
CS348a: Computer Graphics Handout #36
Geometric Modeling Original Handout #29
Stanford University Thursday, 10 December 1992

Original Lecture #14: December 1, 1992
Topics: Hierarchical Structures for Convex Polygons and Polyhedra
Scribe: Radu Tutos∗

In the previous lecture we discussed the method of approximating a convex polygon with
a series of incrementally simpler polygons. We’d now like toextend the method to convex
polyhedra. Our goal is to build a series of incrementally “coarsened” polyhedra, where each
member in the series has a fewer number of vertices than the preceding one. To achieve that,
we take the original polyhedronP0 and remove a large set of low degree vertices which are
independent (non-adjacent), and then remove their incident edges. Each removed vertex leaves
a small well definedhole, which we retriangulate by computing the three dimensionalconvex
hull of its boundary. Since the number of edges and faces in a polyhedron decreases linearly
with its number of vertices, the resulting polyhedron will be less complex than the original one.
We then repeat this coarsening process until we build a polyhedronPk with at mostp number
of vertices. This gives us a sequence of convex polyhedra on which we can build a hierarchical
representation of the original one:

P0 → P2 → . . . → . . . → Pk

We now need to determine the degree of the vertices that we remove at each coarsening
iteration. If the degree of the these vertices is too high, weend up replacing a large number
of existing edges with new ones needed to retriangulate holes with complex shapes. This is an
undesirable result, since we want to capture in the coarsened polyhedron as many features as
we can as from the original one. On the other hand, if we set thedegree of the vertices we want
to remove too low, we may discover that no vertices meet our criteria. The following lemma
helps us find the optimum upper bound on the degree of these vertices, and it shows the way to
build the hierarchical set of convex polyhedra:

Lemma 1. Let P be a convex polytope with m vertices; then there exists an independent setI
of vertices, such that

1. |I|> m/18,

2. deg(v) 6 8 for all v ∈ I,

3. I can be found inO(m) time.

Proof: We constructI using a greedy algorithm.

∗The first section is partly based on the 1991 notes of Brian Rogoff

2 CS348a: Handout #36

light source

Figure 1: A projection mapping a polytope to a straight-lineplanar arrangement.

Begin
Set I = φ
For each vertex v in P do

If v has not been marked and degree(v) 6 8
Then add v to I and mark the neighbors of v

End

The algorithm produces a maximal independent setI of vertices each of which has degree
at most eight. We first prove that at least half of the verticesin P will have degree less equal
than 8.

It is easily shown that a convex polytope is topologically equivalent to a planar graph. If we
put a light source just outside one facef of a convex polytope, and then project the polytope
onto a plane parallel tof on the opposite side of the polytope (see figure 1), we get a straight-
line planar subdivision which we have already studied quitea bit. The facef corresponds to the
exterior face in this projection, and every other face of thepolytope corresponds to an interior
face of the subdivision.

From Euler’s theorem on planar graphs, we have

∑
v∈P

degree(v) 6 6m−12

CS348a: Handout #36 3

If half of the vertices had degree> 9, then the total degree would be at least

9
⌊m

2

⌋

+3
⌈m

2

⌉

> 6m−3

which already exceeds Euler’s bound. Thus less than half thevertices have degree> 9; in other
words, more than half the vertices have degree6 8.

During the marking process, one vertex being included inI marks at most eight other
vertices. Even if those 8 vertices all have low degree, we still can include one out of every 9
low degree vertices. Since the total number of low degree vertices is at leastm2 we can find
an independent set of size at leastm

18. During the algorithm each edge is checked twice: once
from each end, thus the running time is linear. �

The size of the polyhedra in the hierarchy decreases geometrically, so the sequence will
stop atPk with k = O(logm), and the total time and storage to compute the sequence is linear.

In order to walk up the hierarchy fromPk to P0, we need a a hierarchy pointerhp from
every new edgee created inPi+1 to the vertexv of Pi whose removal generatede. The value of
the hierarchy pointer for each edgee in Pi+1 is obtained as follows:

If e is not in Pi then
hp(e) = v

else if e is in Pi but its left face is different than in Pi then
hp(e) = v

else if e is in Pi and it has the same left face as in Pi then
hp(e) = null

The resulting hierarchy of polyhedra allows us to constructefficient algorithms to answer
queries on the original polyhedronP0. We will go over some of these algorithms shortly.

Computing the Convex Hull

When we coarsen a convex polyhedron with the method described above, we have retriangulate
each hole that is created when a vertex is removed. To do that,we compute the convex hull
of the adjoint vertices. We define the convex hull of a set of points in space as the smallest
convex polyhedron which embodies all the points. We will nowdescribe two algorithms to do
this computation. As a note, there are other more efficient algorithms to compute the convex
hull, but they are more complex as well.

The Incremental Algorithm

Let p1 . . . pn be the set of points for which we want to compute the convex hull, where the
points are sorted in the X direction. We now incrementally compute the convex hull for the
sets of pointsp1 . . . p3, p1 . . . p4, up to p1 . . . pn. For each setp1 . . . pi+1 in this sequence, we

4 CS348a: Handout #36

P1

P2

P3

P4

P5

P6

P 7

X

Figure 2: Computing the 2-D convex hull using the incremental algorithm.

calculate the convex hull based on thep1 . . . pi convex hull that we just computed, and the point
pi+1, which is on the right side of all previous points on the X direction. takev

We will first describe the algorithm in the 2-D case. To calculate the the convex hull for
p1 . . . pi+1, we take the following steps:

Begin
1. draw an edge from pi+1 to the closest point

2. Go up, add edges to each consecutive point on the hull
while the triangles that we construct have a positive area
in the clockwise direction

3. Go down, add edges to each consecutive point on the
hull while the triangles that we construct have a positive
area in the counterclockwise direction

4. Keep the last two edges added in steps 2 and 3, and
remove all edges that left inside the newly created convex hull

The sign test for the area of triangle with vertices atp, q, andr is done by calculating the
determinant

CS348a: Handout #36 5

∣

∣

∣

∣

∣

∣

px py 1
qx qy 1
rx ry 1

∣

∣

∣

∣

∣

∣

The algorithm is illustrated in Fig. 2 fori = 6. Going up from from the edgep7p6 which
we have drawn at step 1, we add the edgesp7p5 andp7p3. Since the signed area of the triangle
p7p3p1 is negative, we do not add the edgep7p1, and we stop. Similarly, going down we
add the edgep7p4. At step 4, we remove the edgesp4p6, p6p5, andp5p3 >from thep1 . . . p6
convex hull, which we will replace with the newly created edgesp7p3 andp7p4.

The algorithm can be extended to calculate the convex hull for a set of points in 3-D. To do
the calculation forp1 . . . pi+1, we draw an edge frompi+1 to the closest vertex on thep1 . . . pi

convex hull, and then we add new edges by doing sign tests on the volumes of the tetrahedras
defined by these edges. The sign test for a tetrahedron with vertices atp, q, andr is done by
calculating the determinant

∣

∣

∣

∣

∣

∣

∣

∣

px py pz 1
qx qy qz 1
rx ry rz 1
sx sy sz 1

∣

∣

∣

∣

∣

∣

∣

∣

The incremental algorithm is relatively simple, but it is not efficient and and is not easy to
implement in 3-D.

The Gift Wrapping Algorithm

Again, we will first describe the algorithm for a set of pointsin 2-D. Intuitively, the basic idea
is to proceed from a vertex and wrap the set of points with a rope.

Let p1 . . . pn be the set of points for which we want to compute the convex hull, where the
points are sorted in the X direction. Proceeding from the first point in the setp1, we rotate a
line on the point in a counterclockwise direction until we hit another pointpa. The edgep1pa

is then added to the convex hull. We then repeat the rotation of the line onpa until we made a
complete circle. Note that for every edge that we add to the convex hull, all the points in the set
are on the left side of the half space defined by that edge. Thisprocess is illustrated in Fig. 3.

The method can be extended of compute the convex hull for a setof points in 3-D. The
basic idea is to proceed from a face on the convex hull to the adjacent faces, in the manner
in which one where wiwraps a sheet around a plane-bounded object. The adjacent faces are
determined by rotating a plane on the line defined by the edge of an existing face of the convex
hull. The first point that the plane hits will be part of the convex hull as well. The method is
illustrated in Fig. 4, where a new facepd pb pc is determined from an existing facepa pb pc.

The first step is to find a face defined by three points on the convex hull. As in the planar
case, the first of these points can be picked as the one with theleastx coordinate. The second
point is found by rotating a plane on the line parallel to they or z axis, and the third point is
found by rotating a plane on the line determined by the first two points.

6 CS348a: Handout #36

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

P1
Pa

Pb

Figure 3: Computing the 2-D convex hull using the gift wrapping algorithm.

Query Problems

Where Will a Plane Hit a Polyhedron ?

Given a polyhedronP0 and a plane which rotates on a line, we want to find the vertexv0 where
the plane first touchesP0. We use an incremental algorithm on the hierarchy of polyhedra
P0,P1 . . .Pk which we constructed in the first section. We first determine the vertexvk where the
plane touchesPk, and based on this we determine the corresponding vertex forPk−1, Pk−2 . . .P0.

Suppose the plane first touchesPi+1 at vertexvi+1. Then, the plane will first touchPi either
at vi+1 itself, or at an adjacent vertex that was removed inPi+1 (which can be found using the
hierarchy pointer). Since at each iterationPi+1 → Pi the computation is local around vertexpi,
this is anO(logn) algorithm.

Is a Point inside a polyhedron ?

Given a polyhedronP0, we want to determine if a pointq is inside it. As before, we use an
incremental algorithm on the hierarchy of polyhedraP0 . . .Pk, starting atPk. The search stops if
q is inside a polyhedronPi, since obviously it will be insideP0 as well. Assume we determined
thatq is not insidePi+1, and we want to determine if it is insidePi. To do that, we “grow” a
sphere centered atq, which will hit Pi+1 on some facef . If f belongs toPi as well, then the
sphere will also hitPi at f , andq is not insidePi. If f is not inPi, thenPi has a vertexv “outside”
f which is inside the sphere. Doing a local computation on the tetrahedron determined byf
andv, it can be determined ifq is insidePi or not. The algorithm is illustrated in Fig. 5. Since
this algorithm also implies a local computation at each iteration, it isO(logn).

CS348a: Handout #36 7

*

*

*

*

*

*

*

*

*

*

b

a c

d

Figure 4: Determining a facet on the 3-D convex hull using thegift wrapping algorithm.

*

q

Pi+1 f

v

Figure 5: Determining if point q is inside a polyhedron (2-D view).

