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Artificial neural networks (ANNs) are often used for short term discrete time predictions of
experimental data. In this paper we focus on the capability of such nets to correctly identify long term
behavior and, in particular, observed bifurcations. As we show, the usual discrete time mapping
approach is (precisely because of its discrete nature) often incapable of reproducing observed
bifurcation sequences. If the interest is only in periodic or temporally more complicated behavior, a
Poincaré map extracted from the experimental time series can be used to circumvent this problem. A
complete dynamic picture including bifurcations af steady states can, however, only be captured by a
continuous-time model. We present an ANN configuration which couples a “nonlinear principal
component” network for data processing (Kramer, 1991, Usui et al., 1990) with a composite ANN
based on a simple integrator scheme. This ANN is able to correctly reconstruct the bifurcation
diagram of our experimental data, All time series we process stem from the potentiostatic
electrodissolution of Cu in phosphonic acid solution. As the applied potential is varied, the
electrodissolution rate changes from steady behavior to periodic oscillations, followed by a sequence
of period doublings to apparently chaotic motion, and then returns to simple oscillations via a reverse
cascade of period doublings.

KEYWORDS Neural networks Time-series Electrodissolution Bifurcation.

1. INTRODUCTION

Artificial neural networks (ANNs) are currently extensively used in time series
processing and nonlinear system identification tasks; this use is widespread over a
range of fields from artificial intelligence to fluid mechanics (Rummelhart and
McClelland, 1986). We are interested in the characterization of time series
stemming from chemical reaction processes (McAvoy et al., 1989, Hudson et al.,
1990). Such processes are inherently nonlinear (due, for example, to the
Arrhenius dependence of the reaction rate on temperature, or to Kinetic
nonlinearities); as a result, measurements of the reaction rate or other important
variables (e.g. reactant concentrations) may be steady or oscillatory in time, and
the oscillations can vary in nature from simply periodic to complicated
(“‘chaotic’) as the operating parameters of the process (e.g. flow rates, pressure,
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26 R. RICO-MARTINEZ et al.

temperature) are varied. Models based on first principles, when available, can
lead to qualitative understanding of the dynamic behavior of the process and its
dependence on operating parameters. However, such models may not exist, or
may not be robust enough to quantitatively predict the system behavior in real
time (e.g. they may not take into account slow changes of a catalytic surface
under reaction conditions). In such cases, the ad hoc models obtained by using
experimental measurements to train ANNs can be used to characterize and
predict the system dynamics. Accurate short term prediction is the main objective
for real time control applications. In our work we focus rather on using the long
term solutions (attractors) of such ANN-based models to understand and
characterize the dependence of the system behavior on parameters, and more
specifically the instabilities and bifurcations it exhibits.

Usually when analyzing time series the input to the ANN used consists of
variable measurements at the current and possibly previous sampling times as
well as operating parameter values; the ANN output is then a prediction of the
state of the system at the next sampling time. When this output is fed back into
the ANN and the procedure iterated indefinitely we obtain a prediction of the
system attractor, i.e. its long term solution. Long term prediction of the time
series per se may be quite inaccurate; as a matter of fact it will be inaccurate for
chaotic time series displaying sensitivity to initial conditions, and therefore
exponentially amplifying small errors. Even though the long term solutions
(attractors) of the system and the model may differ point by point, the
ANN-based model can still be considered successful if they lie close to each other
in phase space. In this case ‘“‘success” means that the model attractor accurately
approximates certain statistical properties of the system (amplitudes, power
spectra, dimension) but more importantly, it can crucially assist understanding
the nature of qualitative transitions (bifurcations) as a function of the operating
parameters (e.g. Casdagli, 1989). As we will discuss below the discrete time form
of traditional hidden-layer feedforward ANNs retains short term prediction
accuracy and yields attractors close to the ‘‘correct” ones in phase space;
however, it may prove inaccurate in capturing the detailed structure and the
qualitative nature of continuous time attractors and their bifurcations. This
shortcoming is particularly visible in the case of periodic attractors. We
demonstrate this point using time series obtained from our experimental study of
the electrodissolution of Cu carried out under potentiostatic conditions in
phosphoric acid solutions. Two alternative ANN-based approaches to rectifying
this problem are discussed. The first, not applicable when steady state behavior is
involved, is based on using traditional ANNs on appropriately constructed
(discrete) return maps (Poincaré maps) from the original time series. The second,
more systematic approach, is based on constructing ANNs capable of fitting the
right-hand side of a continuous dynamical system (a set of Ordinary Differential
Equations, ODEs). There are several choices of the actual form of the input to
the latter ANN; the particular form we use is the result of an ANN-based
“nonlinear principal component” preprocessor of the time series (Kramer, 1991).
The second approach is indeed capable of representing transitions involving
steady state as well as time-dependent data.
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This paper is organized as follows: section II contains a concise description of
the experimental setup as well as a presentation of the sequence of time series
obtained and our interpretation of the underlying bifurcations. In section III the
various approaches we used in processing the data are described along with the
structure of the corresponding ANNs, and their predictions are presented and
compared.

I EXPERIMENTAL

All time series we processed were obtained from dissolution current measure-
ments during the potentiostatic electrodissolution of a rotating Cu electrode in
phosphoric acid. This system is known to show a large variety of complex
behavior as the potential is varied (Albahadily et al., 1989, Schell and Albahadily,
1989). A chemically based kinetic model, however, has not yet been derived. The
experimental setup consisted of a rotating disc electrode which had a copper rod,
8.26 mm in diameter, imbedded in a 2 cm diameter Teflon cylinder, a platinum
sheet with a surface area of 25 cm?® as counter electrode and a saturated calomel
reference electrode (SCE). The rotation speed was maintained at 4350 rpm. The
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FIGURE 1 Time-series segments (current / [mA] vs. time [s]) from a sequence of Cu electrodissolu-
tion experiments. Observe the variations in system behavior as a function of the operating parameter
(E, the potential). E [V], (A) 0.6703, (B) 0.6768, (C) 0.6875, (D) 0.6897, (E) 0.6904, (F) 0.6915, (G)
0.6927, (H) 0.6948, (I) 0.5987, {J) 0.6990, (K) 0.7114, (L) 0.7143.
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three electrodes were placed in a three neck 400 ml flask containing 300 ml of
85% phosphoric acid. A water bath was used to maintain the temperature at
11°C. A potentiostat (Princeton Applied Research model 362) was used to
regulate the potential of the working disc electrode with respect to the SCE and
to monitor the current. Steps in the potential were applied with a PAR model 175
Universal Programmer and the current was digitized by means of a Keithley
model S00A measurement and control system and sampled at 500 Hz.

Figure 1 shows (a small part of) typical current measurements versus time
which were obtained at different values of the potential. At a potential of
670.3mV the system exhibits a steady state (Figure 1A). Upon raising it by
6.5mV the steady state becomes unstable (apparently via a supercritical Hopf
bifurcation) and simple oscillatory behavior is observed (Figure 1B). Upon raising
the potential further the time series are seen to undergo period doubling,
gradually change in shape (Figure 1C-E) and eventually become aperiodic (Figure
1G, 1H). A further increase of the potential restores multipeak periodic
oscillations (Figure 11-K) and finally simple periodic behavior (Figure 1L). At
these higher potential values the amplitudes of the oscillations are much larger
compared with those of Figure 1B and they appear more relaxation-like in
nature.

In Figure 2 the attractors (projected on a two-dimensional phase space)

A "B C D

40 40 L] 40

I(t—7)
O

40

I(t-7)

20
20 “w 20 40
T L
4 40 w©
—
)
-
=
% 20 20
") 20 T 20 w

10 T It) 1(t)

FIGURE 2 2-D reconstruction of the attractors using time delays (v =0.04s). The attractors
correspond to the time series shown in Figure 1.
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corresponding to the set of time series of Figure 1 are shown. The qualitative
changes from a fixed point via a simple periodic, period-2 and -4 limit cycles to an
apparently chaotic attractor (most likely due to a period doubling cascade) and
the reverse sequence (period doubling) back to a period-1 limit cycle can be seen
more clearly. The attractors were reconstructed using the method of delay
proposed by Packard er al. (1980), and by Takens (1981). Every time series
consisted of about 15000 points (or 30s). While in principle any choice of the
actual time delay value will give qualitatively similar phase portraits, an extensive
literature on selecting the optimal (under certain criteria) delay values exists (e.g.
Fraser and Swinney, 1986, Mayer-Kress, 1986, Liebert and Schuster, 1989). Here
we have used the “‘rule of thumb” choice of a delay approximately equal to one
fifth of the basic frequency.

From the observed bifurcation sequence one can assume that the dynamics
underlying the above described data can be completely embedded in a three
dimensional phase space. It is possible and often convenient to further reduce the
dimension of a system exhibiting oscillatory dynamics by looking at some
transverse cross section of its trajectories; this allows description of the dynamics
of the system by a map (Poincaré map). Reconstructing the data of Figure 1 in a
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FIGURE 3 Poincaré sections of the 3-D attractors cerresponding to the time series shown in Figure
1. The delays used to reconstruct the attractors are 0.04 and 0.08s; the section is taken at
I{(r—0.045)=31.5mA and only intersections towards increasing values of /(t—0.04s) are
considered.
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3-dimensional phase space and recording the intersection of the trajectory with a
plane I(t —0.04 s) = 31.5 mA towards increasing values of current results in the
Poincaré section shown in Figure 3. The limit cycles appear as fixed or periodic
points on the section whereas the aperiodic dynamics lie on what appears to be a
curve (but which is known, however, to be very intricately folded with a
Cantor-set-like structure).

I1I. TIME SERIES PROCESSING

III.1 Delay Map Approach
For a deterministic system such as the set of ODEs
Y=(Y;X), Ye®R", XeR LR XF >R

the state ¥(¢) at all future times ¢ > £y depends only on the current state Y(t,) and
on the operating parameters X. The geometrical concept of attractor reconstruc-
tion using time delays (Packard et al., 1980 and Takens, 1981) indicates that the
future state of the system can also be obtained as a function of measurements of a
single state variable augmented with an appropriate number of delayed measure-
ments. This idea also fits nicely in the context of time series processing (linear or
nonlinear) and in particular in the context of “traditional” feedforward multilayer
artificial neural networks. A number of time delayed measurements is fed to the
network and additional input neurons are reserved for operating parameter
values at which the measurements were obtained. The ANN output constitutes a
prediction of the value of the state variable at a future measurement time.
Sigmoidal activation functions are often used for the nonlinear neurons, and
training is carried out using ecither steepest descent backpropagation or the
conjugate gradient method. A large number of case studies using variants of this
approach can be found in the chemical engineering literature (e.g. Hudson et al.,
1990, McAvoy et al., 1989, Naidu et al., 1990, Ydstie, 1990, Bhat and McAvoy,
1989, Hoskins and Hillemblau, 1988, Kramer and Leonard, 1990) along with
theoretical studies on the necessary or optimal configuration (number of layers,
number of neurons per layer, etc.) (e.g. Cybenko, 1989, Hecht-Nielsen, 1989,
Hornick et al., 1988, Irie and Miyake, 1988, Karnin, 1990, Lapedes and Farber
1987a,b, Sanger, 1989). When the training converges, the network constitutes a
model dynamical system which can be used for short- and long term (attractor)
prediction as well as prediction of parameter dependence if several parameter
values have been included in the training.

We used such a standard configuration (Lapedes and Farber, 1987a,b) to
process the time series from the electrodissolution experiment contained in Figure
2. As discussed above, the nature of the attractors in Figure 2 suggests ®>(I(¢),
I(t— 1) and I(t —27)) as a plausible—and minimal—first attempt at an embed-
ding space. In particular, the ANN used consisted of four layers: two hidden
layers with 10 neurons each, a 4 neuron input layer and a single neuron output
layer (Figure 4). As there is currently no rigorous way to determine an optimum
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FIGURE 4 ANN architecture used in the delay map case. X;;, X,, and X, are the inputs to the
ANN which represent a state of the system (i.e. I(t), I{t — 7), /(¢ —2t)) and X, is the value of the
operating parameter (E). The output of the ANN X, is the prediction (i.e. I(t + 7)). To iterate the
ANN, the previous output value is fed as the input X, and the old inputs shifted by one (i.e. now X,
is the old X,, and X, becomes the old X ;). Only a few connections of the fully interconnected
neurons are depicted.

number of neurons, the number of neurons in the hidden layers is somewhat
arbitrary. Our choice here reflects a compromise between the computational
effort required to train the ANN and an estimate of the minimum number of
neurons needed to capture the underlying dynamics. This compromise is tested
during the process of validation of our results: in this particular case an ANN with
12 neurons per hidden layer was found to yield qualitative and quantitative results
similar to the 10 neuron per hidden layer ANN.

The input and output neurons of the ANN used are linear, while the neurons in
the hidden layers are nonlinear with activation function g(X) = 4(1 + tanh(X)).
Since this activation function gives values between 0 and 1, the network inputs
and target values were accordingly normalized. The time delay (t) was taken to
be 0.04s (the same as used in Figure 2), and the fourth input in the input layer
was the value of the potential in volts. The output is the prediction I(t + 1) of
I{(t + 7). The training set consisted of a total of 1000 vectors taken from five
distinct time series at five different potential values in the interval [0.678—
0.699 volts] corresponding to steady, period one, period two, period four and
chaotic dynamics. The number of vectors from each type of behavior was not
identical; they were apportioned (again somewhat arbitrarily) according to the
complexity in phase space of the behavior for every parameter value. While only
20 vectors amply represent the steady state (a single point in phase space), 100
vectors were taken from a period one time series (a closed loop), 200 from a
period two time series (a double loop), 300 from a period four time series (a
quadruple loop), and 380 vectors from a chaotic attractor lying close to these
oscillations in phase space. Note that each data set is obtained at a different value
of the potential, which is also used in the training.

The training procedure was considered successfully converged when both the
mean square prediction error as well as its rate of decrease fall below preset
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bounds; for the particular data studied here this typically involved. O(10%)
complete conjugate gradient cycles (each cycle consisting of =(170) batch
iterations, for a total of several thousand iterations). A few (2 or 3) complete
conjugate gradient cycles after “levelling off”” of the error decrease rate were
performed in each case to exclude stopping at an inflection point. The final
decision on convergence involved comparison with the results of an ANN with
more neurons (e.g. 12 neurons per hidden layer as described above). Upon
completion of the training procedure, the network is a mapping N': R* X R— R,
where N'([I{t - 2%), I1(t — 7), I(t)]; E)=1i(t + 7). For a more convenient under-
standing of the long term predictions of the network we will study the
corresponding map N: R’ X R R°, where N([I(t-27), I(t—1), I()]; E=
[I(t — 1), 1(2), I(t + ). One-step ahead prediction for a fixed value of the
potential E is obtained by applying this map once, the two-step ahead prediction
by the convolution N ° N (iterating the map twice), and the long term (the
attractor of map N) prediction results from iterating this map indefinitely.

Figuré 5 shows selected comparisons of the original attractors (Figure 5-1) with
the short term predictions (Figure 5-1I; this was generated by a single iteration of
the map for each one of the vectors—points plotted in the respective attractor—in
Figure 5-I) and the long term prediction (Figure 5-1II; this was obtained after
indefinitely iterating any single input vector from Figure 5-T). From these Figures
it is evident that although the short term prediction is acceptable (the training set
in Figure 5-1 is faithfully reproduced after a single iteration of the map in Figure
5-II), the long term behavior (the attractor of the map N) does not resemble the
training set. That the training set lies on the long term attractor of the physical
system implicitly follows from the fact that these are actual—and thus stable—
experimental observations.

A casual inspection of Figure 5 would seem to indicate that there is very little,
if any, relation between the attractor of the original system and the infinite time
prediction of the network (the attractor of the map induced by the network).
While the original system attractors (Figure 2) are mostly “nice”” smooth closed
curves, network attractors may appear “wrinkly” (Figure 5-111A), may consist of
many disconnected pieces (Figure 5-IIIB), may be apparently fractal (Figure
5-11IC, see also Figure 6C) or may actually consist of a finite number of (periodic)
points (Figures 6A and 6B). It would seem that the long term network predictions
are hopelessly inaccurate and useless; this is actually not the case. Figure 6 shows
that even though the map attractors may appear strikingly different from the real
ones in phase space, the predicted time series (obtained by drawing straight lines
between successive discrete time predictions, see Figures 6A’, 6B’ and 6C')
appear qualitatively very similar to the experimental ones (compared with Figure
1). The fact that the long term time series predictions appear qualitatively very
reasonable and quite accurate, while the network attractors in phase space appear
completely erroneous, is a direct consequence of the discrete-time nature of our
approximation to what really is a smooth continuous-time signal. As a partial
explanation of this statement (which is based on mathematical considerations)
consider the case when the oscillation period happens to be a rational multiple of
the delay time; it should be obvious that for a constant delay and a smoothly



CONTINUOUS-TIME SIGNAL PROCESSING 33

I I I11

40 40 40

—
* *
t \ LY
Qi ..‘ .
wd
S~ 30 30 30
30 40 k4 40 30 40
4
4
— % 7
- % /,?"‘\
| LW RN
- 59. AN
~ 30 30 4, ao
— e "; ,//Qlf' )’ N
e et ot Y. —
30 40 30 40

40 4«0 C 40
P
[
|
-+
\:30 30 30

%
L *:'f RN "++:*t
b 4+ * s3p ¢+ 40t ¢ WY

0

I(t)

40

T(t)

FIGURE 5 Some results of the delay ANN-based map. Figure 5-1 shows three experimental
attractors for E [V]: (A) 0.6874, (B) 0.6937, (C) 0.6979. Figure 5-II shows the carresponding short
term (one-step ahead) predictions of the delay map net. Figure 5-111 shows the long term behavior
{attractors) the net predicts when using any single input vector and iterating it indefinitely. Clearly,
whereas the short term prediction gives satisfactory results, the predicted attractors are somewhat
“pathological” in shape and appear wrinkly (II1A), consist of many disconnected pieces (I1I1B) or may
even be reminiscent of fractals (111C).

changing period with the operating parameter E, this will occur quite often. In
such a case even the original smooth curve will appear as a discrete number of
points in the delay reconstructed phase space. Of course, changing the voltage
infinitesimally should destroy this ‘‘resonance” (rational numbers are only
countable on the real line). Using discrete maps, however, as the underlying
dynamical system tends to enhance such “locking” or “resonance” phenomena: a
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FIGURE 6 Attractors (A, B, C) and corresponding time series segments (A’, B’, C’) predicted by
the delay map ANN for E [V]: (A) 0.681 (period-1), (B) 0.691 (period-2) (C) 0.6964 (period-4?). In
A and B the attractors are phase locked; this can not occur for limit cycles, but is natural in a one
parameter family of maps. Note that though the predicted attractors difler qualitatively from the
experimentally observed ones (Figure 2), the predicted time series (obtained by interpolating straight
lines between successive discrete time predictions) appear very similar to the experimental ones
(Figure 1).

“locked” attractor consisting of a discrete number of points (as in Figures 6A and
6B) now persists over entire closed intervals of voltage values.

Even when the attractor of a discrete map looks like a perfectly smooth closed
curve, it is inherently different from a continuous-time simple periodic oscillation:
a trajectory on the continuous-time oscillation will visit every single point on the
limit cycle within one period 7. On the other hand, a trajectory of the discrete
map will visit only a finite number of points in a time interval of length T'; only
when the discrete map is iterated indefinitely will the points on the trajectory start
to “fill up” the closed curve. This is not a limit cycle any more; it is an invariant
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circle of the map. The dependence of invariant circles of maps on parameters can
be much more complicated than that of limit cycles (see any textbook on
dynamical systems for a discussion, e.g. Guckenheimer and Holmes, 1983). The
“pathological” attractor shapes (lockings, wrinkles, fractals) shown in Figures 5
and 6 simply cannot occur for limit cycles; nevertheless, they are quite natural in
a one-parameter family of maps. We do not pretend in this very short qualitative
exposition to explain why this is the case; there is a large body of literature and
extensive ongoing mathematical research on the bifurcations of invariant circles
of maps. We simply conclude this discussion with the following statement: using
discrete-time ANN based maps to process time series from continuous-time
physical processes does not provide a satisfactory description of the qualitative
changes (transitions, bifurcations) of the long term solutions of the system. This
approach actually introduces a tremendous number of spurious bifurcations due
entirely to the discrete-time nature of the map. The data presented in Figures 5
and 6 are illustrative of these “‘spurious” transitions. Figure 6 also illustrates that
this pathology is “invisible” over short intervals in the time domain. Since it is
precisely such short time intervals that are important for ANN applications in
real-time control, this long term pathology is not important in that context. Only
when we are interested in characterizing the dynamics of our experimental system
and its bifurcations as operating parameters vary do these considerations become
relevant, and that is the underlying motivation of our study.

HI1.2 Poincaré Map Approach

Since the discrepancy arises because of using maps to fit ODEs, it would naturally
not be present if the data to be fitted were discrete in nature (as opposed to
continuous in nature and discrete because of our method of sampling). As
discussed above, a Poincaré section can be used to reduce the continuous time
trajectories to a discrete map (first return map), and as &’ seems to be a plausible
embedding space, this results in a 2-dimensional Poincaré section. An alternative
method of reducing the continuous time series to a discrete map is to construct
next maximum maps by plotting the value of the subsequent maximum versus the
present maximum. Such a 1-dimensional map should be capable of capturing the
observed period doubling bifurcations. Both approaches (next maximum maps
and 2-dimensional Poincaré sections) were used with similar success; the results
of the latter approach are presented here. We can use a traditional ANN
architecture to fit a discrete Poincaré map. This procedure requires a preprocess-
ing of the data, i.e. putting them in the form of the Poincaré map. First, an
appropriate hypersurface is selected; any hypersurface transversally intersecting
the continuous trajectories can be used. In our case, with trajectories in &>, we
simply chose the plane I(t — t) = constant (see Figure 3). Since the continuous
time data were discretely sampled, a simple (linear) interpolation scheme was
used to approximate the intersections of the continuous trajectories with the
plane. This obviously results in a considerable reduction in the number of
available training vectors, as well as in a different configuration of the input and
output layers of the ANN (see Table I for a concise description of the ANN
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TABLE 1

Number of neurons in each layer of the different neural networks used

Neural Input Qutput Hidden Bottleneck
network layer layer layer layer
type

Poincaré 3 2 10 —
map

Delay 4 1 10 —
map

NLPC 21 20 10 3
extraction

ODE 4 3 6 -
neural
network

architectures used in our work). The input layer now consists of two neurons for
the system state (/(f) and I(t — 27}, since the constant I{t — 1) is omitted) and
again one neuron for the operating parameter. More importantly, the output
layer now has two neurons; these predict the point on the plane (/(r) and
f(t —21)) at which the continuous time trajectory will next intersect the plane
(the next time (¢ — t) acquires the given constant value). Both outputs now have
to be fed back into the input in order to iterate the net. Typical training
information for the two networks used in the Poincaré map approach is as
follows: training set = (500) points; test set (at potential values within the training
interval but not used in the training set) = (350) points; conjugate gradient batch
iterations = (5000); error upon convergence for data normalized between 0 and 1;
5% (training set) and 6% (test set). Because of the linear interpolation involved
in obtaining the Poincaré map the error level in training these two ANNs was
slightly higher than the = (3%) error level in the rest of this paper.

Using this approach we have been able to successfully characterize the
dependence of our system on the voltage E and the underlying bifurcations; the
results are summarized in Figures 7 and 8. Figure 7a shows a comparison of the
long term prediction (attractor) of the Poincaré map based ANN with those of
the same Poincaré map of the experimental system. Figures 7a A-F show
experimental attractors, while Figures 7a A’—F’ show the corresponding infinite
time predictions of the trained net. All the spurious behavior we encountered
above has disappeared: the attractors are now both qualitatively and quantita-
tively captured. What is more important is that the nature of the transitions
between them is accurately represented by the net. For example, a period
doubling has apparently occurred at some voltage value between Figures 7a A
and 7a B. The network does indeed predict that for the intermediate value
E =10,68956 V the fixed point of the map becomes unstable with an eigenvalue of
the linearization exiting the unit circle in the complex plane through —1, and the
bifurcation is predicted to be supercritical (i.e. small amplitude period two
solution bifurcates towards increasing values of E).
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FIGURE 7 Results of the Poincaré map based ANN, trained on data obtained at lower values of E
encompassing the initial cascade of period doublings. (a) Comparison of experimental (A-F) and
corresponding predicted (A'-F') attractors for E [V]: (A) 0.6874, (B) 0.6937, (C) 0.6950, (E) 0.6986,
{F) 0.6990. Figure (D) shows a period-4 at E = 0.6979 V. Because the network predicts the transition
to a period-4 at somewhat lower values of E, (D’) shows a predicted period-4 attractor at
E=0.69754 V. (b) Segment of the bifurcation diagram predicted by the net. The diagram was
computed using AUTO. The first period doubling occurs beyond the range of the graph at
E =0.68956 V, the next two period doublings are located at E =0.69705 and E = 0.69755 V,
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FIGURE 8 Results of the Poincaré map based ANN. Here the training was performed on data
obtained at higher values of E encompassing the reverse cascade of period doublings. (a) Comparison
of experimental (A-F) and corresponding predicted (A'-F'} attractors for E [V]: (A) 0.7040, (B)
0.7055, (C) 0.7063, (D) 0.7092, (E) 0.7220, (F) 0.7236. Notice that the shape of the only fully
developed chactic attractor used in the training (A) is somewhat inaccurately captured; this is
probably due to the lack of sufficient data in this regime. (b) Analogous to 7b. The first three period
doublings occur at E = 0.72255 (off-scale), £ =0.70642 and E = 0.70423 V, respectively.
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Having the closed form for the (approximate) Poincaré map allows us to use a
wealth of powerful analytical and computational tools from dynamical systems
theory. For example, we can use numerical continuation/bifurcation algorithms
to systematically analyze the behavior as a function of E and the relevant
bifurcations. This offers a considerable advantage over simple simulations
forward in time, especially close to bifurcation values of the parameter. At such
values marginal stability of the solutions makes long integrations necessary, and
often obscures the nature of the solutions. Figure 7b shows a segment of the
bifurcation diagram predicted by the Poincaré map based ANN. This bifurcation
diagram was computed using the software package AUTO developed by E.
Doedel (Doedel, 1981, Doedel and Kernévez, 1986). The period-2 to period-4
period doubling is predicted to occur at E = 0.69705 V. The period-4 to period-8
period doubling is barely visible in the graph at E = 0.69755 V; the first period
doubling, not shown in Figure 7b, is predicted at E =0.68956 V. Between the
extreme training values of the voltage £ =0.6874 and E =0.699 V that were
used in this training set, the map does predict the sequence of period doublings
from period-1 to apparently chaotic behavior and does indeed reasonably capture
the structure of the apparently chaotic attractor in phase space. It is important,
however, to note that while the qualitative sequence of bifurcations is correctly
reproduced, the exact predicted bifurcation values of the voltage (dynamics at
intermediate values of £ not contained in the training set, which the network has
to interpolate) are not necessarily quantitatively accurate. While for example the
network predicts the period-4 to period-8 doubling at £ =0.69755V, we know
that the original system has this bifurcation at slightly higher values of E. This
quantitative discrepancy does not affect the qualitative sequence of predicted
bifurcations. Furthermore, these predictions can be used to design further
experiments to accurately pinpoint the exact bifurcation values. To the extent
that the experimental data can sufficiently resolve the dynamics, incorporating
this new data in the training set will naturally improve the accuracy of the
predicted bifurcation.

Figure 8 shows the results of another Poincaré map based set of predictions.
The training set in this case consisted of time series obtained at the higher range
of values of E (between 0.704 and (.724 V} when a reverse cascade of period
doublings from chaos to period-1 oscillations is observed. Figure 8a shows
comparisons of experimental and predicted attractors {(analogous to Figure 7a),
while Figures 8b shows a portion of the corresponding bifurcation diagram
computed using AUTO (analogous to Figure 7b). Two issues should be stressed
again. The first is that the qualitative sequence of predicted bifurcations appears
to be correct, even if their exact location is not perfectly accurate. The *“correct”
bifurcation sequence is considered here to be the simplest rational explanation of
qualitative transitions between successive phase portraits. The second is that
one-step ahead prediction is essentially perfect through the entire parameter
range (and thus not shown). But in this case even the infinite time behavior is
well captured over the parameter interval.

While this Poincaré map based approach does bypass the spurious bifurcation
behavior we discussed above, it does have certain drawbacks. Predictions are
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made for the particular Poincaré map used in training. While we can have a very
good idea of where the trajectory will next intersect our chosen plane, we do not
know how long it will take, nor what it will look like during this time interval.
More importantly, unless a steady state happens to lie on the chosen plane, it will
not be seen at all; this procedure is only appropriate for sclutions that are
periodic in time or “worse” (i.e. more complicated). As a result, bifurcations
involving steady states, from simple turning points and Hopf bifurcations to
global bifurcations (e.g. Shil’'nikov loops) will not be captured using this
approach. In order to meet this latter problem directly and still avoid the spurious
bifurcations we discussed above, one must attempt to fit a continuous time system
with a model of similar nature.

.3 Continuous Time Approach
An n-th order ODE, e.g.

’=Q

Yy =f(y, ¥, y"x), =

can be easily transformed into a set of n coupled first order ODEs,
Yi=x
y2=y
y3=f (Y1, y2, 33 %)
nsy,  n=y,  y=y'

with additional dependent variables including up to the (n — 1) time derivative of
the original dependent variable (x is the operating parameter). Packard et al.
(1980) actually used these derivatives (instead of time delays) in order to
reconstruct attractors in phase space. An obvious approach to fitting an ODE to
our continuous time data would be to evaluate time derivatives (y,=y’, ya=y",
and y3=y" in our example) from the data by numerical differentiation. One
would then train a traditional ANN of the type described in section I11.1 {with the
inputs in our example being the measured y, and the numerically obtained y’ and
y”) to approximate the right-hand side of the ODE (f(y, y’, ¥") in our example,
with target value the numerically obtained y™). In the case of a single time series
it will obviously be sufficient to train the network to predict only the right hand
side of the n-th ODE. Upon successful completion of the training, the set of n
first order ODE:s can be integrated to produce predictions at any desired time using
numerical integration. The most obvious problem of this approach is the notorious
numerical sensitivity of the estimation of numerical derivatives, especially high
order ones, from time series, which is aggravated by the presence of noise.

We attempt here to construct a set of ODEs from the data using state
measurements only, without direct numerical evaluation of time derivatives from
the time series. Both the inputs and the outputs of the net we want to construct will
involve only state measurements. The target values (the state of the system at some
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future time ¢+ r) are the result of integrating the (unknown) right-hand side of
the ODEs; this integration is performed by the physical system itself. We must
therefore attempt to approximate the unknown right-hand side of the ODEs from
our experimental knowledge of the results of integrating these ODEs (for time 1,
with known initial conditions, the state at time f). Let us assume that the
experimental data (the result of “physically” integrating the ‘‘true” underlying
ODE) are practically indistinguishable from the result of numerically integrating
this ODE using a simple numerical integration scheme. We will use an ANN
which will emulate this numerical integration scheme, and we will train it on the
experimental data. In the numerical experiments presented below, we have
constructed a network emulating a fourth order Runge—Kutta integrator; such an
explicit integrator was satisfactory for our data.
Consider the autonomous ODE

Y =(¥; %)
YeR", Xe® L£RXR-R

The result ]7,,+1 of nurgerically integrating this equation for fixed values of the
operating parameters X with initial conditions Y, using a fourth order Runge-
Kutta method and a time step of & is given by:

-

- 1 - - - -
Y,..=Y%, +g(k, + 2k, + 2ky+ ky)
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Figure 9 shows a schematic representation of our implementation of this
scheme. The four boxes marked “Neural Net” are really the same box, repeated
four times in this schematic representation to clarify its role in the Runge—Kutta
method; this box is a “traditional” ANN with 4 input neurons (a three
dimensional state and a single operating parameter), and two hidden layers with 6
nonlinear neurons each. The output layer of this box consists of 3 neurons which,
upon eventual convergence of the training, will provide our estimates of the three
elements of the right-hand side of the ODEs. The remaining connections in the
figure are linear, with preset weights dictated by the Runge—Kutta algorithm. The
target values used in the training are the states of the system at the next time
step. Because of the repeated iterations through the network involved in
evaluating Y, .,, it is not possible to use the chain rule in the simple ‘‘layer by
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FIGURE 9 Schematic representation of the ANN-based implementation of the 4th order Runge-
Kutta method. A single two hidden layer traditional ANN (marked Y and repeated four times for
clarity in the diagram) is trained to evaluate the right-hand side (derivatives) of the ODEs given the
current states (¥,) and parameters {X). Its output is recurrently processed through it according to the
Runge-Kutta formulae given in the text. The output layer performs the final summation, and predicts
the state values (¥, ) after one time step h.

layer” fashion of a feedforward net to evaluate partial derivatives. Instead, the
expression for Y,,, was used to evaluate these partial derivatives with respect to
all weights simultaneously.

Before we proceed to the presentation of the results of using this approach on
our experimental data, there is one final important issue to be discussed. This
concerns the actual input data we chose to use in training the ODE-based net.
We chose to preprocess the time series using what Kramer (1991) calls
“Nonlinear Principal Component Analysis” (NLPCA). The nature of the
experimentally observed solutions and their bifurcations suggest a three dimen-
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sional phase space, which means that we want to approximate a set of three
coupled ODEs. We already reconstructed the data in such a 3-D space using time
delays; an obvious choice will be to try and fit the trajectories in this
delay-reconstructed space. The time delayed measurements, however, are not
uncorrelated, and it would be desirable to use a set of coordinates in which the
data would be as uncorrelated as possible. We chose to extract the three first
principal components from windows of our time series consisting of 20 measure-
ments separated by three sampling intervals. The length of this window (0.12s) is
comparable to the interval used in the delay representation; the reason for not
using all sixty measurements in this window is a practical issue of computational
economy. The sampling rate is so fast that the intermediate points do not add
important information; this is supported by the success we have had in eventually
reproducing the data. A linear principal component analysis has been used
(Bromhead and King, 1986, Albano et al., 1989) to produce better embeddings
for attractor reconstruction purposes. The issues of optimal window length,
overlap of successive windows, number of principal components retained, and
noise rejection capabilities of the procedure are discussed by Broomhead and
King (1986). We chose instead to use an ANN based NLPCA procedure, which is
in principle capable of detecting nonlinear correlations in the data. Kramer (1991)
presents a detailed discussion of the motivation behind such an approach, its
properties, its relation to linear principal component analysis (Oja, 1982), and its
history in the context of neural network research.

The particular NLPC network is schematically represented in Figure 10. The
input layer consisted of 20 linear neurons in which the vector of measurements
(1), I(t—38), I(t—66),...,I(t —5708)) was fed, along with one additional
neuron for the parameter value. 8 =0.002s is the sampling interval. After this
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FIGURE 10 Schematic representation of the autoassociative ANN used for data preprocessing. The
input consists of a (long) vector of time series measurements, which also constitutes the target values.
The outputs of the three neurons of the intermediate bottleneck layer are the processed data
(“noalinear principal components™, the objective of the training).
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information is processed through a hidden nonlinear layer (consisting here of 10
neurons), the data were passed through a “‘bottleneck” layer consisting of 3 linear
neurons. The output of these neurons constitutes the three “nonlinear principal
components” we seek. Since these three values are expected to contain the
information in the original time series window, the network is trained to learn the
identity mapping (*‘autoassociation”, “self-supervised backpropagation”). The
output of the three bottleneck neurons is processed through one more 10-hidden
nonlinear neuron layer, and finally through the 20 linear neuron output layer, for
which the target values are the original time series measurements. Kramer
discusses both a simultaneous and a sequential architecture for determining
nonlinear principal components; we used the simultaneous approach. The
training of the network was again performed using conjugate gradients on a set of
620 vectors sampled from time series in the interval (E = 0.678 to £ =0.6979 V)
containing the original Hopf bifurcation of the steady state and the first pair of
period doublings. The results of this procedure (i.e. the outputs of the three
bottleneck neurons) were then used to train the ODE-based network discussed
above. The input vectors for this latter training consisted of the three NLPCs (at
time ¢) plus an additional input for the parameter value. The target values of the
training were the three NLPCs at time ¢+ h (h =368). We use regularly spaced
data here, although the algorithm is capable of using data at irregular time
intervals. The training of the ODE-based network took O(10') complete
conjugate gradient cycles to reach convergence.

Figure 11a shows the short term prediction capabilities of the ODE approach:
time series obtained from integration (for time interval 68) of the set of ODEs
resulting from the training (11a-1I) are compared in real space to experimental
time series (11a-I}. The ODE integration is carried out in NLPC space and the
results are transformed back to real space. A projection (in NLPC space) of the
long time attractors of the ODE integration is also included in Figure 11a-II’, and
is compared to the corresponding experimental attractors in the same projection.
The attractors are not quantitatively the same, but their shapes are remarkably
qualitatively similar. More importantly, Figure 11b shows the bifurcation diagram
for the ODEs obtained using AUTO. Not only are the period doublings of the
limit cycles satisfactorily captured, but also the original Hopf bifurcation of the
steady state to a period-1 limit cycle is contained in the diagram. Furthermore,
the ODE is capable of extrapolating further period doublings and chaotic
behavior for values beyond the training range. The correct shape of the periodic
attractors (not captured by the traditional ANN approach in secton II1.1) and the
steady state and its bifurcations (not captured by the Poincaré-map based
approach in section 1I1.2) show that our ODE approach is indeed capable of
reproducing the entire range of dynamical characteristics of the experimental
data.

IV. DISCUSSION AND CONCLUSIONS

We have discussed some of the problems traditional discrete time ANNs present
when used to approximate the long term dynamics of continuous time systems.
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FIGURE 11 (a) Experimental time series (I) and corresponding short term prediction of the

ODE-based ANN (II). E [V]: (A) 0.6919, (B) 0.6956, (C) 0.6979. The corresponding experimental
attractors projected in NLPC-space are shown in Figure (I'). (II') shows ODE-based long term
attractors of similar nature, E [V]: 0.6919 (II'-A), 0.6966 (II'-B) and 0.6976 (II'-C). (b) Partial
bifurcation diagram of the ODE-based ANN computed using AUTO. Sotid circles denote stable and
open circles denote unstable limit cycles. Notice the accurately captured supercritical Hopf bifurcation
of the steady state (solid line: stable steady state, dashed tine: unstable). Only three of the (infinitely
many) predicted period doublings are shown.
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We presented an alternative ANN-based method which does not exhibit these
shortcomings; its capabilities were illustrated by successfully reproducing a
nontrivial range of experimentally observed dynamic transitions in Cu electrodis-
solution. A number of alternative approaches to characterizing the dynamics of
nonlinear systems are currently used for the same purposes. Most approaches
employ discrete map techniques; representative examples include local lineariza-
tion (Farmer and Sidorowich 1987, 1988, Kostelich and Yorke, 1990), rational
polynomial approximations (Bayly er al., 1987), ANN-based methods with
sigmoidal (Lapedes and Farber, 1987a,b, Casdagli, 1989, Hudson et al., 1990)
and alternative (e.g. radial) basis functions {(Moody and Darken, 1988, Casdagli,
1989). Attempts have also been made to fit ODEs (e.g. Cremers and Hiibler
(1987)). Our efforts were directed towards an ANN-based approach which would
successfully capture continuous-time dynamics with emphasis on the detection of
bifurcations.

Data preprocessing was an important issue in our study: finding the correct
embedding space, choosing a good set of coordinates for this space, achieving
satisfactory noise-rejection without corrupting the underlying dynamics, all hinge
upon successfully performing this task. We chose the simultaneous ‘“‘nonlinear
principal component” analysis here with satisfactory results. We feel it is
important to further experiment with the comparative success of using the results
of alternative linear and particularly nonlinear approaches to data preprocessing
in identifying bifurcations. Theoretical advances in the direction of NLPCA
should be helpful in directing such efforts.

If the underlying physical system is described by a stiff ODE the simple
procedure we described here based on an explicit integrating scheme will most
probably fail. In our case, however, the agreement between the experimental and
the ANN-based attractors (Figure 11) shouid be an indication that, whatever the
“real” ODEs underlying the system are, they were not stiff in the regime
experimentally studied. Applying a similar procedure based on an implicit
integration scheme would obviously make the process much more computation-
ally intensive, since an iterative nonlinear equation solver will be required to
evaluate the network output at every single time step. This is drastically different
from the simple function evaluations required for an explicit integrator like the
one we are using here. The difference is also reflected in its ANN implementation
(Figure 9) which is not a recurrent network (Pineda, 1987): different information
is processed through the same net at every step, and its inputs and outputs are not
expected to be identical upon convergence. Because the outputs of an implicit
integrator scheme are not closed form functions of the inputs and the various
parameters, evaluating the derivatives necessary for training such a network
would also become a difficult task; the implementation of such an implicit
integrator would indeed constitute a recurrent ANN.

A final issue worth mentioning is that all the experimental data presented here
were obtained after initial transients die out, and should therefore lie on the
corresponding attractors. Training the network on the attractor does not provide
information regarding the stability of the attractor to finite perturbations (beyond
the level of experimental noise). Our networks were capable of reasonably well
extrapolating attractor stability. In order to make this extrapolation quantitative
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it is important to experimentally capture information about the stability of the
attractor; this can be accomplished by applying appropriate perturbations,
sampling the resulting transients as they approach the attractor in phase space,
and including these data in the training sets.
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Note added in Proof: The use of ANNs to obtain derivative information and
continuous models is an active research topic. Since this manuscript was first
submitted, a number of publications on the subject have appeared. We consider
the following particlarly relevant:
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