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Last Time: Persistent
Homology Applications
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(G = d-neighborhood graph



3D Shape Segmentation
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Representations in 3D



Images Have Canonical
Representations

Freeform: Layer 1

Regular representations
aid ML algorithms, e.g.
convolutional deep networks
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In 3D There Is Representation
Diversity

Point Cloud Mesh Volumetric Projected View
ﬂ RGB(D)
Trigse arg rreeulelr _ _
(SUrese oS = Constructive Solid
Geometry (CSG)
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Because 3D has Many Sources

@ Acquired real-world objects:
@ Discrete sampling
@ Points, meshes

@ Modeling “by hand™

@ Higher-level representations,
amendable to modification, control

@ Parametric surfaces, subdivision
surfaces, implicits

@ Procedural modeling
@ Algorithms, grammars

@ Primitives, Polygons,
Application- dependent elements



Representation Considerations

@ How should we represent

geometry?

@ Be derivable from sensor data
@ Support storage efficiency

@ Support editing:

@ Modification, simplification,
smoothing, filtering, repair...

@ Support creativity:
@ Input metaphors, Uls...
@ Support rendering:
@ Rasterization, raytracing...

@ Support ML:
@ Share info across related shapes

10



Boundary or Volumetric?

+ B-Reps + V-Reps

+ more efficient ¢+ more regular

+ closer to semantics, # supports unions and
supports local editing Intersections
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Int Clouds

Po
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Output of Acquisition

KINECT i
N EP
, it
III - "
\ X d .'

Triangulation, time-of-flight,
structured light scanners

but also from classic computer
algorithms like stereo




Point Cloud Issues

@ Standard 3D data from a variety of

sources/scanners
@ Potentially noisy

@ Can have holes
@ Registration of multiple images is required



Point Clouds,
Often an Intermediate Representation

@ Points = unordered set of 3-tuples

@ Often converted to other reps
@ Meshes, implicits, parametric surfaces
@ Easier to process, edit and/or render

@ Efficient point processing / modeling requires spatial
partitioning data structure

@ E.g., to figure out neighborhoods

shading needs normals!



3D Point Cloud Processing

Implicit

Scanning
reconstruction

devices

E _____

Range Scanners
Triangulation Scanners Normal Estimation

physical  compurer vision acquired  Wesing marening Gubss - Feconstructed
point cloud model

model
Traditional 3D Acquisition Pipeline

ML directly on Point Cloud Data
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@ Points
@ Polygonal meshes

e KD
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B-Reps

@ Parametric surfaces
@ Implicit functions
@ Subdivision surfaces
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Parametric Curves and
Surfaces
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Parametric Representation:
Curves

@ Range ofafunction f: X =Y, X CR™Y CR"

t=20
@ Planar curve: m=1,n =2

s(t) = (x(t),y(t))

@ Space curve: M =1,n=3

s(t) = (z(t),y(t), 2(t))
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Parametric Representation:
Surfaces

@ Range ofafunction f: X =Y, X CR™Y CR"

@ Surfacein3D: m=2,n=3

U
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1-D Parametric Curves

@ Example: Explicit curve/circle in 2D

p:R — R?
tes p(t) = (2(0), (1) /

p(t) = r(cos(t),sin(t))
t € 10,2m)

N

— CS348a
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Parametric Curves

@ Bezier curves, splines 1 .
n n AW n—i ful £
0 =3 B0 5= (])da-o

Basis functions

Curve and control polygon






Parametric Surfaces

@ Spherein 3D
s:R* — R’

s(u,v) = r (cos(u) cos(v), sin(u) cos(v), sin(v))

(u,v) € |0,2m) X |[—7/2,7/2]
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Tensor Product
Parametric Surfaces

@ Curve swept by another curve

s(u,v) = sz‘,jBi(U)Bj (v)

@ Bezier surface:

s(u,v) = Y pi B (u)B](v)

1=0 7=0

Control Polygon

@ Also : triangular patch surfaces, subdivision surfaces
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Tensor Product vs.

lar Patch Surfaces

Triangu

tensor product,

triangular patch,
triangular mesh

regular quad mesh
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Parametric Curves and Surfaces

@ Advantages

-
-

Easy to generate points on the curve/surface
Separates x/y/z components

@ Disadvantages

o
o

o

Hard to determine inside/outside

Hard to determine if a point is on
the curve/surface

Hard to express more complex curves/surfaces!
=>cue: piecewise parametric surfaces (eg. mesh)
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Splined Surfaces for CAD
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Implicit Curves and
Surfaces
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Implicit Curves and Surfaces

@ Kernel of ascalar function f : R™ — R
@ Curvein2D: S ={zeR’|f(z) =0}
@ Surface in3D: S = {z € R’|f(x) = 0}

@ Space partitioning

{z €]
{z €]

Rm
Rm

{z €]

Rm

f(x) > 0} Outside
f(x) = 0} Curve/Surface
f(x) < 0} Inside
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Implicit Curves and Surfaces

@ Kernel of a scalar function f : R™ — R
@ Curvein2D: S ={zeR’|f(z)=0}
@ Surface in3D: S = {z € R’|f(x) = 0}

@ Zero level set of
signed distance function

31



J

Implicit Curves and Surfaces

Implicit circle and sphere

f(:v,y)=x2+y2—?°2

flxz,y, z) =$2+y2—|—22 — p?
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Boolean Set Operations

@ Union: U fi(x) = min f;(x

- oo

@ Intersection: m fi(z) = max f;(z)
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Boolean Set Operations

@ Positive = outside, negative
= Inside

@ Boolean subtraction:

f>0 f<O0O

g>0|h>0 [h<O

g<0| hAh>0 h>0

@ Much easier than for
parametric surfaces!

h = mazx(f, —g)

L "“'*-:h «"’-"Mrm_ﬁ—m
BN V.
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Implicit Curves and Surfaces

@ Advantages
@ Easy to determine inside/outside

@ Easy to determine if a point is on
the curve/surface

@ Disadvantages
@ Hard to generate points on the curve/surface
@ Do not lend to (real-time) rendering
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Volumetric
Representations




V-Rep: Volumetric Grids

@ Binary volumetric
grids

@ Can be produced by
thresholding the
distance function, or
from the scanned
points directly

Also represents space of little informational value
37



V-Rep: CSG

@ Constructive Solid
Geometry

@ Boolean ops over
geometric primitives
(spheres, boxes,
cylinders, cones, ...)
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Polygonal Meshes




Polygonal Meshes

@ Boundary representations of objects using
polygonal primitives
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Meshes as Approximations of
Smooth Surfaces

#faces vs. approximation

@ Pilecewise linear approximation =

1

@ Erroris O(h?) [O(h) for points] *¢ \

7.5

25% 6.5% 1.7% 0.4%
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Polygonal Meshes

@ Polygonal meshes are a good representation
@ approximation O(h?)
@ arbitrary topology
@ adaptive refinement

@ efficient rendering




Planar Polygons

¥

LEI

Vertices: Vo,Vis---,Un—1
Edges: {(an Ul)a veey (U’n—Qa vn—l)}

Closed:vg = v,,—1

Planar: all vertices on a plane
Simple: not self-intersecting
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Polygonal Meshes

@ A finite set M of closed,

simple polygons Q; Is a
polygonal mesh
@ The intersection of two

polygons in M is either
empty, a vertex, or an edge

M ={V,E, F)

-

vertices edges faces
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Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon
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Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh

46



Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh
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Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh
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Polygonal Mesh

@ A finite set M of closed,
simple polygons Q; Is a
polygonal mesh

@ The Intersection of two
polygons in M is either
empty, a vertex, or an edge

@ Every edge belongs to at
least one polygon

@ Each Q, defines a face of the
polygonal mesh
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Polygonal Mesh

@ Vertex degree or valence

number of incident edges
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Polygonal Mesh

@ Vertex degree or valence

number of incident edges
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Polygonal Mesh

@ Boundary: the set of all
edges that belong to only
one polygon
@ Either empty or forms

closed loops

@ If empty, then the
polygonal mesh is closed
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Triangulation

@ Polygonal mesh where every
face Is a triangle

@ Sim
@ Sim
@ Sim

@ Eac

D
D
D

N

Ifles data structures
Ifles rendering

Ifles algorithms

face planar and convex

@ Any polygon can be
triangulated
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Triangulation

@ Polygonal mesh where every
face Is a triangle

@ Sim
@ Sim
@ Sim

@ Eac

D
D
D

N

Ifles data structures
Ifles rendering

Ifles algorithms

face planar and convex

@ Any polygon can be
triangulated
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Triangle Meshes

@ Geometry: vertex positions
V=Av,...,v,}
E={e,...,ex}, e €V XV
F={fi,....fm}, [iEVXV XV

P:{pla"'apn}a piERS
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Data Structures

@ What should be stored?
@ Geometry: 3D coordinates

@ Connectivity
@ Adjacency relationships

@ Attributes

@ Normal, color, texture
coordinates

@ Per vertex, face, edge
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Simple Data Structures: Triangle

List
@ STL format (used in CAD)

@ Storage
@ Face: 3 positions
@ 4 bytes per coordinate

@ 36 bytes per face
@on average: f = 2v (Euler)

@ 72*v bytes for a mesh
with v vertices

@ No connectivity information

Triangles

x0 |yO

z0

x1 [x1

z1

X2 |y2

Z2

X3 |y3

Z3

X4 |\y4

z4

X5 |yS

Z5

OO0~ WIN|F|O

X6 |y6

Z6
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Simple Data Structures: Triangle List

@ Used in formats
OBJ, OFF, WRL

@ Storage
@ Vertex: position
@ Face: vertex indices
@ 12 bytes per vertex
@ 12 bytes per face
@ 36*v bytes for the mesh

@ No explicit neighborhood info

Vertices Triangles

vO [XO0|y0|zO| |tO |vO |Vl |v2
vl (x1{x1|z1| |t1 [vO|v1l|v3
V2 | X2|y2|z2| |t2 |v2|Vv4 |v3
v3 X3 |y3|z3| |t3 |VvD|Vv2|Vv6
v4 | X4 |y4 |z4

v5 [ X5|y5 |z5

V6 | X6 |y6 |z6
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Quad-Edge:
Encoding Mesh
Topology

Edge-based
(many variants,
half-edge, etc)
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(v,e,f)

Brisson:

Cell-Tuple

Gy
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Summary

Parametric

Implicit

Discrete/Sampled

Splines, tensor-product
surfaces
Subdivision surfaces

Distance fields
Metaballs/blobs

Meshes
Point set surfaces
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Representation
conversions

Points — Implicit
Implicit — Mesh
Mesh — Points




Implicit Surface Reconstruction

POINTS — IMPLICIT

63



Implicit Function Approach

¢ Define a function
f:R°—R

with value < O outside
the shape and >0
Inside
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Implicit Function Approach

¢ Define a function
f:R°—R

with value < 0 outside
the shape and > 0
Inside

¢+ Extract the zero-set

{x: f(x)=0;

65



SDF from Points and Normals

¢ |nput: Points + Normals

+ Normals help to ey
distinguish between v >
inside and outside 5 %

+ Computed via locally % ' i
fitting planes at the b I’y
points (but orientation f‘««fﬁfq‘*’

can be tricky)

“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
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http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

Smooth SDF

¢ Find smooth implicit F.
¢ Scattered data interpolation:

¢ F(pi) =0
+F is smooth A/ I
+Avoid trivial F' = ( ° ’

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
67



Smooth SDF

¢ Scattered data
Interpolation:

* F(p;) =0 A

™M

QO 2O0—>@®

+F is smooth i A/
+Avoid trivial F =0 'y 5
0

E
+ Add off-surface "710 . O
constraints —¢€
F(p; +¢en;) =«
F(p; —en;) = —¢

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
68



Radial Basis Function Interpolation

+ RBF: Weighted sum of shifted, smooth kernels

N—1
Fix)= Y wig(lx—cil) N=3n
1=0

Smooth kernels
(basis functions)
centered at constrained
points.

For example:

p(r) =1

Scalar weights
Unknowns

69



Radial Basis Function Interpolation

dist(X) = Z W.Q; (X) = Z W;SO(HX —¢ H)

i i
Kernel centers: on- and off-surface points

How do we find the weights?




Radial Basis Function Interpolation

+ Interpolate the constraints:

{Csz‘, C3i+1, C3«z+2} — {Pe:, p; +€n;, p; — 611?:}

vj:oa"'aN_la szSO(”CJ_Cz”):dJ € .E



Radial Basis Function Interpolation

+ Interpolate the constraints:

{c3i,€3i11,C3i42}F = {Pi, Pi +EN;, Pi — N}

¢+ Symmetric linear system to get the weights:

( ollco—col) .. @lllco —cnil ) ( o ) ( & )
olen-1—col) ... elllen—t—en_al)) \ww_1) \dy-s

3n equations
3n variables
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RBF Kernels

p(r) =r

¢ Triharmonic:
+ Globally supported
¢ eads to dense symmetric linear system
+C? smoothness
+Works well for highly irreqgular sampling
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RBF Kernels

+ Polyharmonic spline
¢ go(r)—frklog( ), k=2,4,6.

* o(r)=r" k=1,3,5.
S Multiquadratlc T
= VP4 P q
+ Gaussian !
—Brz 0.4}
p(r) =e Ny 5‘
+ B-Spline (compact support) o=

p(r) = piecewise-polynomial(r)
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RBF Reconstruction Examples

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
75



Off-Surface Points

Insufficient number/ Properly chosen off-surface points
badly placed off-surface points

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
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Marching Cubes

IMPLICIT — MESH

77



Extracting the Surface

+ Wish to compute a manifold mesh of the level set

F(x)=0->
surface

F(x) <0 >

inside

F(x)>0->
outside

78



Sample the SDF




Sample the SDF
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Sample the SDF

00006606006
000000000
000825906
(06500 0O
0000000 1) ®
0000000\
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Marching Cubes

Converting from implicit to explicit representations.
Goal: Given an implicit representation: {}(j s.t. f(x)

Create a triangle mesh that approximates the surface.

[James Sharman]

Lorensen and Cline, SIGGRAPH ‘87

0}
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Marching Squares (2D)

Given a function: f(x)

e f(x) <0 inside
* f(x) > 0 outside

1. Discretize space.

2. Evaluate f(x) on a grid.

83



Marching Squares (2D)

Given a function: f(x)

e f(x) <0 inside
* f(x) > 0 outside

Discretize space.
Evaluate f(x) on a grid.
Classify grid points (+/-)
Classify grid edges

Compute intersections

o Gl gs D NE e

Connect intersections



Marching Squares (2D)

Computing the intersections:

« Edges with a sign switch contain
Intersections.

f(@1) <0, f(z2) > 0=

f(x1 +t(xe —x1)) =0
for some 0 <t <1

o Simplest way to compute t: assume f
IS linear between x1 and x2:

f(x1)

= f(z2) — f(z1)




Marching Squares (2D)

Connecting the intersections:

e Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.




Marching Squares (2D)

Connecting the intersections:

e Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.
« Group those leading to the same intersections
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Marching Squares (2D)

Connecting the intersections:

e Grand principle: treat each cell separately!
 Enumerate all possible inside/outside combinations.
* Group those leading to the same intersections.

o Group equivalent after rotation.

e Connect intersections

BN B3N
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Marching Squares (2D)

Connecting the intersections:

Ambiguous cases: % %

Break contour Join contour

Two options:
1) Can resolve ambiguity by subsampling inside the cell.

2) If subsampling is impossible, pick one of the two possibilities. o



Marching Cubes (3D)

Same machinery: cells — cubes (voxels), lines — triangles

o 256 different cases - 15 after symmetries, 6 ambiguous cases
e More subsampling rules — 33 unique cases

¥

=

]

SR

7o
!

the 15 cases explore ambiguity to avoid holes!

]
=

90
Chernyaev, Marching Cubes 33,’95



Marching Cubes (3D)

Main Strengths:

* Very multi-purpose.

« Extremely fast and parallelizable.
« Relatively simple to implement.

* Virtually parameter-free

Main Weaknesses:

e Can create badly shaped (skinny) triangles.
 Many special cases (implemented as big lookup tables).
 No sharp features.
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Recap: Points—Implicit—Mesh
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Sampling

MESH-> POINT CLOUD

93



From Surface to Point Cloud
Why?

@ Points are simple but expressive!

@ Few points can suffice
@ Flexible, unstructured, few constraints
@ Also: ML applications!

CAD meshes:

many components
bad triangles
connectivity problems

94



From Surface to Point Cloud

Why?

@ Points are simple but expressive!

@ Few points can suffice
@ Flexible, unstructured, few constraints
@ Also: ML applications!

CAD meshes:

many components
bad triangles
connectivity problems

the problem:
sampling the mesh

95



Farthest Point Sampling

@ Introduced for progressive transmission/acquisition of images
@ Quality of approximation improves with increasing number of
samples
@ as opposed eg. to raster scan

@ Key Idea: repeatedly place next sample in the middle of the
least-known area of the domain.

E—

Gonzalez 1985, “Clustering to minimize the maximum intercluster distance”

Hochbaum and Shmoys 1985, “A best possible heuristic for the k-center problem” o6



Pipeline

1.Create an initial sample point set S
e Image corners + additional random point.
2. Find the point which is the farthest from all pointin S

d(p,S) = Iggg(d(qa S))

= ma (i 0.5 )

geA \ 0<i<N

3. Insert the point to S and update the distances
4. While more points are needed, iterate

97



Farthest Point Sampling

@ Depends on a notion of distance on the sampling
domain

@ Can be made adaptive, via a weighted distance

Eldar et al. 1997, “The Farthest Point Strategy for Progressive Image Sampling” o8



FPS on surfaces

@ What's an appropriate distance?
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On-Surface Distances

Distance on
Manifold _

C distance

. Isolines - geodesic

@ Geodesics: Straightest
and locally shortest
curves

isolines - euclidean

100



Discrete Geodesics

@Recall: a mesh is a graph!
@ Approximate '_geodesics as paths along edges

.--M

»

vo= initial vertex
d; = current distance to vertex 1
S =

verticies with known optimal distance

# initialize

dyp =0 Dijkstra’s
0_ -

d; = [inf for d in d;] algorithm!
S={}

for each iteration k:
# update

k = argmin(dx), for v not in §
S.append (vg)

for neighbors index v; of wg:

di = min ([d;,dy + dw])
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Dijkstra Geodesics

I =12

[ =2

AN
AN

NN

Can be asymmetric - no matter

how fine the mesh!
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Dijkstra Geodesics

@ Dik|stra as wave front propagation

AZANE LA
NZANSRNZaN|
600 :0 \6

/
1o e'o ‘9
NN, NN NZ
AN NN NN

9
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Fast Marching Geodesics

@ A better approximation: allow fronts to cross
triangles!

20 aVaVaVaVa aVs.%aVs%
S "AVAVAVATAV/ YaVA\ g
ATV s

Kimmel and Sethian 1997, “Computing Geodesic Paths on Manifolds” 104



FPS on a Mesh

Peyré and Cohen 2003, Geodesic Remeshing Using Front Propagation
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Faster Distance Approximations

Carne, Weischedel, and Wardetzky 2017,
The Heat Method for Distance Computation 106



Software

@ Libigl http://libigl.github.io/libigl/tutorial/tutorial.html

@ MATLAB-style (flat) C++ library, based on indexed
face set structure

@ OpenMesh www.openmesh.org
@ Mesh processing, based on half-edge data structure

@ CGAL www.cgal.org
@ Computational geometry

@ MeshLab http://www.meshlab.net/
@ Viewing and processing meshes



http://libigl.github.io/libigl/tutorial/tutorial.html
http://www.openmesh.org/
http://www.cgal.org/
http://www.meshlab.net/

Software

@ Alec Jacobson’s GP toolbox
@ https://github.com/alecjacobson/gptoolbox
@ MATLAB, various mesh and matrix routines
@ Gabriel Peyre’s Fast Marching Toolbox

@ https://www.mathworks.com/matlabcentral/file
exchange/6110-toolbox-fast-marching

@ On-surface distances (more next time!)
@ OpenFlipper https://www.openflipper.org/
@ Various GP algorithms + Viewer

108


https://github.com/alecjacobson/gptoolbox
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.openflipper.org/

The End
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