CS268: Geometric Algorithms Handout #6

Design and Analysis Original Handout #16
Stanford University Tuesday, 25 February 1992
Original Lecture #7: 30 January 1992

Topics: Seidel’s Trapezoidal Partitioning Algorithm

Scribe: Michael Goldwasser

Seidel’s Trapezoidal Partitioning Algorithm

Overview

A Randomized Incremental Algorithm.

Idea: incremental algorithms are usually simple. We build a structure by adding
objects one at a time. The problem is that they often lead to poor performance. As
a somewhat simplified example, suppose we build a search tree for a set of keys by
inserting the keys one at a time, without rebalancing. If the keys are inserted in order,
the tree will be unbalanced and the construction will take ®(n?) time. Randomization
can help with this problem: if we insert keys in random order, we expect to get a
balanced search tree in O(nlogn) time. By randomizing the order in which we add
objects, we speed up the algorithm.

The randomization in randomized incremental algorithms has two key properties.
First, the randomization is internal to the algorithm; we make no assumptions about
the input. Instead, the algorithm does its own “coin flips.” Second, the randomization
is of the Las Vegas type: the algorithm is guaranteed to give a correct answer (what-
ever that means in the context of the problem), but the running time is not guaranteed
in any particular instance. Instead, we talk about the expected running time, based on
the algorithm’s internal randomization.

Content of Lecture

1. Basic algorithm and data structures
2. Analysis

3. Randomized Analysis — O(nlogn)
4. Tracing and analysis of it

5. Extensions

2 CS5268: 6

Figure 1: The mappings in T(S).

Data structures

Let S be a set of line segments (with the usual non-degeneracy conditions, such as no
two endpoints directly above and below one another, and no vertical line segments).

Let T(S) be a trapezoidal partitioning (also called a “trapezoidation”). It should let
us map any trapezoid T to

e its bounding segments; and
e its horizontally neighboring trapezoids (there are at most four).

These mappings are illustrated in fig. 1.
This representation lets us trace a polygonal curve C through T(S) in time O(|C| +
k), where k is the number of trapezoids C intersects, provided CNS = @.

Let Q(S) be a point location structure for T(S). That is, given a query point g =
(9x,qy), it allows us to determine what trapezoid that point is in. Q(S) is a directed
acyclic graph with one source, and with one sink per trapezoid of T(S). The internal
nodes are of two types:

1. X-nodes. (See fig. 2.) When we get to these nodes, we ask, is point g to the left or
right of a particular X-value? We then branch accordingly.

2. Y-nodes. (See fig. 3.) Here we ask, is point 4 above or below a particular line?

So to answer a query (i.e. identify the trapezoid containing point g), we follow a
directed path in Q(S), branching to one of the two descendants at each internal node,

CS5268: 6 3

Figure 2: An X-node.

|

line equation

VRN

Figure 3: A Y-node.

and stopping at a sink (i.e. a trapezoid). (See fig. 4.)

Now, let e & S be a segment ab (ay < by) such that e crosses no segment of S.
Define S’ = SU {s}.

Question: How do we produce T(S’) from T(S), and Q(S’) from Q(S)? See fig. 5.
(Note: in this figure, we have S = {e1} and the new segment is e;.)

The basic steps are: insert left endpoint, insert right endpoint, and insert the seg-
ment between them.

The first thing to ask is, does the new segment share an endpoint with any of the
existing segments? If not, we add new vertical threads corresponding to the new
endpoints. This splits trapezoid 3 into new trapezoids 5 and 6, and splits 4 into 7 and
8 (see fig. 6). But, of course, e; itself further splits 6 into 9 and 10. It also splits 7, but
7’s bottom half is then merged with 10 (see fig. 7).

We perform similar operations on Q(S), as shown in the figures. (Indeed, since
we need Q(S) to help us locate trapezoids in T(S), we should do these operations in
parallel.)

Analysis of running time

The running time has two parts:

4 CS5268: 6

I(s) \ 0(S)

(x-coordinate values)

Figure 4: An example of a trapezoidal partitioning T(S), and the corresponding point
location structure Q(S).

Figure 5: Adding a new segment.

e query time, i.e. point location in Q(S); and

e tracing time through the trapezoids in T(S), including the time to perform split-
ting and merging operations.

Now, the tracing time is O(1) plus a term proportional to the number of threads in
the new partitioning that “abut” upon e. Note that this does not include the threads
running through the endpoints; for instance, the segment in fig. 8 has only one thread
abutting on it.

CS268: 6

K ! ’ ONNG

Figure 6: Intermediate stage in adding a segment

2 @/@\@
SO =

Of e N VA N S

§ w

Figure 7: Adding a segment. T(S) and Q(S) have now been fully updated.

In the worst case, this could make for a lot of tracing time. For instance, in the
polygon shown in fig. 11, if we insert the segments in counterclockwise polygon order
starting at the upper right, the trace time is ®(|S|?). The point location cost may also
be excessive. If the segments shown on the left side of fig. 9 are inserted bottom to top,
the query data structure is very unbalanced, as shown on the right side of fig. 9, and

the total query time is @(|S|?).

But what if we look at the algorithm’s average or expected performance, rather

than its worst-case performance?

6 CS5268: 6

Figure 8: A segment with just one thread abutting on it.

Figure 9: (Left) A set of segments in T which, if inserted bottom to top, leads to a
worst-case query time. (Right) The resulting query structure.

Randomized analysis of running time

Letey, e, ..., e, be arandom ordering of the segments of S, and let
S;={e1, ey ..., e} (aprefixof S), for0 <i < n.

Lemma 1. The expected cost of tracing e; through T(S;_1) is < 4.

Proof: Define the degree of a segment in a partitioning, deg(e, T(S)), as the number
of vertical threads that abut upone (e € S).
Then
) deg(e, T(S)) < 4i (1)
ecs;
This is because each thread (there are < 2i of them) hits < 2 segments. So for a
“random” e;, the expected degree E(deg(e;, T(S;))) is at most 4. O

Now, recall that H, = Y, } = ®(logn).

CS5268: 6 7

|

|

|

°
Q

Figure 10: Here, the addition of ¢; creates two new decision levels (instead of one) in
the search path for g.

Lemma 2. For any query point q, the expected number of key comparisons (over all
orderings of S) to locate q in Q(Sy,) is < 5H, = O(logn).

In other words, the number of decision nodes in Q(S) that we'll cross to get to g is
O(logn).

Proof: =~ We use “backward analysis.” We will first find how many extra decision
nodes we have to cross, on average, as a result of adding a single edge. Then we add
up all those incremental costs to get the total cost (effectively, building up Q(S) from
scratch).

Suppose, then, that g lies in trapezoid 7;_1, where 7;_1 € T(S;_1), and g also lies
inT; € T(S;). If we know 7;_1 (and its corresponding sink in Q(S;_1)), what is the
expected cost E; of finding 7;?

Well, under what circumstances will we have to go through an extra decision level
because of the new edge ¢;? That is, when is 7; # 7;_1? This occurs

e if T;s upper bounding edge is ¢; (an event with probability < %) ;
e if 7/s lower bounding edge is ¢; (an event with probability < 1);

e if 7;’s left bounding thread was generated by e; (an event with probability < %) ;
or

e if 7;'s right bounding thread was generated by e; (an event with probability < %).

One more decision level is possible. For the situation shown in fig. 10, the addition of
e; caused two new comparisons to be made, not one. This situation also has probability
<1

Therefore, the expected incremental cost E; is < %, and the expected total cost of
locating g is } ;' ; E; = 5H,. O

8 CS5268: 6

Figure 11: A polygon whose boundary we would not want to trace.

With these lemmas, we can now state the following theorem, which applies to
arbitrary sets of disjoint line segments.

Theorem 3. Let S be a set of n segments, disjoint except for their endpoints. Then
1. We can build T(S) and Q(S) in expected O(nlogn) time.
2. Expected |Q(S)| = O(n). (the expected number of trapezoids split is O(n))
3. Expected query time for any point q in Q(S) is O(logn).

The second part of this theorem follows from Lemma 1. The third part is a restate-
ment of Lemma 2. The first part is a consequence of Lemmas 1 and 2.

Where does all that time go? It goes to point location. How, then, can we avoid
point location, in the special case in which the segments form a polygon? Well, we
could start from the endpoints of earlier segments, i.e. insert the segments in polygon
order. But then we would lose the benefits of randomization. For example, with the
polygon in fig. 11, the cost of tracing around it goes up as Q(n?). So let us use a
compromise solution. We will insert the segments in random order, but periodically
trace the polygonal boundary to speed up point location for later insertions. (Details
below.)

Lemma 4. For any g, if we know that q C t; (where 7; € T(S;)), then the expected cost
of locating q in T(Sy), k > j, is < 5(Hy — H;) = O(log Ij{)

Proof: The proof is almost exactly the same as that of Lemma 2, above. O

Lemma 5. Let R be a random subset of S, with size |R| = r. Let Z be the number of
intersections between T(R) and S\R. [Recall that S\R denotes the segments of S that
are not in R.] Then the expected value of Z is < 4(n —r).

CS5268: 6 9

Proof: For any e € (S\R), the number of intersections between ¢ and T(R) is
deg(e, T(RU{e})). So

E(Z) = @ Y, deg(e, T(RU{e}))

5 ee(S\R)

N

R
R

from (1),

N\

|
‘QM
iy
=

- (i) * (h)
Now, define log'"” n = loglog - - - logn, and log* n = max(h|log""’ > 1).
Alsolet N(h) = (log(Lh)n]

With these definitions, we now present the final version of Seidel’s algorithm.

Seidel’s Trapezoidal Partitioning Algorithm

1. Generate a random order sy, s, . .., s, of the segments of P.
2. Generate T(S71) and Q(S7) [initialization].
3. forh =1tolog"n do
a.fori=N(h—1)+1to N(h) do
Insert segment e;, producing T(S;) and Q(S;) from T(S;_1) and Q(S;_1).
b. Trace P through T(Sy(y)) to locate the endpoints of all ej, for j > N(h).
4. fori = N(log"n) +1tondo
Insert e;, producing T(S;) and Q(S;) from T(S;_1) and Q(S;_1)-

Analysis

Let us examine the expected running times of each step:
1. O(n)

2.0(1)

3a.

N(h) - (O(l) (from Lemma 1) + O(log(%))(ﬁom Lemma 2>)

10 CS5268: 6

Now,
N(h) n
sy -1y < 8§m 1)
< log(log" Y n)
= log(h) n.

Therefore, step (3a) takes < N(h) - O(log™ n) = O(n) time.

3b. O(n), by Lemma 5.
) "y = (log"n) ,, ~ —
4. O(n) <log(N(log* n)> loglog n <log2=0(1))

J/

(as in 3a)

The total running time is O(n) per phase. There are O(log™ 1) phases, so the final
running time of the algorithm is O(nlog” n). This completes the proof of the follow-
ing improved version of Theorem 3.

Theorem 6. Let S be a set of n segments that form a simple polygon. Then
1. We can build T(S) and Q(S) in expected O(nlog” n) time.
2. Expected |Q(S)| = O(n).

3. Expected query time for any point q in Q(S) is O(logn).

Implementation

The algorithm was run on a computer as a demonstration at the end of class, which
served to emphasize the basic steps involved in this algorithm: (1) add a segment at
random; (2) locate its endpoints; (3) insert trapezoids.

Every now and then, though, the algorithm would search around the boundary of
the polygon. As it did so, it located the vertices that had not yet been placed, in terms
of the existing trapezoids. Then later, when it needed to locate those endpoints, it was
able to use that information to start its searches of Q(S) from further down the DAG
(thereby reducing its search time). This is the compromise discussed earlier on page 8.

Extensions

Seidel’s algorithm also applies to more general objects than simple polygons. Theo-
rem 6 applies to any collection of line segments, disjoint except for their endpoints,
that form a straight-line embedding of a connected planar graph—we replace the
polygon tracing step by a graph traversal, but all other steps remain unchanged. Com-
bining this observation with Theorem 3, we get the following theorem.

CS5268: 6 11

Theorem 7. Let S be a set of n segments that form a straight-line embedding of a
planar graph with k connected components. Then

1. We can build T(S) and Q(S) in expected O(klogn + nlog* n) time.
2. Expected |Q(S)| = O(n).

3. Expected query time for any point q in Q(S) is O(logn).

