CS348a: Computer Graphics Handout #36

Geometric Modeling Original Handout #29
Stanford University Thursday, 10 December 1992
Original Lecture #14: December 1, 1992

Topics: Hierarchical Structures for Convex Polygons anigtiredra
Scribe: Radu Tutos

In the previous lecture we discussed the method of apprdxigna convex polygon with
a series of incrementally simpler polygons. We’d now likeetdend the method to convex
polyhedra. Our goal is to build a series of incrementallydis®ned” polyhedra, where each
member in the series has a fewer number of vertices than dueging one. To achieve that,
we take the original polyhedro® and remove a large set of low degree vertices which are
independent (non-adjacent), and then remove their inteiges. Each removed vertex leaves
a small well definedhole, which we retriangulate by computing the three dimensicnalex
hull of its boundary. Since the number of edges and faces wlydhpdron decreases linearly
with its number of vertices, the resulting polyhedron wéllless complex than the original one.
We then repeat this coarsening process until we build a padigdnP; with at mostp number
of vertices. This gives us a sequence of convex polyhedrahachwve can build a hierarchical
representation of the original one:

PPb—P—...— ... =K

We now need to determine the degree of the vertices that wevelst each coarsening
iteration. If the degree of the these vertices is too highewe up replacing a large number
of existing edges with new ones needed to retriangulatesivalla complex shapes. This is an
undesirable result, since we want to capture in the coatispolyhedron as many features as
we can as from the original one. On the other hand, if we sede¢lgece of the vertices we want
to remove too low, we may discover that no vertices meet dter@. The following lemma
helps us find the optimum upper bound on the degree of theBeagrand it shows the way to
build the hierarchical set of convex polyhedra:

Lemmal. LetP be a convex polytope with m vertices; then there exists aepgaddent sdt
of vertices, such that

1. || >m/18,
2. dedv) < 8forallvel,

3. | can be found ifD(m) time.

Proof: We construct using a greedy algorithm.

*The first section is partly based on the 1991 notes of BriaroRog

2 CS348a: Handout #36

Figure 1: A projection mapping a polytope to a straight-ld@nar arrangement.

light source

Begi n
Set |=0¢
For each vertex vin P do
If v has not been marked and degree(v) <8
Then add v to | and mark the nei ghbors of v
End

The algorithm produces a maximal independent sdtvertices each of which has degree
at most eight. We first prove that at least half of the vertioeB will have degree less equal
than 8.

It is easily shown that a convex polytope is topologicallyigglent to a planar graph. If we
put a light source just outside one fat®f a convex polytope, and then project the polytope
onto a plane parallel td on the opposite side of the polytope (see figure 1), we getaghbtr
line planar subdivision which we have already studied culté. The facef corresponds to the
exterior face in this projection, and every other face offibl/tope corresponds to an interior
face of the subdivision.

From Euler’'s theorem on planar graphs, we have

degree(v) < 6m—12
2

CS348a: Handout #36 3

If half of the vertices had degree 9, then the total degree would be at least

m m
9|3)+3/ 3| > 6m-3
which already exceeds Euler’s bound. Thus less than halfdtiees have degree 9; in other
words, more than half the vertices have dege®

During the marking process, one vertex being included marks at most eight other
vertices. Even if those 8 vertices all have low degree, wicsin include one out of every 9
low degree vertices. Since the total number of low degreticesris at leasf we can find
an independent set of size at legbt During the algorithm each edge is checked twice: once
from each end, thus the running time is linear. O

The size of the polyhedra in the hierarchy decreases geigaitr so the sequence will
stop atP with k = O(logm), and the total time and storage to compute the sequence.lin

In order to walk up the hierarchy from to Py, we need a a hierarchy pointep from
every new edge created irP ;1 to the vertex of B whose removal generatedThe value of
the hierarchy pointer for each edgé P 1 is obtained as follows:

If eis not in P then

hp(e) = v

elseif eisin B but its left face is different than in B then
hp(e) = v

elseif eis in P and it has the sane |left face as in B then
hp(e) = nul |

The resulting hierarchy of polyhedra allows us to constaiffitient algorithms to answer
gueries on the original polyhedrdy. We will go over some of these algorithms shortly.

Computing the Convex Hull

When we coarsen a convex polyhedron with the method deskcaibeve, we have retriangulate
each hole that is created when a vertex is removed. To dowatompute the convex hull

of the adjoint vertices. We define the convex hull of a set ah{zoin space as the smallest
convex polyhedron which embodies all the points. We will magcribe two algorithms to do

this computation. As a note, there are other more efficiggdaraghms to compute the convex
hull, but they are more complex as well.

The Incremental Algorithm

Let p1...pn be the set of points for which we want to compute the convek iere the
points are sorted in the X direction. We now incrementallynpate the convex hull for the
sets of pointg1...p3, P1..- P4, UPp tOP1... pPn. FOr each seps...pis1 in this sequence, we

4 CS348a: Handout #36

X

Figure 2: Computing the 2-D convex hull using the incremiesigorithm.

calculate the convex hull based on the . . p; convex hull that we just computed, and the point
pi-1, Which is on the right side of all previous points on the X diren. takev

We will first describe the algorithm in the 2-D case. To cadtelthe the convex hull for
p1...pPi+1, we take the following steps:

Begi n
1. draw an edge from py; to the closest point

2. (G0 up, add edges to each consecutive point on the hull
while the triangles that we construct have a positive area
in the clockwi se direction

3. Go down, add edges to each consecutive point on the
hull while the triangles that we construct have a positive
area in the countercl ockw se direction

4. Keep the last two edges added in steps 2 and 3, and
renove all edges that left inside the newy created convex hull

The sign test for the area of triangle with verticegpat], andr is done by calculating the
determinant

CS348a: Handout #36 5

Px py 1
O oy 1
rk ry 1

The algorithm is illustrated in Fig. 2 far= 6. Going up from from the edge;ps which
we have drawn at step 1, we add the edggs; and pyps. Since the signed area of the triangle
p7p3p1 is negative, we do not add the edgep;, and we stop. Similarly, going down we
add the edgerps. At step 4, we remove the edgpsps, Psps, and psps >from thep; ... ps
convex hull, which we will replace with the newly created edgyps and p7pa.

The algorithm can be extended to calculate the convex hudl &et of points in 3-D. To do
the calculation forp; ... pj+1, we draw an edge from;_ 1 to the closest vertex on tha ... p;
convex hull, and then we add new edges by doing sign testseovolimes of the tetrahedras
defined by these edges. The sign test for a tetrahedron witiceg atp, g, andr is done by
calculating the determinant

Px Py Pz
Ox Gy Oz
rx fy Iz
S § &

The incremental algorithm is relatively simple, but it is edficient and and is not easy to
implement in 3-D.

N Y

The Gift Wrapping Algorithm

Again, we will first describe the algorithm for a set of poimi2-D. Intuitively, the basic idea
is to proceed from a vertex and wrap the set of points with a.rop

Let p1...pn be the set of points for which we want to compute the convek fhlere the
points are sorted in the X direction. Proceeding from the ficsnt in the sefp;, we rotate a
line on the point in a counterclockwise direction until wedmother poinp,. The edgeoipa
is then added to the convex hull. We then repeat the rotafitimeedine onp, until we made a
complete circle. Note that for every edge that we add to timeeohull, all the points in the set
are on the left side of the half space defined by that edge.prbcess is illustrated in Fig. 3.

The method can be extended of compute the convex hull for afqaints in 3-D. The
basic idea is to proceed from a face on the convex hull to thecadt faces, in the manner
in which one where wiwraps a sheet around a plane-boundettobjhe adjacent faces are
determined by rotating a plane on the line defined by the etige existing face of the convex
hull. The first point that the plane hits will be part of the eex hull as well. The method is
illustrated in Fig. 4, where a new fagg pypc is determined from an existing fagg pppe.

The first step is to find a face defined by three points on theeoohull. As in the planar
case, the first of these points can be picked as the one wilkdkt& coordinate. The second
point is found by rotating a plane on the line parallel to yhar z axis, and the third point is
found by rotating a plane on the line determined by the first paints.

6 CS348a: Handout #36

Figure 3: Computing the 2-D convex hull using the gift wragpalgorithm.

Query Problems

Where Will a Plane Hit a Polyhedron ?

Given a polyhedro®y and a plane which rotates on a line, we want to find the vegexhere
the plane first toucheBy. We use an incremental algorithm on the hierarchy of polyhed
Po, P1 ... P« which we constructed in the first section. We first deternimevertexy, where the
plane toucheBy, and based on this we determine the corresponding vert&forbB_-...Po.

Suppose the plane first touch@s; at vertexvi 1. Then, the plane will first toucR either
atv; itself, or at an adjacent vertex that was remove# in (which can be found using the
hierarchy pointer). Since at each iteratidn; — P, the computation is local around vertpi
this is anO(logn) algorithm.

|sa Point inside a polyhedron ?

Given a polyhedror?,, we want to determine if a poirg is inside it. As before, we use an
incremental algorithm on the hierarchy of polyheBsa. . P, starting ab. The search stops if
gis inside a polyhedroR,, since obviously it will be insid& as well. Assume we determined
thatq is not insideP ;. 1, and we want to determine if it is insid®. To do that, we “grow” a
sphere centered gt which will hit B, 1 on some faced. If f belongs td? as well, then the
sphere will also hiB at f, andgis not insideR,. If f is notinP, thenP has a vertex “outside”

f which is inside the sphere. Doing a local computation on ¢t&ahedron determined by
andyv, it can be determined d is insidePR, or not. The algorithm is illustrated in Fig. 5. Since
this algorithm also implies a local computation at eachatien, it isO(logn).

CS348a: Handout #36

Figure 4: Determining a facet on the 3-D convex hull usinggifiewrapping algorithm.

Pi+1

Figure 5: Determining if point q is inside a polyhedron (2-iew).

