
CS233: Geometric and
Topological Data Analysis

Representations for 3D
Geometry: Voxels,
Point Clouds, Meshes,
CSG

2 May 2018

1Slides ack: Olga Sorkine-Hornung, Daniele Panozzo,
Maks Ovsjanikov, Mario Botsch, Olga Diamanti

Last Time: Persistent
Homology Applications

2

Mapper

3

3D Shape Segmentation

4

Scalar Field Analysis

5

Geometry
Representations in 3D

6

Images Have Canonical
Representations

7

Regular representations
aid ML algorithms, e.g.
convolutional deep networks

In 3D There is Representation
Diversity

8

These are irregular
representations

Projected ViewPoint Cloud Mesh Volumetric

…

RGB(D)

Constructive Solid
Geometry (CSG)

Because 3D has Many Sources

9

Acquired real-world objects:
Discrete sampling
Points, meshes

Modeling “by hand”:
Higher-level representations,
amendable to modification, control
Parametric surfaces, subdivision
surfaces, implicits

Procedural modeling
Algorithms, grammars
Primitives, Polygons,
Application- dependent elements

Representation Considerations

10

How should we represent
geometry?

Be derivable from sensor data
Support storage efficiency
Support editing:

Modification, simplification,
smoothing, filtering, repair…

Support creativity:
Input metaphors, UIs…

Support rendering:
Rasterization, raytracing…

Support ML:
Share info across related shapes

Boundary or Volumetric?
B-Reps

more efficient
closer to semantics,
supports local editing

V-Reps

more regular
supports unions and
intersections

11

Point Clouds

12

Output of Acquisition

1

Triangulation, time-of-flight,
structured light scanners

but also from classic computer
algorithms like stereo

Point Cloud Issues

Standard 3D data from a variety of
sources/scanners
Potentially noisy

Can have holes
Registration of multiple images is required

1

Point Clouds,
Often an Intermediate Representation

Points = unordered set of 3-tuples
Often converted to other reps

Meshes, implicits, parametric surfaces
Easier to process, edit and/or render

Efficient point processing / modeling requires spatial
partitioning data structure

E.g., to figure out neighborhoods

1
shading needs normals!

3D Point Cloud Processing

Traditional 3D Acquisition Pipeline

16

ML directly on Point Cloud Data

B-Reps

17

Points
Polygonal meshes

B-Reps

18

Parametric surfaces
Implicit functions
Subdivision surfaces

Parametric Curves and
Surfaces

19

Parametric Representation:
Curves

Range of a function

Planar curve:

Space curve:

20

Parametric Representation:
Surfaces

Range of a function

Surface in 3D:

21

1-D Parametric Curves

Example: Explicit curve/circle in 2D

22
→ CS348a

Parametric Curves

Bezier curves, splines

23

Basis functions

Curve and control polygon

Parametric Surfaces

Sphere in 3D

24

Tensor Product
Parametric Surfaces

Curve swept by another curve

Bezier surface:

Also : triangular patch surfaces, subdivision surfaces

25

Tensor Product vs.
Triangular Patch Surfaces

26

tensor product,
regular quad mesh triangular patch,

triangular mesh

Parametric Curves and Surfaces

Advantages
Easy to generate points on the curve/surface
Separates x/y/z components

Disadvantages
Hard to determine inside/outside
Hard to determine if a point is on
the curve/surface
Hard to express more complex curves/surfaces!
➜cue: piecewise parametric surfaces (eg. mesh)

27

Splined Surfaces for CAD

28

Implicit Curves and
Surfaces

29

Implicit Curves and Surfaces

Kernel of a scalar function
Curve in 2D:
Surface in 3D:

Space partitioning

30

Outside
Curve/Surface
Inside

Implicit Curves and Surfaces

31

Kernel of a scalar function
Curve in 2D:
Surface in 3D:

Zero level set of
signed distance function

Implicit Curves and Surfaces

Implicit circle and sphere

32

Boolean Set Operations

Union:

Intersection:

33

Boolean Set Operations

Positive = outside, negative
= inside
Boolean subtraction:

Much easier than for
parametric surfaces!

34

Implicit Curves and Surfaces

Advantages
Easy to determine inside/outside
Easy to determine if a point is on
the curve/surface

Disadvantages
Hard to generate points on the curve/surface
Do not lend to (real-time) rendering

35

Volumetric
Representations

V-Rep: Volumetric Grids

Binary volumetric
grids

Can be produced by
thresholding the
distance function, or
from the scanned
points directly

37

Also represents space of little informational value

V-Rep: CSG

Constructive Solid
Geometry

Boolean ops over
geometric primitives
(spheres, boxes,
cylinders, cones, …)

38

Polygonal Meshes

Polygonal Meshes

Boundary representations of objects using
polygonal primitives

40

Meshes as Approximations of
Smooth Surfaces

Piecewise linear approximation
Error is O(h2) [O(h) for points]

25% 6.5% 1.7% 0.4%

3 6 12 24

41

0.

7.5

15.

22.5

30.

0 8 15 23 30

#faces vs. approximation
error

Polygonal Meshes
Polygonal meshes are a good representation

approximation O(h2)

arbitrary topology

adaptive refinement

efficient rendering

42

Planar Polygons

Vertices:
Edges:

Closed:
Planar: all vertices on a plane
Simple: not self-intersecting

43

A finite set M of closed,
simple polygons Qi is a
polygonal mesh
The intersection of two
polygons in M is either
empty, a vertex, or an edge

Polygonal Meshes

vertices edges faces

44

Polygonal Mesh

45

A finite set M of closed,
simple polygons Qi is a
polygonal mesh
The intersection of two
polygons in M is either
empty, a vertex, or an edge
Every edge belongs to at
least one polygon

46

A finite set M of closed,
simple polygons Qi is a
polygonal mesh
The intersection of two
polygons in M is either
empty, a vertex, or an edge
Every edge belongs to at
least one polygon
Each Qi defines a face of the
polygonal mesh

Polygonal Mesh

47

A finite set M of closed,
simple polygons Qi is a
polygonal mesh
The intersection of two
polygons in M is either
empty, a vertex, or an edge
Every edge belongs to at
least one polygon
Each Qi defines a face of the
polygonal mesh

Polygonal Mesh

48

A finite set M of closed,
simple polygons Qi is a
polygonal mesh
The intersection of two
polygons in M is either
empty, a vertex, or an edge
Every edge belongs to at
least one polygon
Each Qi defines a face of the
polygonal mesh

Polygonal Mesh

A finite set M of closed,
simple polygons Qi is a
polygonal mesh
The intersection of two
polygons in M is either
empty, a vertex, or an edge
Every edge belongs to at
least one polygon
Each Qi defines a face of the
polygonal mesh

49

Polygonal Mesh

4

Vertex degree or valence
=
number of incident edges

50

Polygonal Mesh

2

51

Vertex degree or valence
=
number of incident edges

Polygonal Mesh

Boundary: the set of all
edges that belong to only
one polygon

Either empty or forms
closed loops
If empty, then the
polygonal mesh is closed

52

Polygonal Mesh

Triangulation

Polygonal mesh where every
face is a triangle

Simplifies data structures
Simplifies rendering
Simplifies algorithms
Each face planar and convex
Any polygon can be
triangulated

53

Triangulation

Polygonal mesh where every
face is a triangle

Simplifies data structures
Simplifies rendering
Simplifies algorithms
Each face planar and convex
Any polygon can be
triangulated

54

Triangle Meshes

Connectivity: vertices, edges, triangles
Geometry: vertex positions

55

Data Structures

What should be stored?
Geometry: 3D coordinates
Connectivity

Adjacency relationships
Attributes

Normal, color, texture
coordinates
Per vertex, face, edge

56

Simple Data Structures: Triangle
List

STL format (used in CAD)
Storage

Face: 3 positions
4 bytes per coordinate
36 bytes per face

on average: f = 2v (Euler)
72*v bytes for a mesh
with v vertices

No connectivity information

Triangles

0 x0 y0 z0

1 x1 x1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

...

57

Simple Data Structures: Triangle List

Used in formats
OBJ, OFF, WRL
Storage

Vertex: position
Face: vertex indices
12 bytes per vertex
12 bytes per face
36*v bytes for the mesh

No explicit neighborhood info

Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

... ..
.

..

.
..
.

Triangles

t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

... ..
.

..

.
..
.

58

Quad-Edge:
Encoding Mesh

Topology

59

Edge-based
(many variants,
half-edge, etc)

Brisson: Cell-Tuple

60

(v,e,f)

Summary

61

Parametric Implicit Discrete/Sampled

• Splines, tensor-product
surfaces

• Subdivision surfaces
• Distance fields
• Metaballs/blobs

• Meshes
• Point set surfaces

Representation
Conversions

Points → Implicit
Implicit → Mesh
Mesh → Points

POINTS → IMPLICIT
Implicit Surface Reconstruction

63

Implicit Function Approach

< 0 > 00
64

Define a function

with value < 0 outside
the shape and > 0
inside

Implicit Function Approach

< 0 > 00
65

Define a function

with value < 0 outside
the shape and > 0
inside

Extract the zero-set

SDF from Points and Normals

Input: Points + Normals
Normals help to
distinguish between
inside and outside
Computed via locally
fitting planes at the
points (but orientation
can be tricky)

- +

“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

66

http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

Smooth SDF

Find smooth implicit F.
Scattered data interpolation:

F is smooth
Avoid trivial

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
67

Smooth SDF

Scattered data
interpolation:

F is smooth
Avoid trivial

Add off-surface
constraints

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
68

Radial Basis Function Interpolation

RBF: Weighted sum of shifted, smooth kernels

Scalar weights
Unknowns

Smooth kernels
(basis functions)

centered at constrained
points.

For example:

69

How do we find the weights?

70

Kernel centers: on- and off-surface points

Radial Basis Function Interpolation

Interpolate the constraints:

0

0

0 0

71

Radial Basis Function Interpolation

Interpolate the constraints:

Symmetric linear system to get the weights:

72

3n equations
3n variables

Radial Basis Function Interpolation

RBF Kernels

Triharmonic:
Globally supported
Leads to dense symmetric linear system
C2 smoothness
Works well for highly irregular sampling

73

RBF Kernels
Polyharmonic spline

Multiquadratic

Gaussian

B-Spline (compact support)

74

RBF Reconstruction Examples

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
75

Off-Surface Points

Insufficient number/
badly placed off-surface points

Properly chosen off-surface points

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

76

IMPLICIT → MESH
Marching Cubes

77

Extracting the Surface

Wish to compute a manifold mesh of the level set

Im
ag

e
fro

m
: w

w
w

.fa
rfi

el
dt

ec
hn

ol
og

y.
co

m

F(x) > 0 
outside

F(x) = 0 
surface

F(x) < 0 
inside

78

Sample the SDF

79

Sample the SDF

80

Sample the SDF

81

Marching Cubes

Converting from implicit to explicit representations.

Goal: Given an implicit representation:

Create a triangle mesh that approximates the surface.

Lorensen and Cline, SIGGRAPH ‘87
82

Marching Squares (2D)

Given a function:

• inside
• outside

1. Discretize space.

2. Evaluate on a grid.

83

Given a function:

• inside
• outside

1. Discretize space.

2. Evaluate on a grid.

3. Classify grid points (+/-)

4. Classify grid edges

5. Compute intersections

6. Connect intersections

Marching Squares (2D)

84

Computing the intersections:

• Edges with a sign switch contain
intersections.

• Simplest way to compute t: assume f
is linear between x1 and x2:

Marching Squares (2D)

85

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.

Marching Squares (2D)

86

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections

Marching Squares (2D)

87

Connecting the intersections:

• Grand principle: treat each cell separately!
• Enumerate all possible inside/outside combinations.
• Group those leading to the same intersections.
• Group equivalent after rotation.
• Connect intersections

Marching Squares (2D)

88

Connecting the intersections:

Ambiguous cases:

Two options:
1) Can resolve ambiguity by subsampling inside the cell.
2) If subsampling is impossible, pick one of the two possibilities.

Marching Squares (2D)

89

Same machinery: cells → cubes (voxels), lines → triangles

• 256 different cases - 15 after symmetries, 6 ambiguous cases
• More subsampling rules → 33 unique cases

Chernyaev, Marching Cubes 33,’95

the 15 cases

Marching Cubes (3D)

explore ambiguity to avoid holes!
90

Marching Cubes (3D)

Main Strengths:

• Very multi-purpose.
• Extremely fast and parallelizable.
• Relatively simple to implement.
• Virtually parameter-free

Main Weaknesses:

• Can create badly shaped (skinny) triangles.
• Many special cases (implemented as big lookup tables).
• No sharp features.

91

Recap: Points→Implicit→Mesh

92

MESH-> POINT CLOUD
Sampling

93

From Surface to Point Cloud
Why?

Points are simple but expressive!
Few points can suffice

Flexible, unstructured, few constraints
Also: ML applications!

94

CAD meshes:
many components
bad triangles
connectivity problems

From Surface to Point Cloud
Why?

Points are simple but expressive!
Few points can suffice

Flexible, unstructured, few constraints
Also: ML applications!

95

CAD meshes:
many components
bad triangles
connectivity problems

the problem:
sampling the mesh

Farthest Point Sampling
Introduced for progressive transmission/acquisition of images
Quality of approximation improves with increasing number of
samples

as opposed eg. to raster scan
Key Idea: repeatedly place next sample in the middle of the
least-known area of the domain.

96

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance”
Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem”

Pipeline

1.Create an initial sample point set S
• Image corners + additional random point.

2. Find the point which is the farthest from all point in S

3. Insert the point to S and update the distances
4. While more points are needed, iterate

97

Farthest Point Sampling

Depends on a notion of distance on the sampling
domain
Can be made adaptive, via a weighted distance

98
Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling”

FPS on surfaces

What’s an appropriate distance?

99

On-Surface Distances

Geodesics: Straightest
and locally shortest
curves

100

isolines - euclidean

isolines - geodesic

Discrete Geodesics

Recall: a mesh is a graph!
Approximate geodesics as paths along edges

101

Dijkstra’s
algorithm!

Dijkstra Geodesics

102

Can be asymmetric - no matter
how fine the mesh!

Dijkstra Geodesics

103

Dikjstra as wave front propagation

Fast Marching Geodesics

A better approximation: allow fronts to cross
triangles!

104
Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds”

FPS on a Mesh

105
Peyré and Cohen 2003, Geodesic Remeshing Using Front Propagation

Faster Distance Approximations

106
Carne, Weischedel, and Wardetzky 2017,
The Heat Method for Distance Computation

Software

Libigl http://libigl.github.io/libigl/tutorial/tutorial.html
MATLAB-style (flat) C++ library, based on indexed
face set structure

OpenMesh www.openmesh.org
Mesh processing, based on half-edge data structure

CGAL www.cgal.org
Computational geometry

MeshLab http://www.meshlab.net/
Viewing and processing meshes

http://libigl.github.io/libigl/tutorial/tutorial.html
http://www.openmesh.org/
http://www.cgal.org/
http://www.meshlab.net/

Software
Alec Jacobson’s GP toolbox

https://github.com/alecjacobson/gptoolbox
MATLAB, various mesh and matrix routines

Gabriel Peyre’s Fast Marching Toolbox
https://www.mathworks.com/matlabcentral/file
exchange/6110-toolbox-fast-marching
On-surface distances (more next time!)

OpenFlipper https://www.openflipper.org/
Various GP algorithms + Viewer

108

https://github.com/alecjacobson/gptoolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.openflipper.org/

The End

109

110

	CS233: Geometric and Topological Data Analysis
	Last Time: Persistent Homology Applications
	Mapper
	3D Shape Segmentation
	Scalar Field Analysis
	Geometry Representations in 3D
	Images Have Canonical Representations
	In 3D There is Representation Diversity
	Because 3D has Many Sources
	Representation Considerations
	Boundary or Volumetric?
	Point Clouds
	Output of Acquisition
	 Point Cloud Issues
	Point Clouds,�Often an Intermediate Representation
	3D Point Cloud Processing
	B-Reps
	B-Reps
	Parametric Curves and Surfaces
	Parametric Representation:�Curves
	Parametric Representation:�Surfaces
	1-D Parametric Curves
	Parametric Curves
	Parametric Surfaces
	Tensor Product�Parametric Surfaces
	Tensor Product vs.�Triangular Patch Surfaces
	Parametric Curves and Surfaces
	Splined Surfaces for CAD
	Implicit Curves and Surfaces
	Implicit Curves and Surfaces
	Implicit Curves and Surfaces
	Implicit Curves and Surfaces
	Boolean Set Operations
	Boolean Set Operations
	Implicit Curves and Surfaces
	Volumetric Representations
	V-Rep: Volumetric Grids
	V-Rep: CSG
	Polygonal Meshes
	Polygonal Meshes
	Meshes as Approximations of �Smooth Surfaces
	Polygonal Meshes
	Planar Polygons
	Polygonal Meshes
	Polygonal Mesh
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Triangulation
	Triangulation
	Triangle Meshes
	Data Structures
	Simple Data Structures: Triangle List
	Simple Data Structures: Triangle List
	Quad-Edge: Encoding Mesh Topology
	Brisson: Cell-Tuple
	Summary
	Representation Conversions
	Points → IMPLicit
	Implicit Function Approach
	Implicit Function Approach
	SDF from Points and Normals
	Smooth SDF
	Smooth SDF
	Radial Basis Function Interpolation
	Slide Number 70
	Slide Number 71
	Slide Number 72
	RBF Kernels
	RBF Kernels
	RBF Reconstruction Examples
	Off-Surface Points
	implicit → mesh
	Extracting the Surface
	Sample the SDF
	Sample the SDF
	Sample the SDF
	Marching Cubes
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Squares (2D)
	Marching Cubes (3D)
	Marching Cubes (3D)
	Recap: Points→Implicit→Mesh
	MESH-> POInt CLOUD
	From Surface to Point Cloud Why?
	From Surface to Point Cloud Why?
	Farthest Point Sampling
	Pipeline
	Farthest Point Sampling
	FPS on surfaces
	On-Surface Distances
	Discrete Geodesics
	Dijkstra Geodesics
	Dijkstra Geodesics
	Fast Marching Geodesics
	FPS on a Mesh
	Faster Distance Approximations
	Software
	Software
	The End
	Slide Number 110

