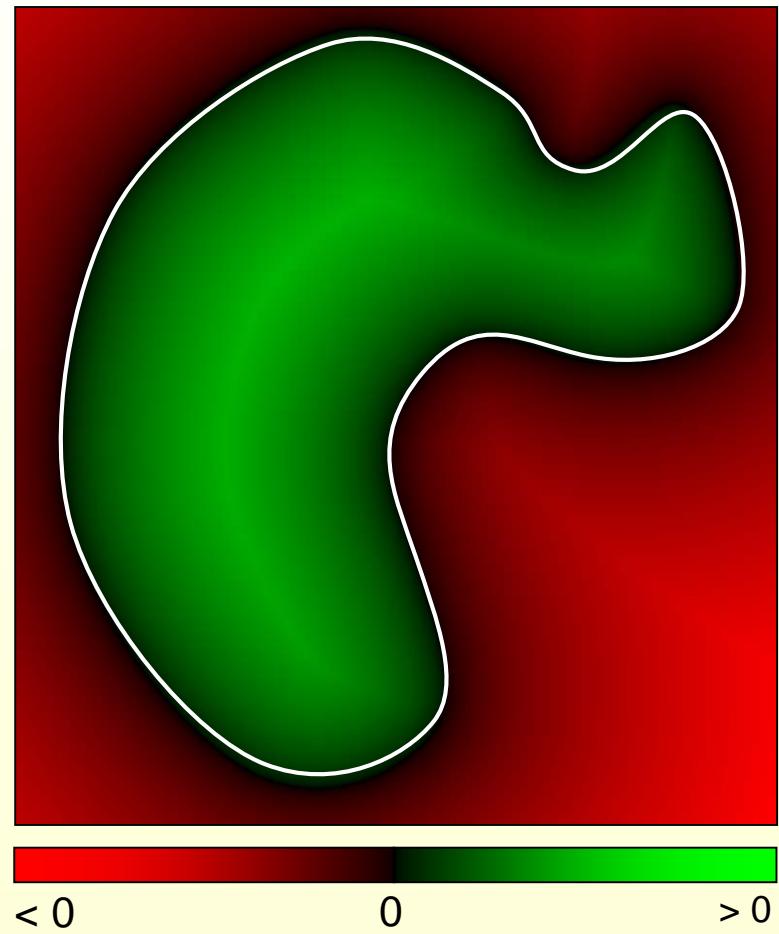
- ◆ Define a function

$$f : R^3 \rightarrow R$$

with value < 0 outside
the shape and > 0
inside

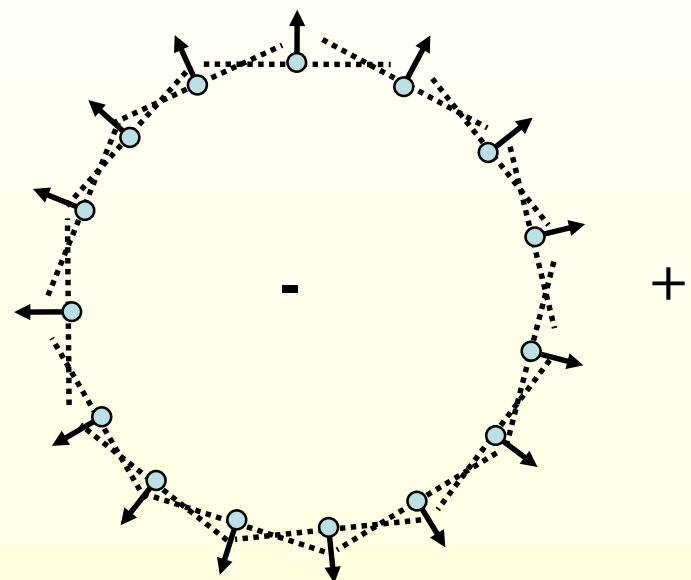
- ◆ Extract the zero-set

$$\{x: f(x) = 0\}$$



SDF from Points and Normals

- Input: Points + Normals
- Normals help to distinguish between inside and outside
- Computed via locally fitting planes at the points (but orientation can be tricky)

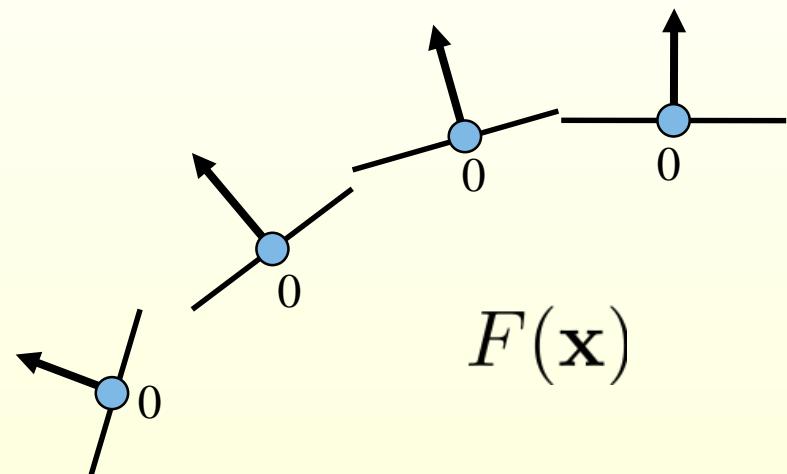


“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992

<http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/>

Smooth SDF

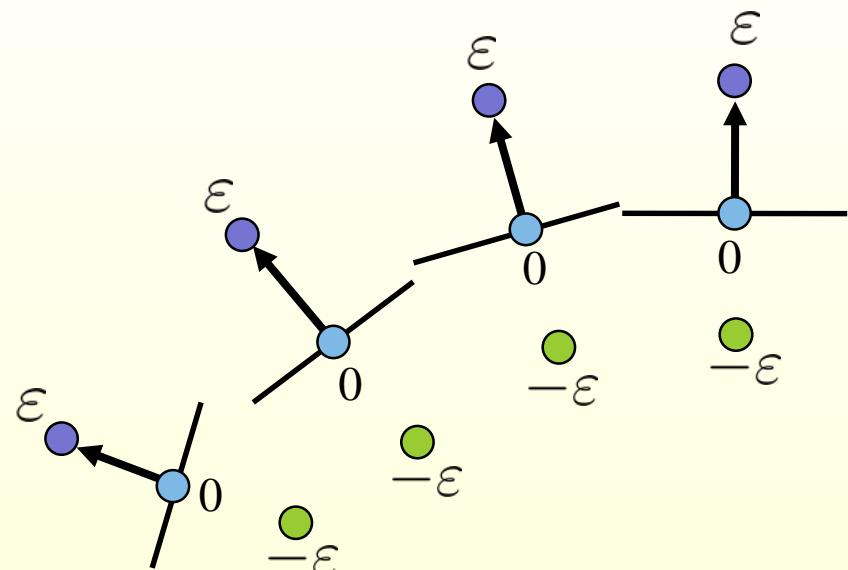
- ◆ Find smooth implicit F .
- ◆ Scattered data interpolation:
 - ◆ $F(\mathbf{p}_i) = 0$
 - ◆ F is smooth
 - ◆ Avoid trivial $F \equiv 0$



Smooth SDF

- Scattered data interpolation:

- $F(\mathbf{p}_i) = 0$
- F is smooth
- Avoid trivial $F \equiv 0$



- Add off-surface constraints

$$F(\mathbf{p}_i + \varepsilon \mathbf{n}_i) = \varepsilon$$
$$F(\mathbf{p}_i - \varepsilon \mathbf{n}_i) = -\varepsilon$$

Radial Basis Function Interpolation

- **RBF:** Weighted sum of shifted, smooth kernels

$$F(\mathbf{x}) = \sum_{i=0}^{N-1} w_i \varphi(\|\mathbf{x} - \mathbf{c}_i\|) \quad N = 3n$$

Scalar weights
Unknowns

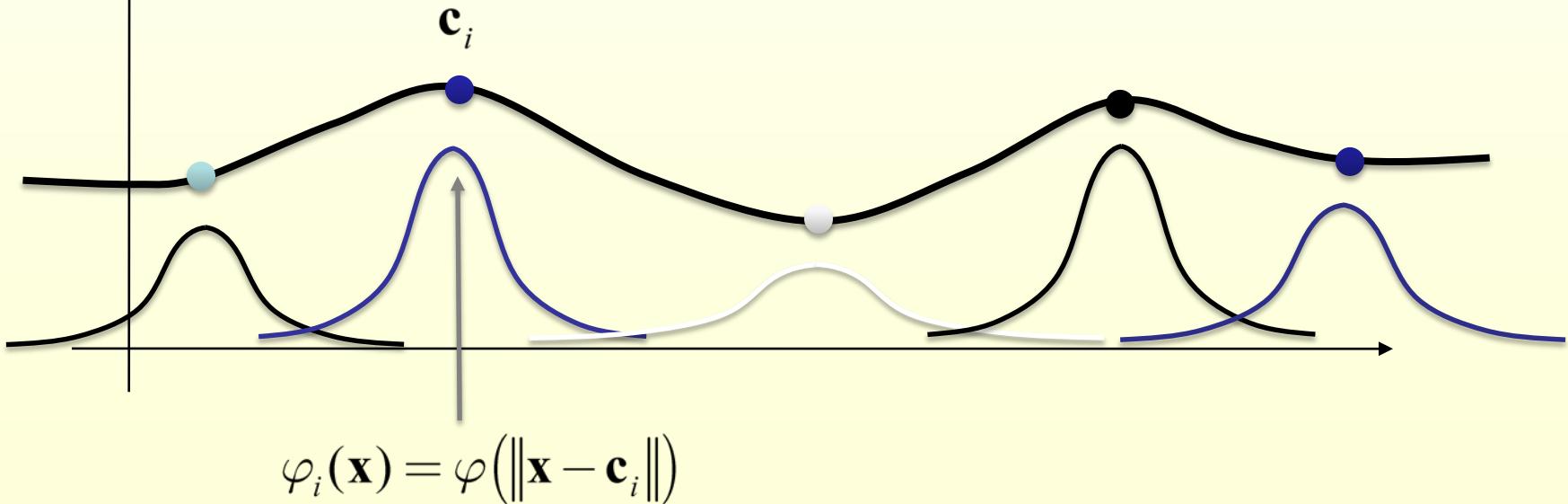
Smooth kernels
(basis functions)
centered at constrained
points.
For example:
 $\varphi(r) = r^3$

Radial Basis Function Interpolation

$$dist(\mathbf{x}) = \sum_i w_i \varphi_i(\mathbf{x}) = \sum_i w_i \varphi(\|\mathbf{x} - \mathbf{c}_i\|)$$

Kernel centers: on- and off-surface points

How do we find the weights?

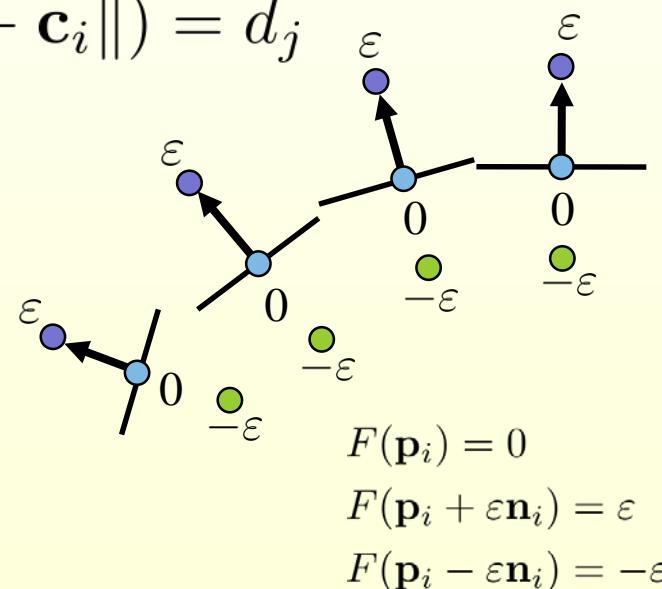


Radial Basis Function Interpolation

- Interpolate the constraints:

$$\{\mathbf{c}_{3i}, \mathbf{c}_{3i+1}, \mathbf{c}_{3i+2}\} = \{\mathbf{p}_i, \mathbf{p}_i + \varepsilon \mathbf{n}_i, \mathbf{p}_i - \varepsilon \mathbf{n}_i\}$$

$$\forall j = 0, \dots, N-1, \quad \sum_{i=0}^{N-1} w_i \varphi(\|\mathbf{c}_j - \mathbf{c}_i\|) = d_j$$



Radial Basis Function Interpolation

- ◆ Interpolate the constraints:

$$\{\mathbf{c}_{3i}, \mathbf{c}_{3i+1}, \mathbf{c}_{3i+2}\} = \{\mathbf{p}_i, \mathbf{p}_i + \varepsilon \mathbf{n}_i, \mathbf{p}_i - \varepsilon \mathbf{n}_i\}$$

- ◆ Symmetric linear system to get the weights:

$$\begin{pmatrix} \varphi(\|\mathbf{c}_0 - \mathbf{c}_0\|) & \dots & \varphi(\|\mathbf{c}_0 - \mathbf{c}_{N-1}\|) \\ \vdots & \ddots & \vdots \\ \varphi(\|\mathbf{c}_{N-1} - \mathbf{c}_0\|) & \dots & \varphi(\|\mathbf{c}_{N-1} - \mathbf{c}_{N-1}\|) \end{pmatrix} \begin{pmatrix} w_0 \\ \vdots \\ w_{N-1} \end{pmatrix} = \begin{pmatrix} d_0 \\ \vdots \\ d_{N-1} \end{pmatrix}$$

$3n$ equations

$3n$ variables

RBF Kernels

$$\varphi(r) = r^3$$

- ◆ Triharmonic:
 - ◆ Globally supported
 - ◆ Leads to dense symmetric linear system
 - ◆ C^2 smoothness
 - ◆ Works well for highly irregular sampling

RBF Kernels

- ◆ Polyharmonic spline

- ◆ $\varphi(r) = r^k \log(r)$, $k = 2, 4, 6 \dots$
- ◆ $\varphi(r) = r^k$, $k = 1, 3, 5 \dots$

- ◆ Multiquadratic

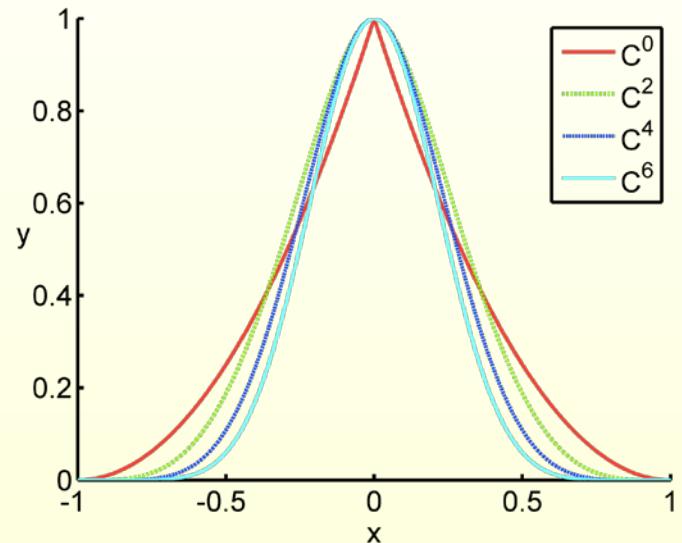
$$\varphi(r) = \sqrt{r^2 + \beta^2}$$

- ◆ Gaussian

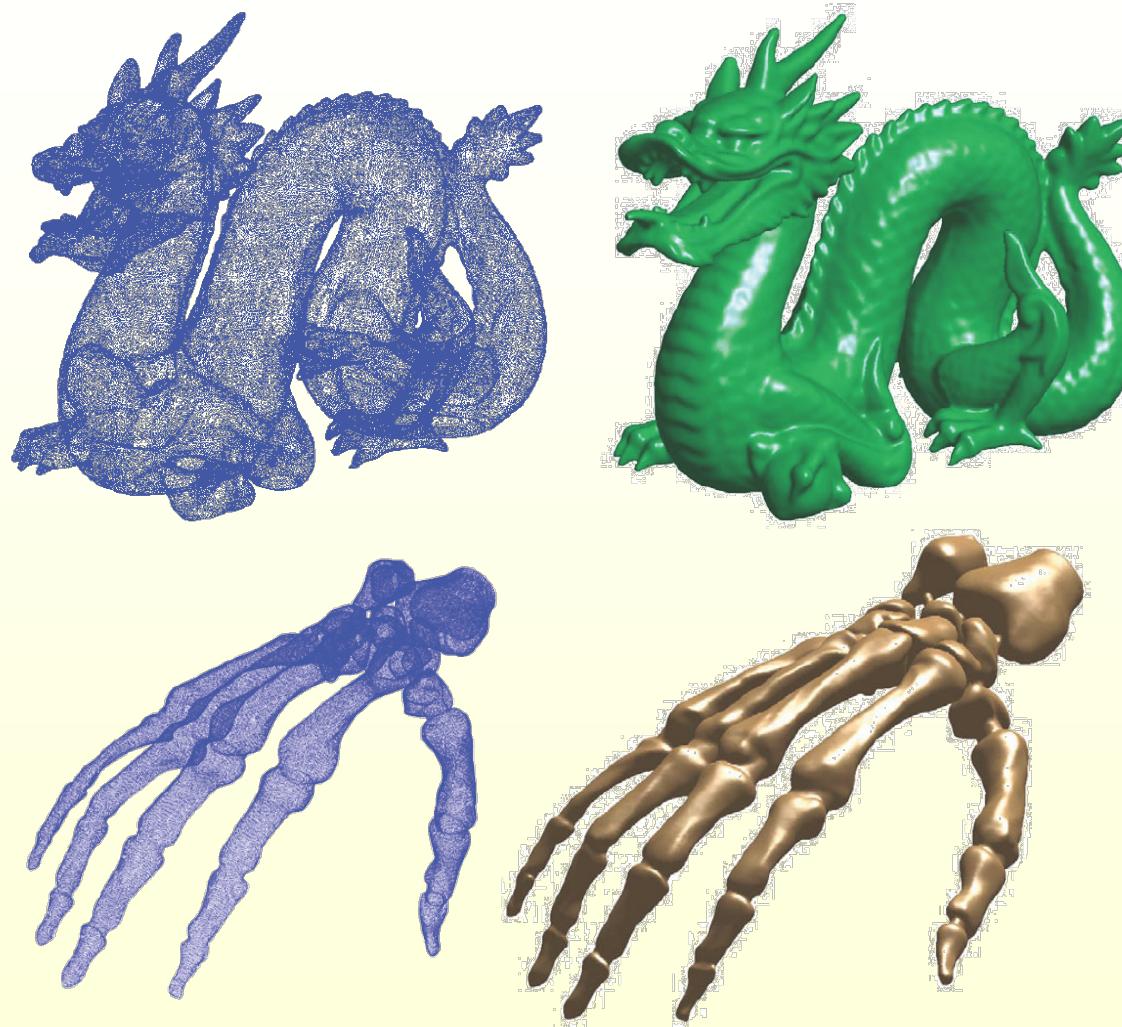
$$\varphi(r) = e^{-\beta r^2}$$

- ◆ B-Spline (compact support)

$$\varphi(r) = \text{piecewise-polynomial}(r)$$

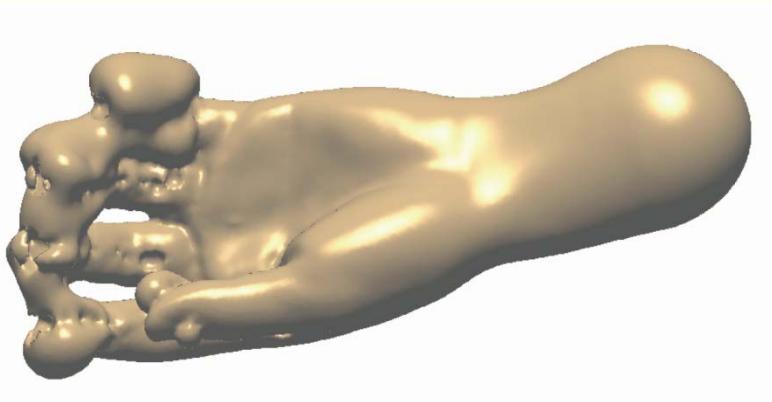


RBF Reconstruction Examples

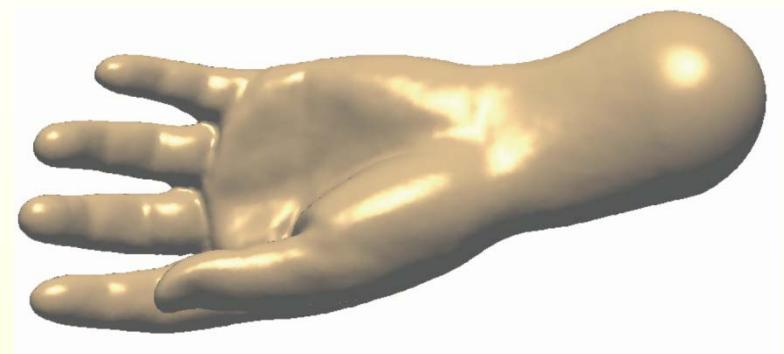


“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

Off-Surface Points



Insufficient number/
badly placed off-surface points



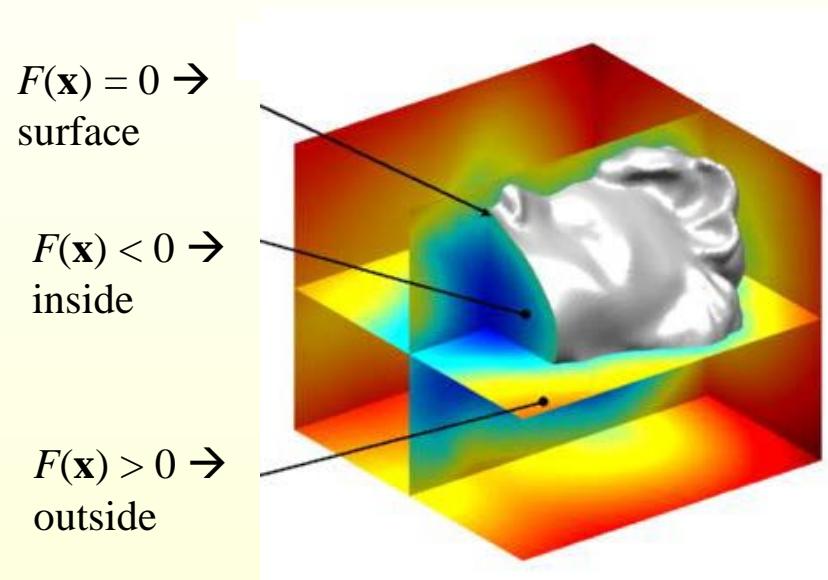
Properly chosen off-surface points

Marching Cubes

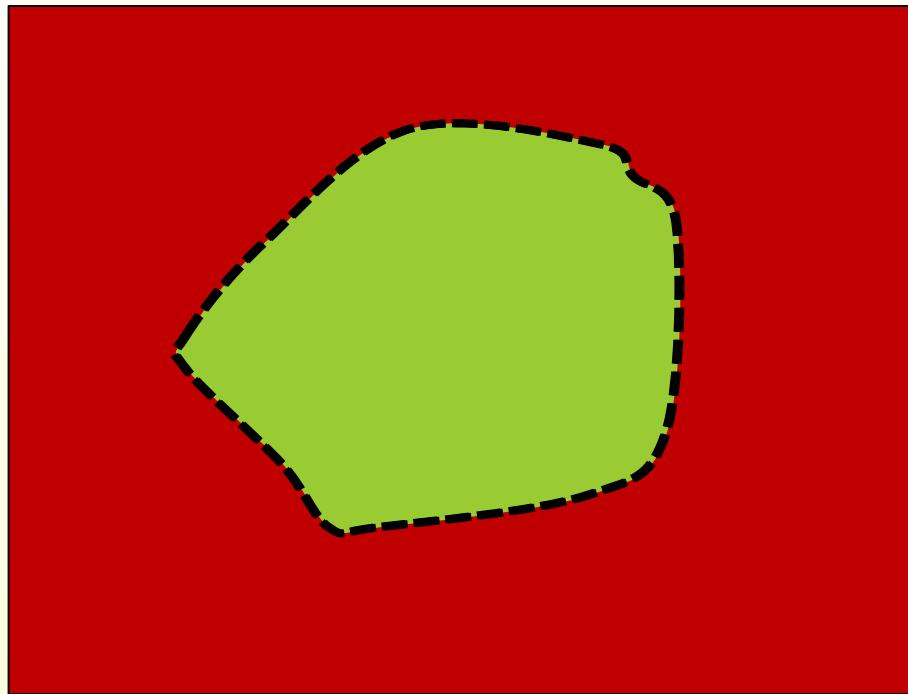
IMPLICIT → MESH

Extracting the Surface

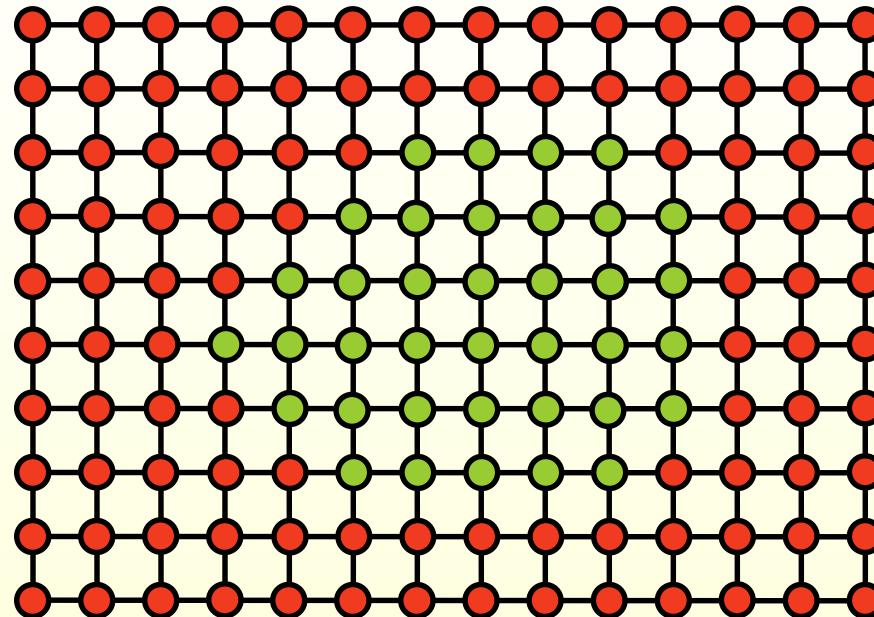
- Wish to compute a manifold mesh of the level set



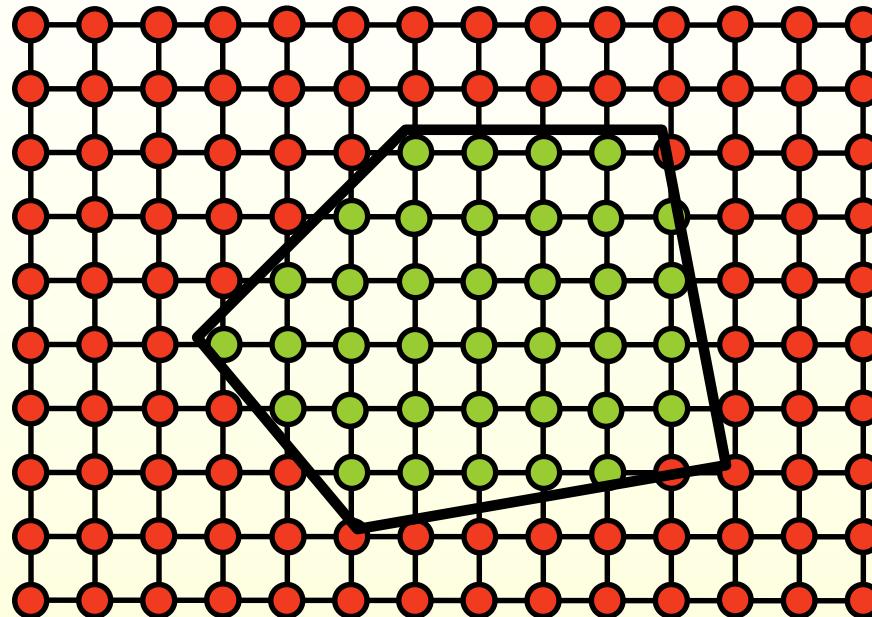
Sample the SDF



Sample the SDF



Sample the SDF

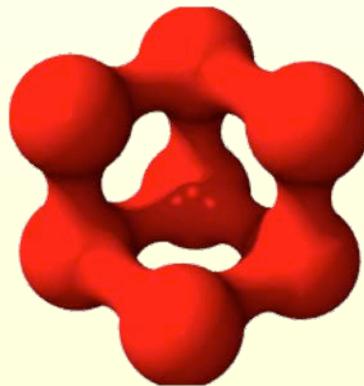
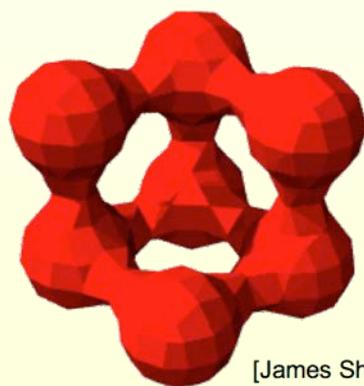


Marching Cubes

Converting from implicit to explicit representations.

Goal: Given an implicit representation: $\{\mathbf{x}, \text{s.t. } f(\mathbf{x}) = 0\}$

Create a triangle mesh that approximates the surface.



[James Sharman]

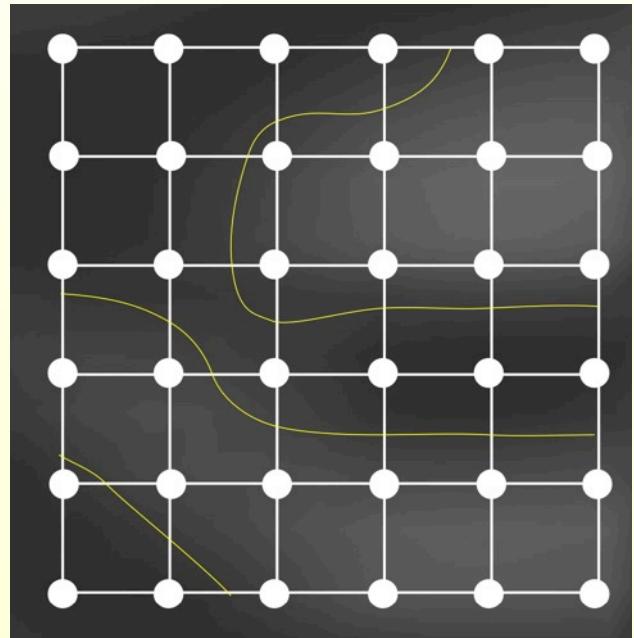
Lorensen and Cline, SIGGRAPH '87

Marching Squares (2D)

Given a function: $f(x)$

- $f(\mathbf{x}) < 0$ inside
- $f(\mathbf{x}) > 0$ outside

1. Discretize space.
2. Evaluate $f(x)$ on a grid.



Marching Squares (2D)

Given a function: $f(x)$

- $f(\mathbf{x}) < 0$ inside
- $f(\mathbf{x}) > 0$ outside

1. Discretize space.
2. Evaluate $f(x)$ on a grid.
3. Classify grid points (+/-)
4. Classify grid edges
5. Compute intersections
6. Connect intersections



Marching Squares (2D)

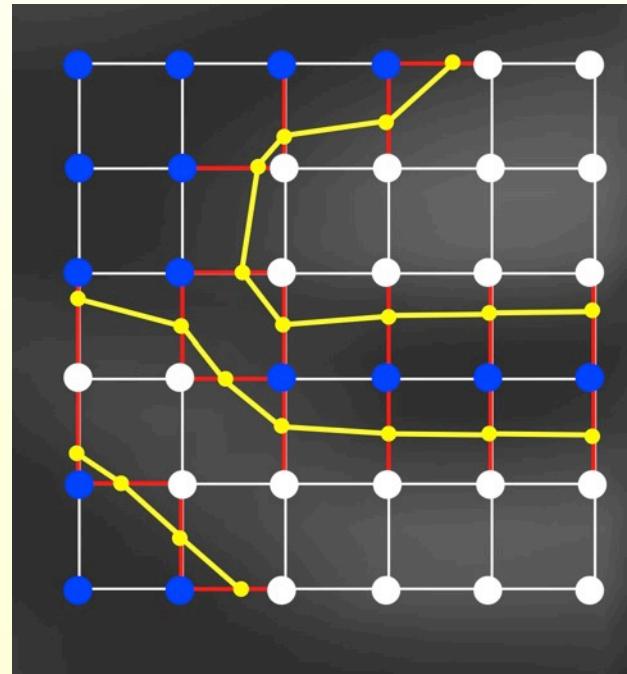
Computing the intersections:

- Edges with a sign switch contain intersections.

$$\begin{aligned} f(x_1) < 0, f(x_2) > 0 \Rightarrow \\ f(x_1 + t(x_2 - x_1)) &= 0 \\ \text{for some } 0 \leq t \leq 1 \end{aligned}$$

- Simplest way to compute t : assume f is linear between x_1 and x_2 :

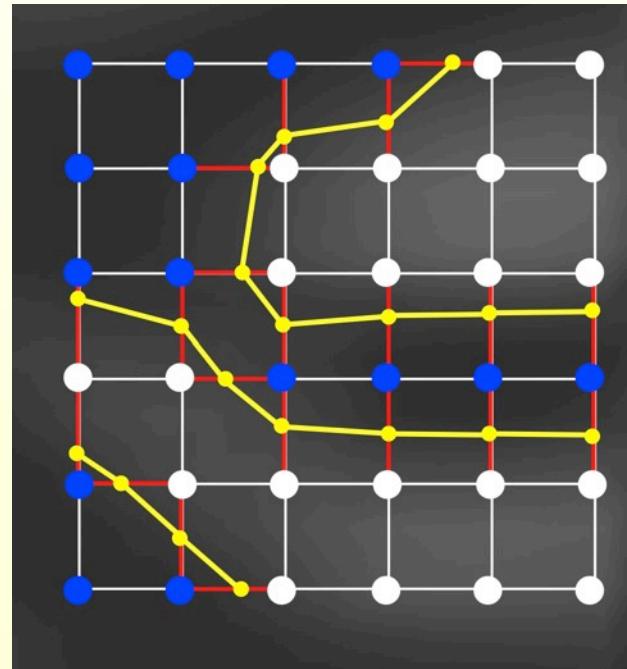
$$t = \frac{f(x_1)}{f(x_2) - f(x_1)}$$



Marching Squares (2D)

Connecting the intersections:

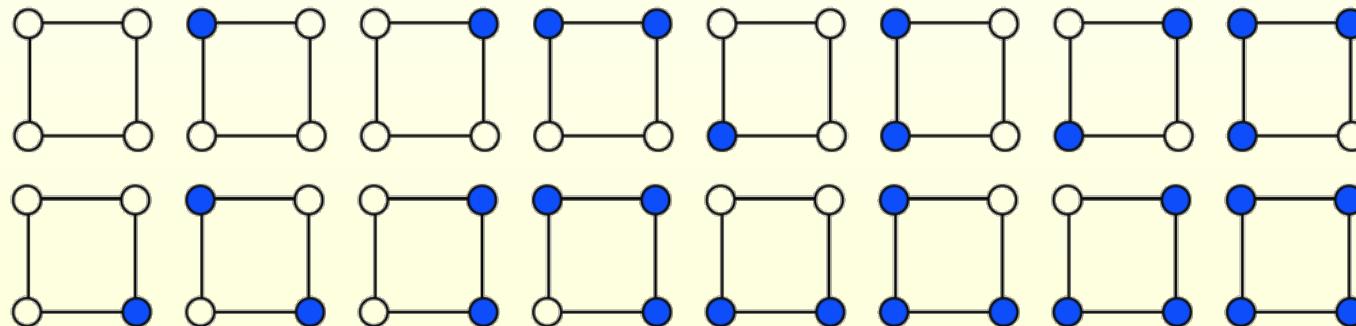
- Grand principle: treat each cell separately!
- Enumerate all possible inside/outside combinations.



Marching Squares (2D)

Connecting the intersections:

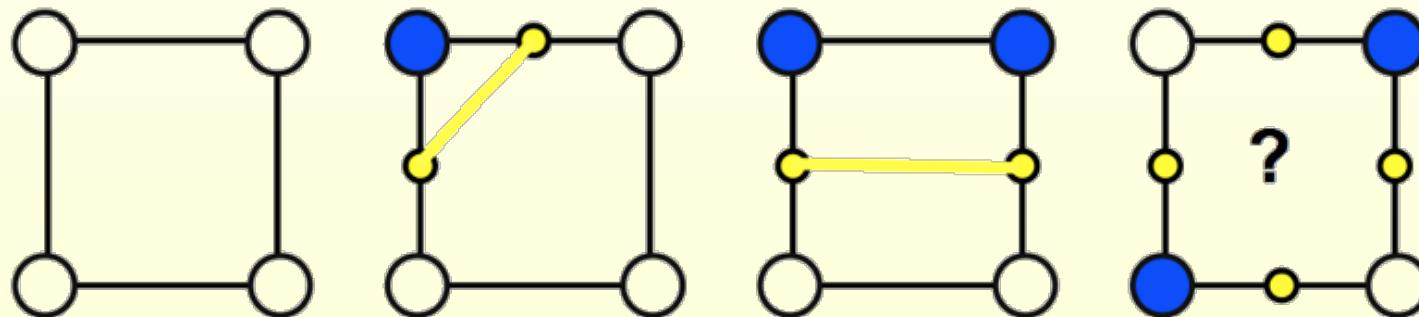
- Grand principle: treat each cell separately!
- Enumerate all possible inside/outside combinations.
- Group those leading to the same intersections



Marching Squares (2D)

Connecting the intersections:

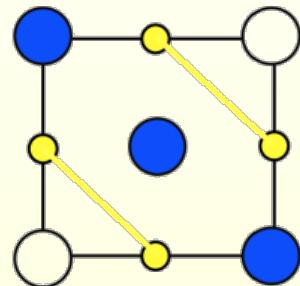
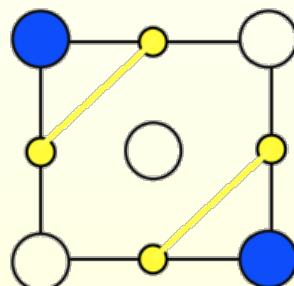
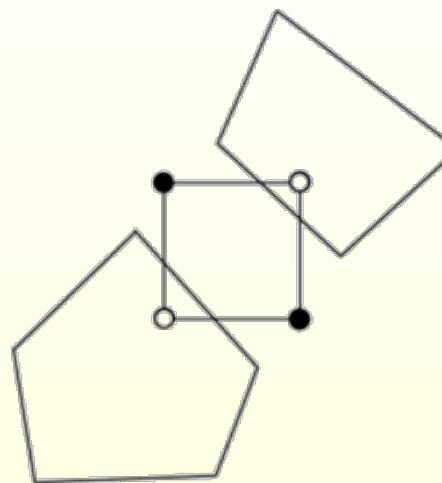
- Grand principle: treat each cell separately!
- Enumerate all possible inside/outside combinations.
- Group those leading to the same intersections.
- Group equivalent after rotation.
- Connect intersections



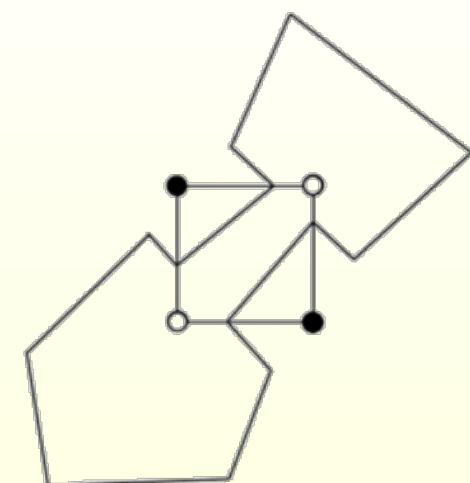
Marching Squares (2D)

Connecting the intersections:

Ambiguous cases:



Break contour



Join contour

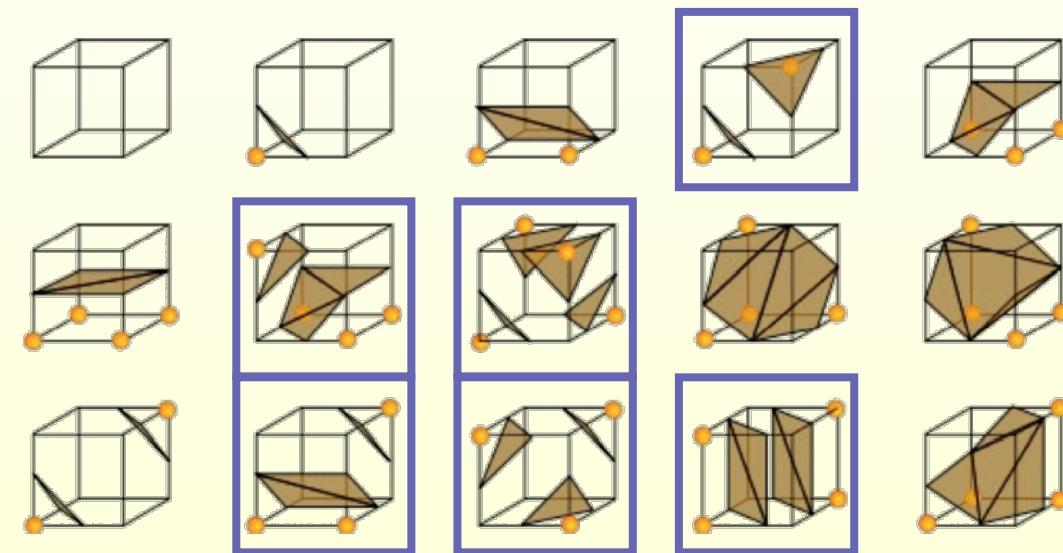
Two options:

- 1) Can resolve ambiguity by subsampling inside the cell.
- 2) If subsampling is impossible, pick one of the two possibilities.

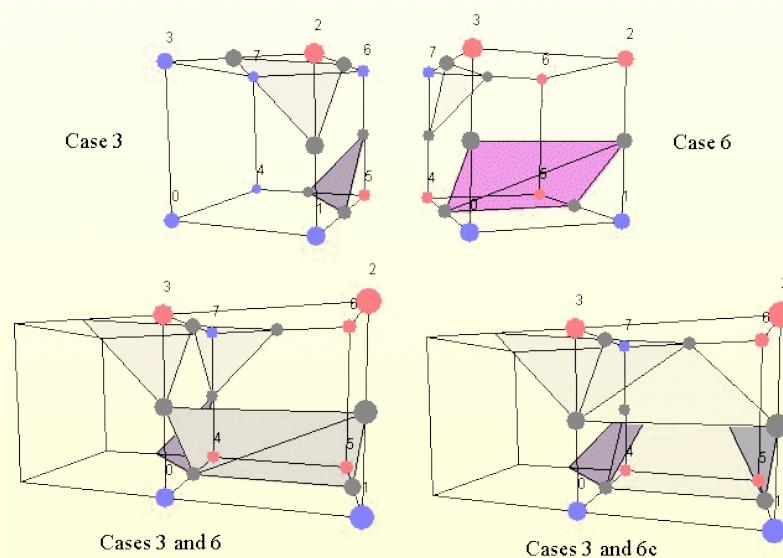
Marching Cubes (3D)

Same machinery: cells → **cubes** (voxels), lines → triangles

- 256 different cases - 15 after symmetries, 6 ambiguous cases
- More subsampling rules → 33 unique cases



the 15 cases

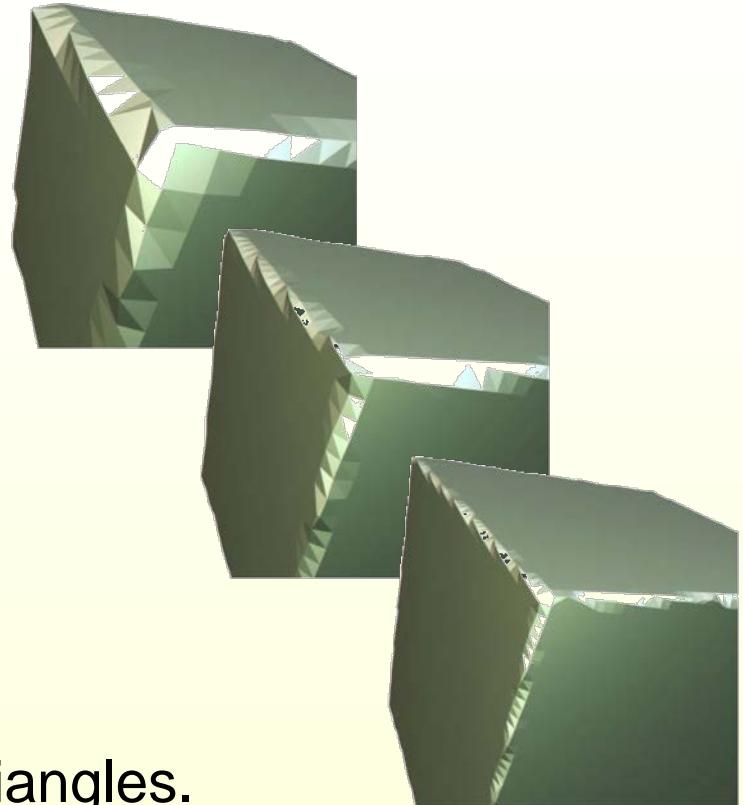


explore ambiguity to avoid holes!

Marching Cubes (3D)

Main Strengths:

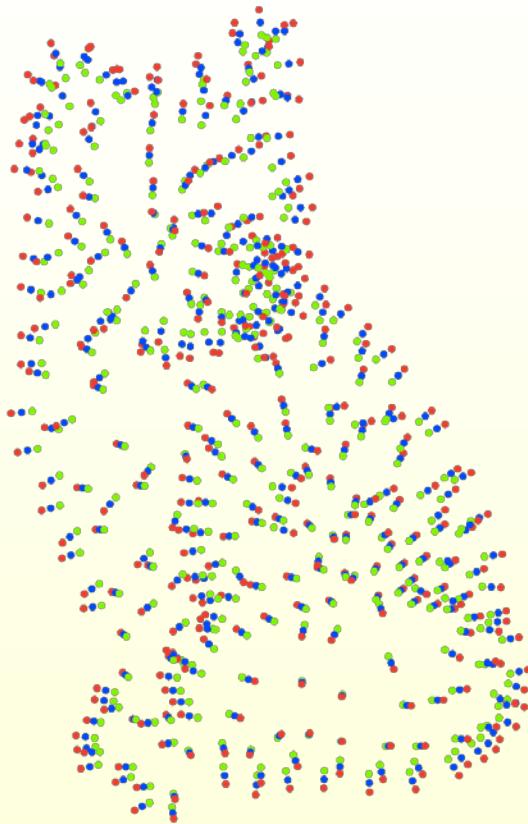
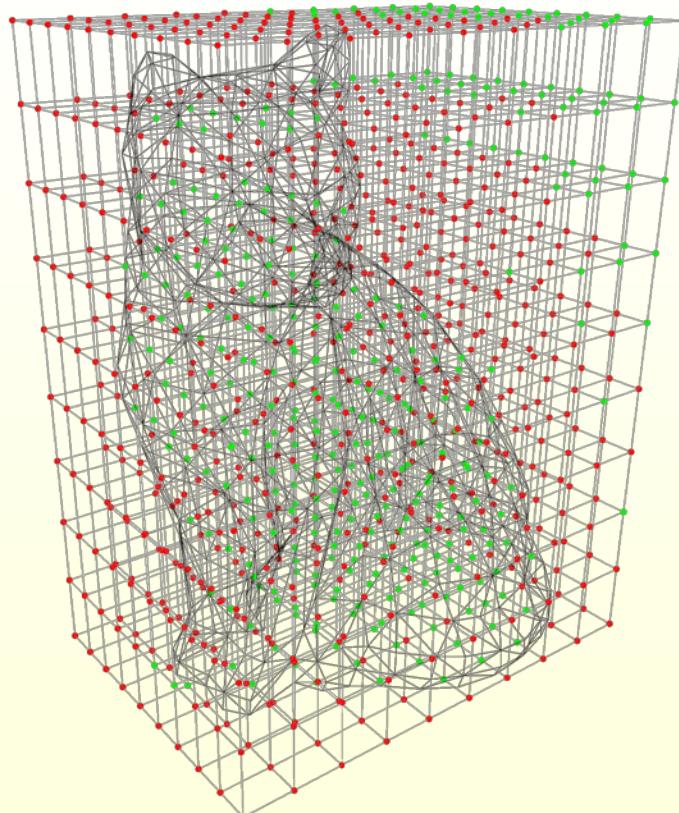
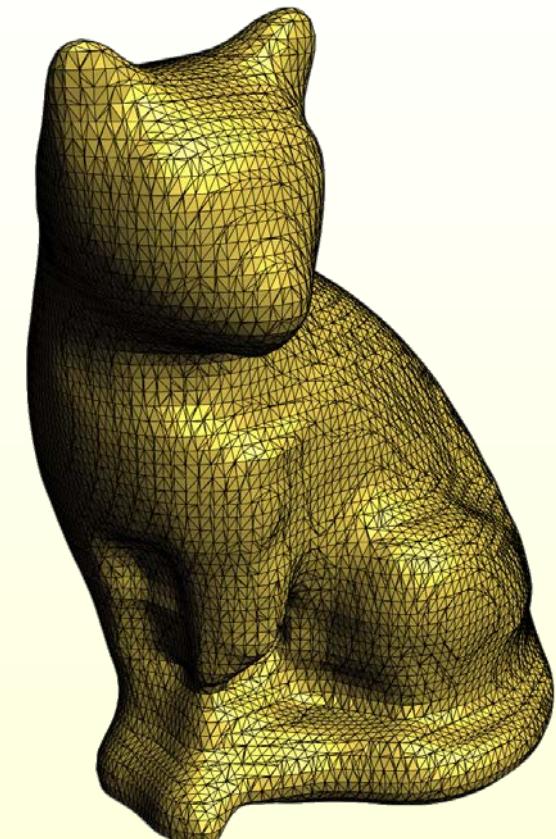
- Very multi-purpose.
- Extremely fast and parallelizable.
- Relatively simple to implement.
- Virtually parameter-free



Main Weaknesses:

- Can create badly shaped (skinny) triangles.
- Many special cases (implemented as big lookup tables).
- No sharp features.

Recap: Points \rightarrow Implicit \rightarrow Mesh



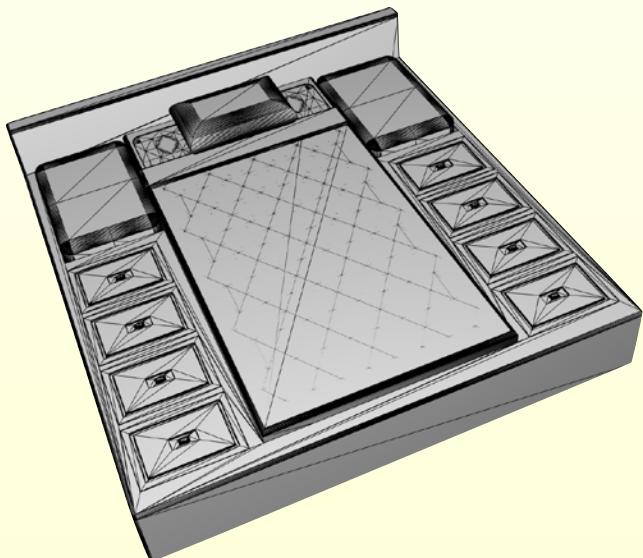
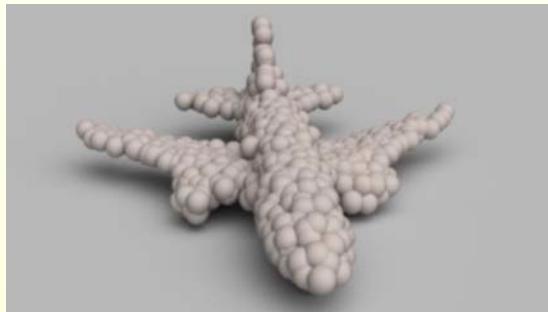
Sampling

MESH-> POINT CLOUD

From Surface to Point Cloud

Why?

- Points are simple but expressive!
 - Few points can suffice
- Flexible, unstructured, few constraints
- Also: ML applications!

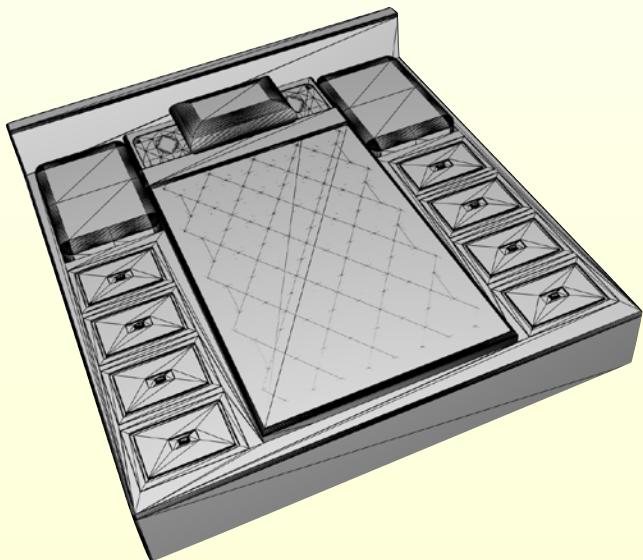
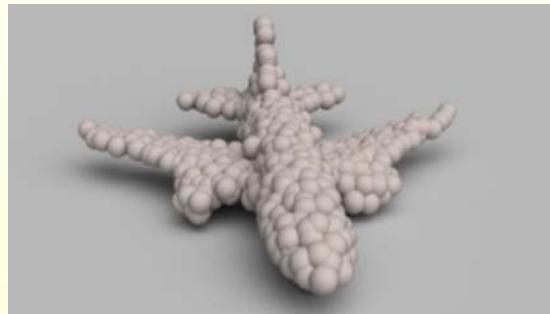


CAD meshes:
many components
bad triangles
connectivity problems

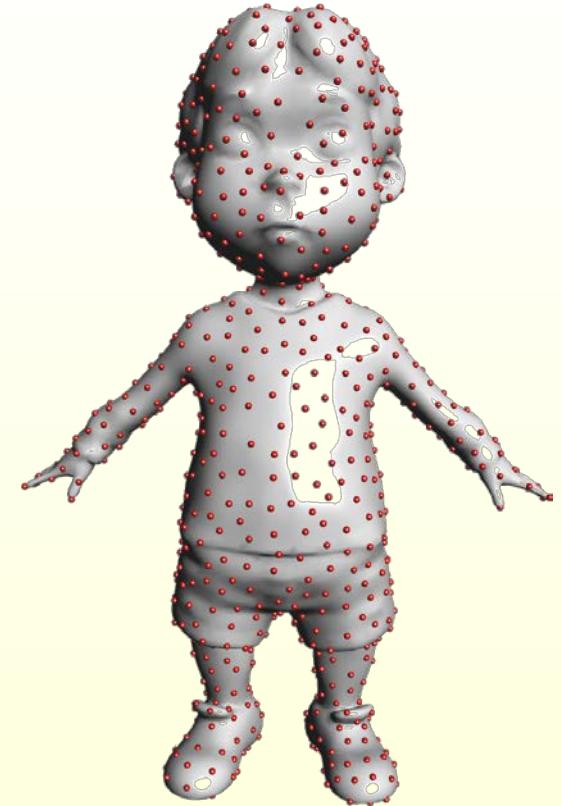
From Surface to Point Cloud

Why?

- Points are simple but expressive!
 - Few points can suffice
- Flexible, unstructured, few constraints
- Also: ML applications!



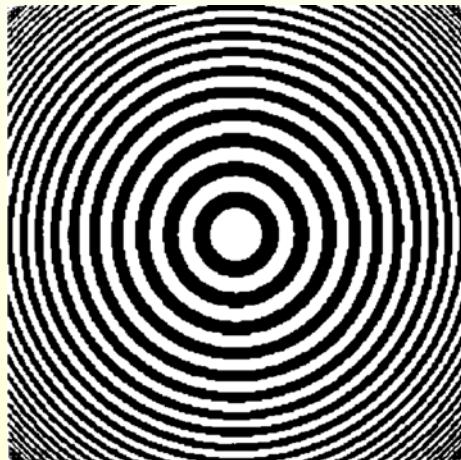
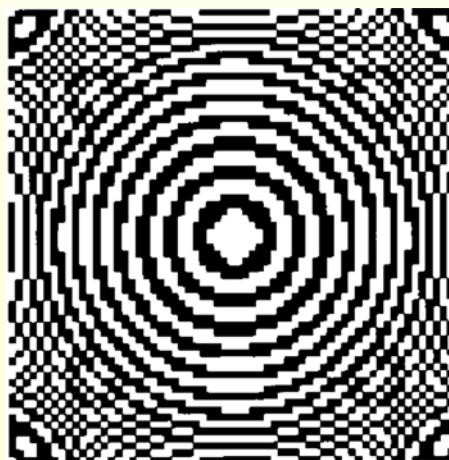
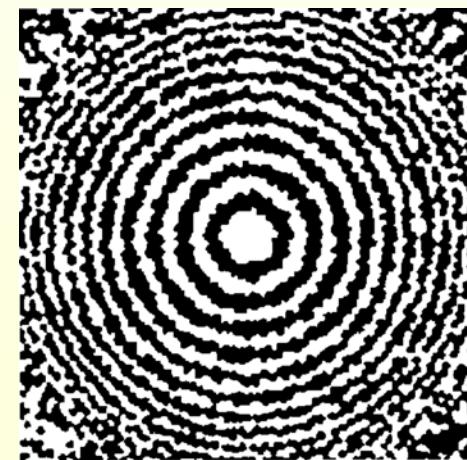
CAD meshes:
many components
bad triangles
connectivity problems



the problem:
sampling the mesh

Farthest Point Sampling

- Introduced for progressive transmission/acquisition of images
- Quality of approximation improves with increasing number of samples
 - as opposed eg. to raster scan
- Key Idea: repeatedly place next sample in the middle of the least-known area of the domain.



Gonzalez 1985, “Clustering to minimize the maximum intercluster distance”

Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem”

Pipeline

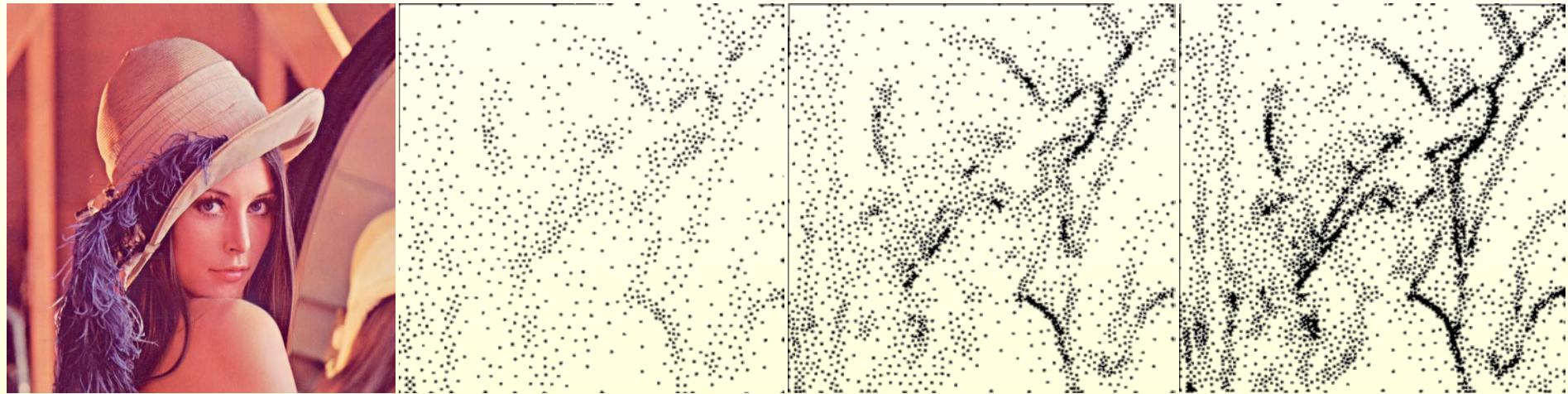
1. Create an initial sample point set S
 - Image corners + additional random point.
2. Find the point which is the farthest from all point in S

$$\begin{aligned}d(p, S) &= \max_{q \in A} (d(q, S)) \\&= \max_{q \in A} \left(\min_{0 \leq i < N} (d(q, s_i)) \right)\end{aligned}$$

3. Insert the point to S and update the distances
4. While more points are needed, iterate

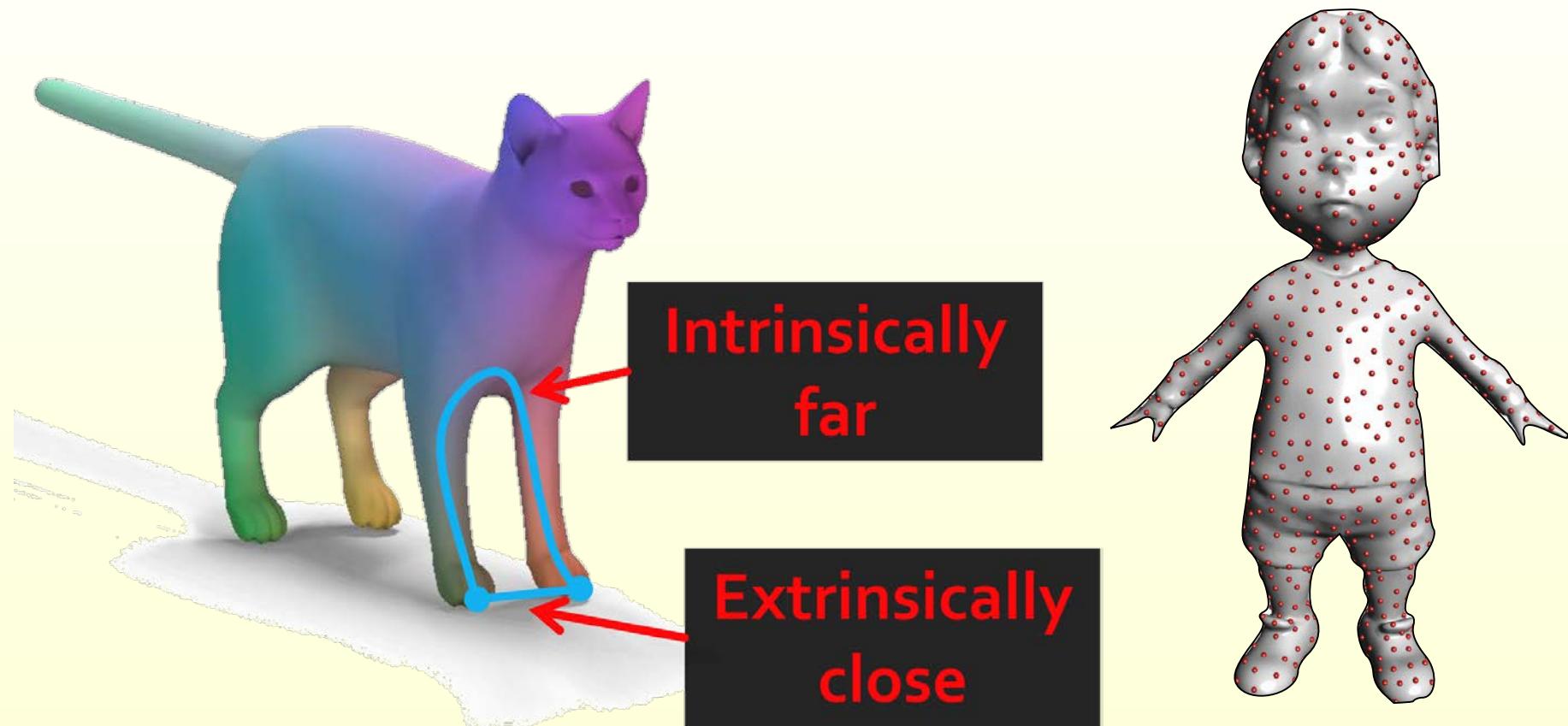
Farthest Point Sampling

- Depends on a notion of distance on the sampling domain
- Can be made adaptive, via a weighted distance



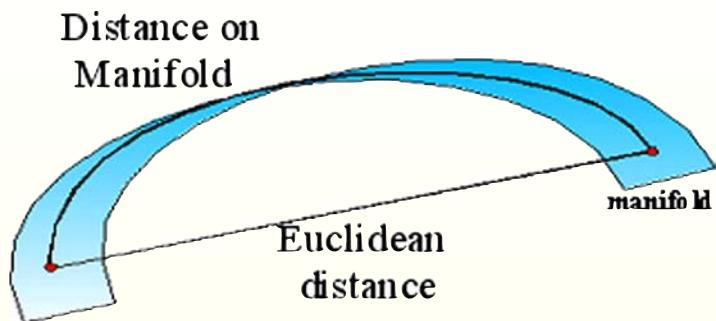
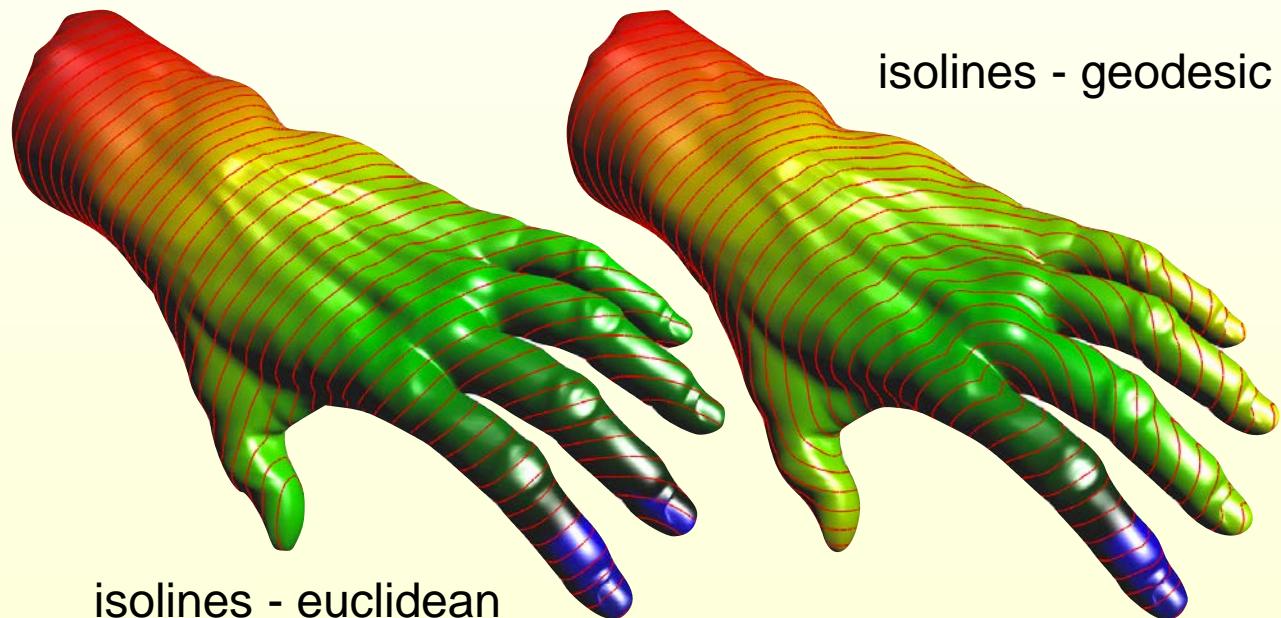
FPS on surfaces

- What's an appropriate distance?



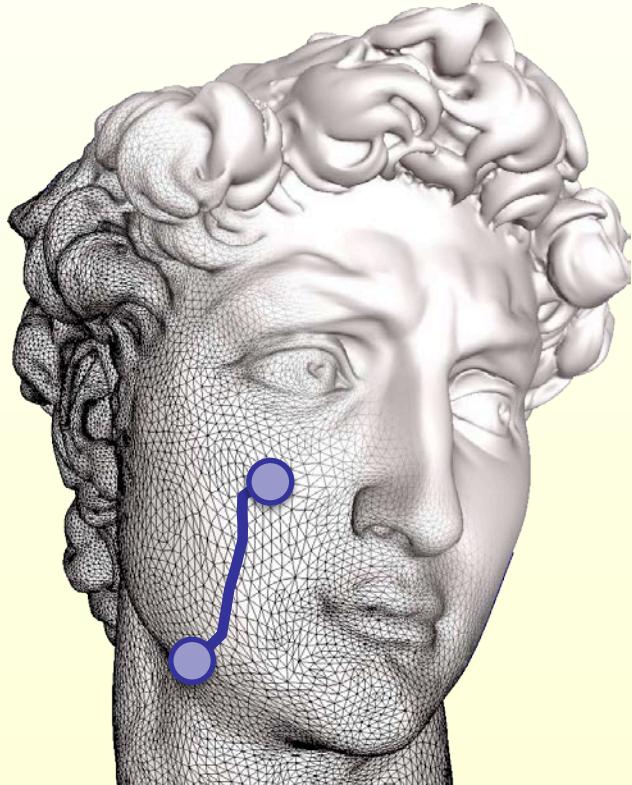
On-Surface Distances

- Geodesics: Straightest and **locally shortest** curves



Discrete Geodesics

- Recall: a mesh is a graph!
- Approximate geodesics as paths along edges



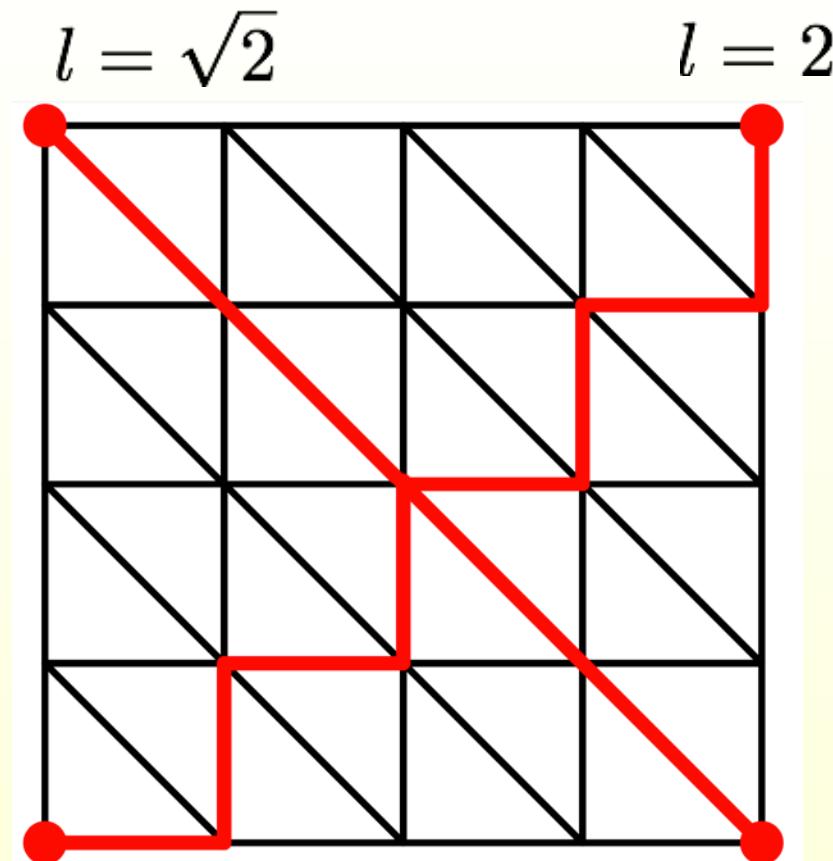
```
v0= initial vertex
di = current distance to vertex i
S = verticies with known optimal distance

# initialize
d0 = 0
di = [inf for d in di]
S = {}

for each iteration k:
    # update
    k = argmin(dk), for vk not in S
    S.append(vk)
    for neighbors index vl of vk:
        dl = min([dl, dk + dkl])
```

Dijkstra's algorithm!

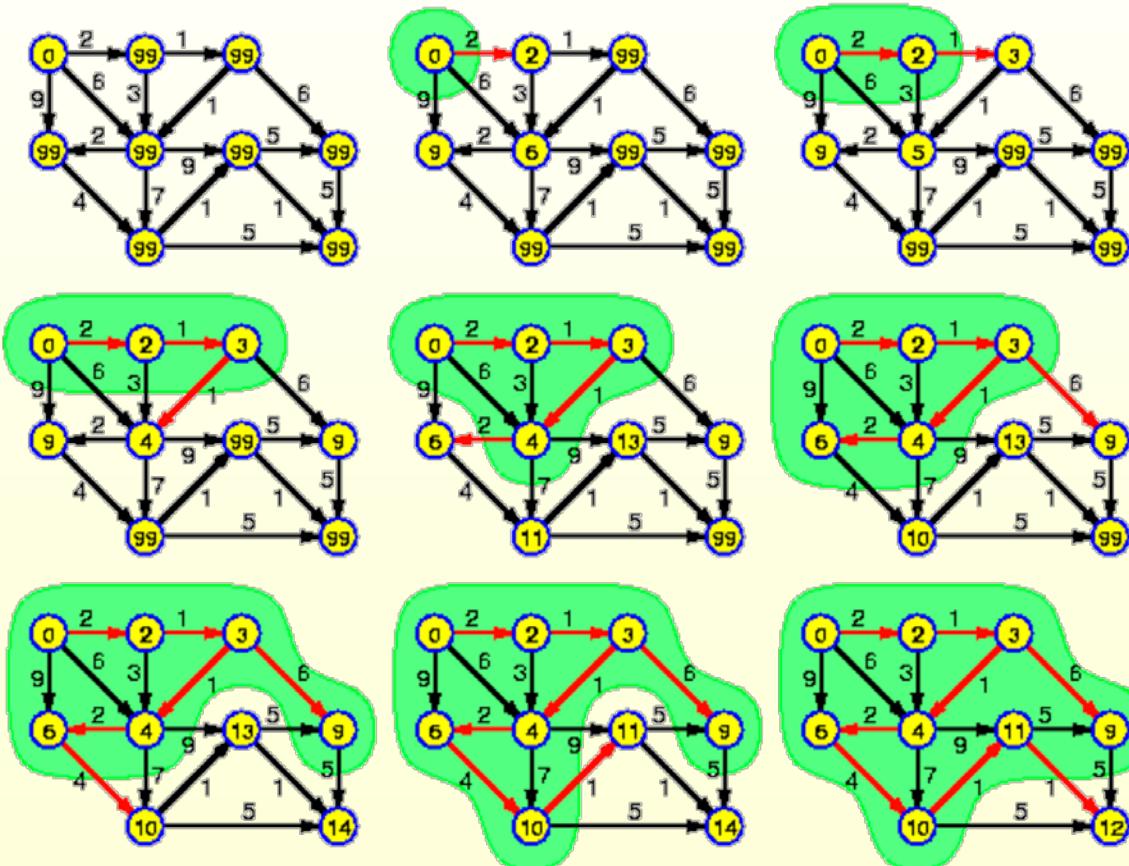
Dijkstra Geodesics



Can be asymmetric - no matter
how fine the mesh!

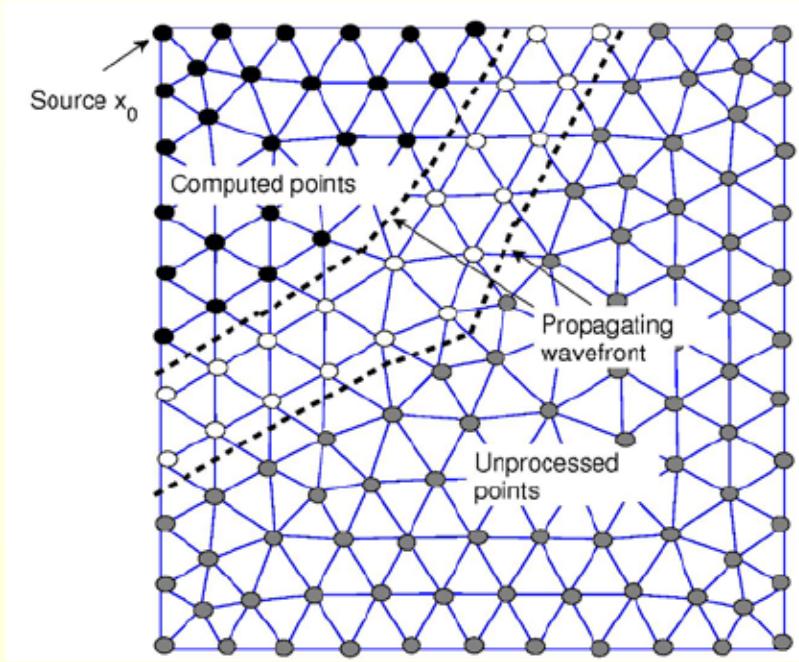
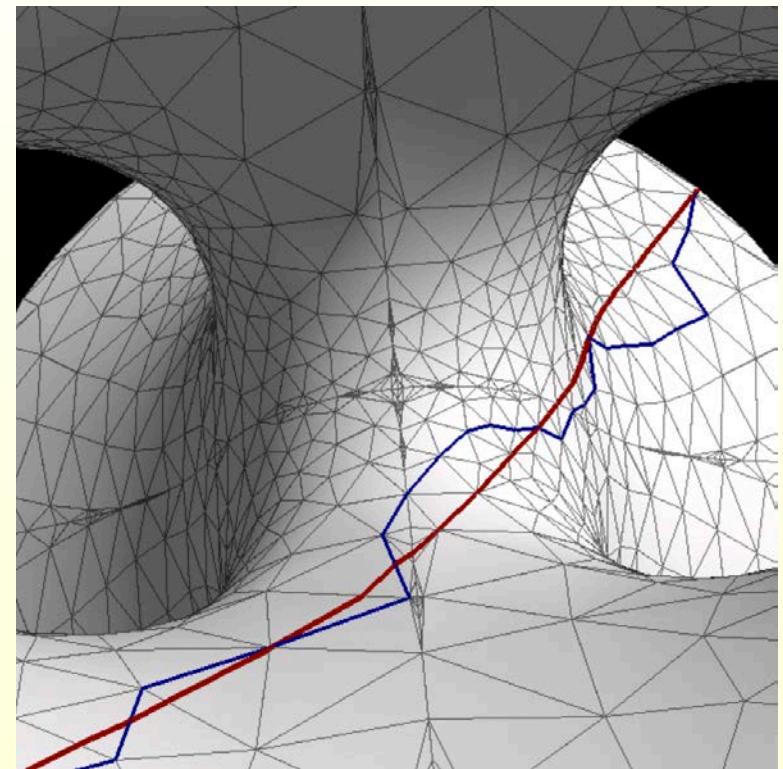
Dijkstra Geodesics

- Dijkstra as wave front propagation

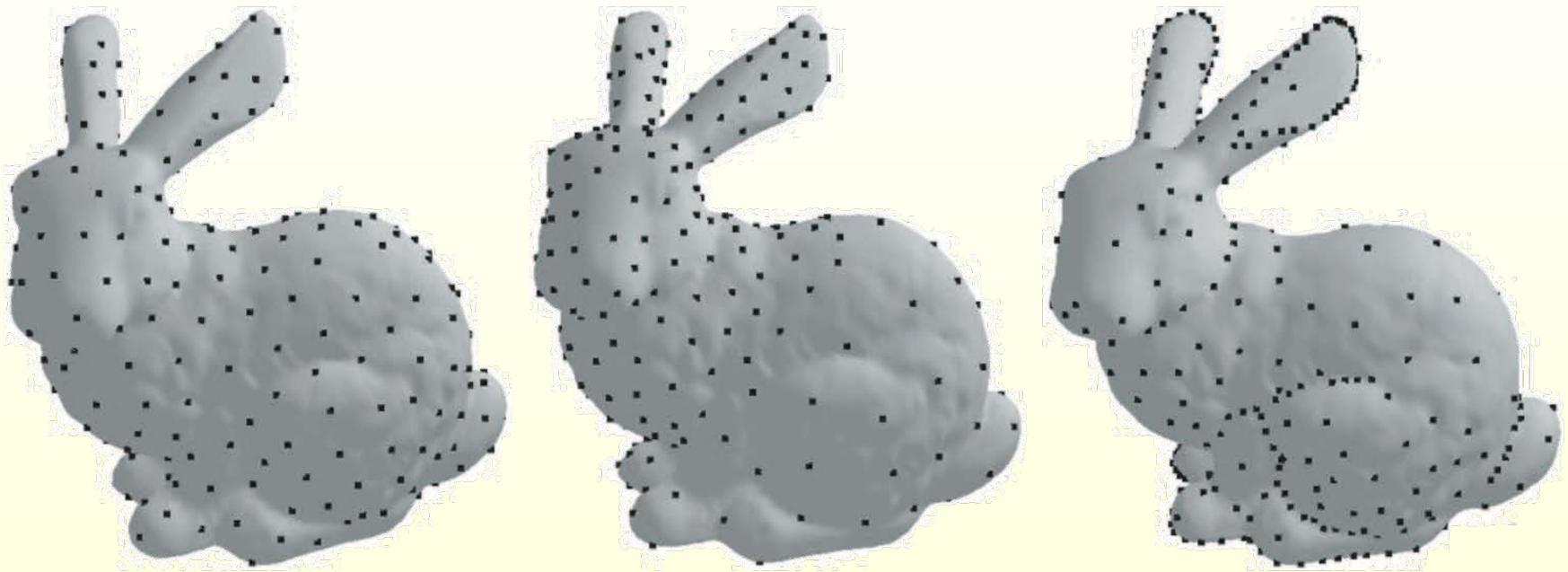


Fast Marching Geodesics

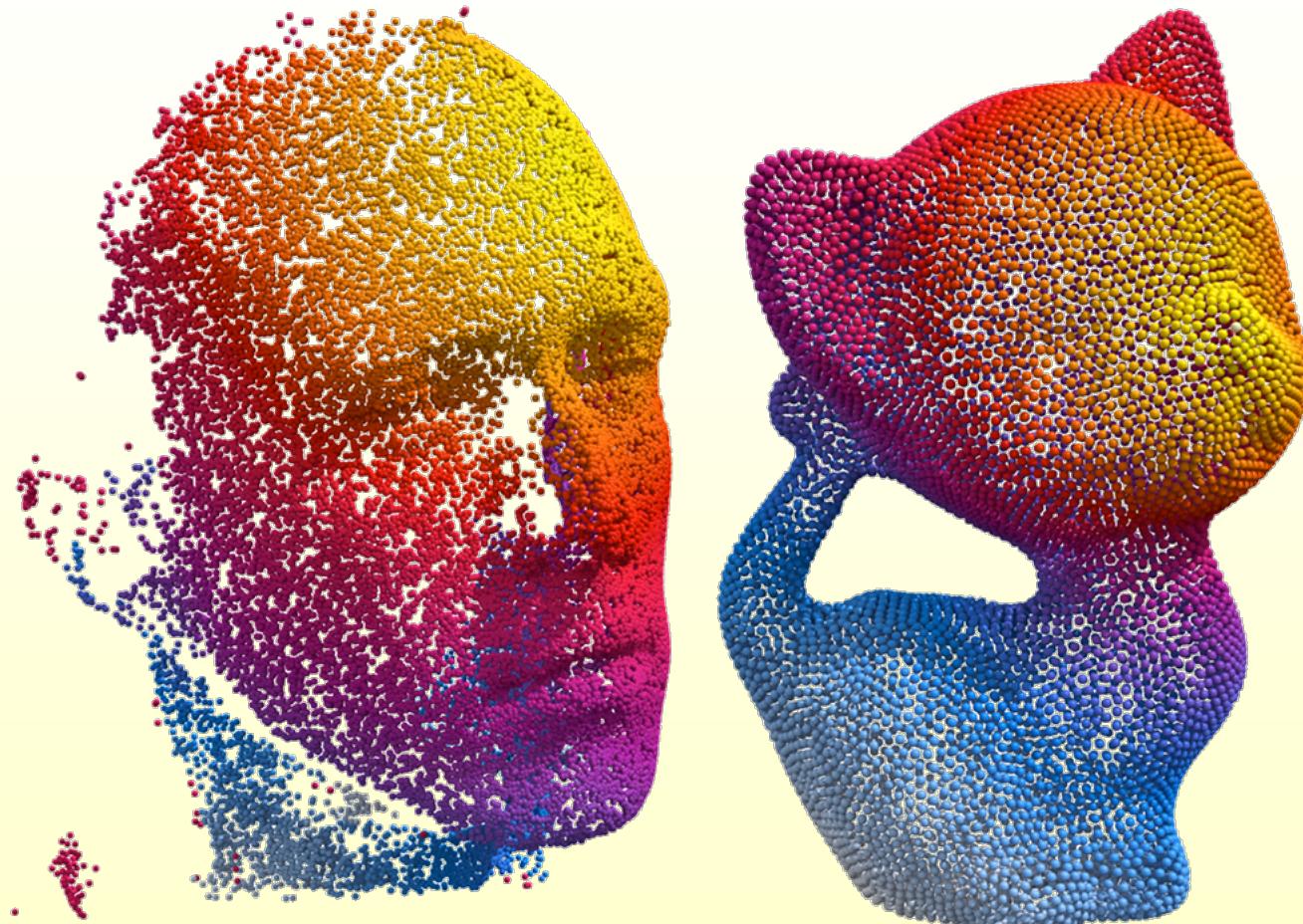
- A better approximation: allow fronts to cross triangles!



FPS on a Mesh



Faster Distance Approximations



Carne, Weischedel, and Wardetzky 2017,
The Heat Method for Distance Computation

Software

- Libigl <http://libigl.github.io/libigl/tutorial/tutorial.html>
 - MATLAB-style (flat) C++ library, based on indexed face set structure
- OpenMesh www.openmesh.org
 - Mesh processing, based on half-edge data structure
- CGAL www.cgal.org
 - Computational geometry
- MeshLab <http://www.meshlab.net/>
 - Viewing and processing meshes

Software

- Alec Jacobson's GP toolbox
 - <https://github.com/alecjacobson/gptoolbox>
 - MATLAB, various mesh and matrix routines
- Gabriel Peyre's Fast Marching Toolbox
 - [https://www.mathworks.com/matlabcentral/file exchange/6110-toolbox-fast-marching](https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching)
 - On-surface distances (more next time!)
- OpenFlipper <https://www.openflipper.org/>
 - Various GP algorithms + Viewer

The End

