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1 Shortest Path Problems

The topic of this lecture is the application of triangulations to shortest path problems.
Only simple polygons will be considered. Given two points inside a polygon, the goal
is to find the shortest path lying inside the polygon between the two points; see Fig. 1.
One can think of the shortest path as a taut string connecting the two points.

We begin with some definitions. Let P be a simple polygon with n vertices. Then
π(p, q) is the Euclidean shortest path inside P connecting two points p and q inside P.
Also, d(p, q) = |π(p, q)|, which is the length of π(p, q). d(p, q) is a metric and is more
commonly referred to as the geodesic distance.

Lemma 1. π(p, q) is unique.
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q

Figure 1: The shortest path between points p and q.
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Proof: If π(p, q) is not unique, then let π1(p, q) and π2(p, q) be two distinct shortest
paths from p to q. Let α and β be two points of π1(p, q) ∩ π2(p, q) such that the two
paths are disjoint between α and β; that is, π1(α, β) ∩ π2(α, β) = {α, β}. We have
|π1(α, β)| = |π2(α, β)| = d(α, β). The two paths π1(α, β) and π2(α, β) enclose some
region of P’s interior, free of obstacles, since P is simple. At least one of the two paths
has a convex corner; cutting off the corner shortens the path, which is a contradiction,
since the path was chosen to have minimum length. ¤

Lemma 2. π(p, q) is a polygonal chain whose internal vertices are vertices of P, and
whose edges are visibility edges or polygon edges (i.e., each edge of the path connects
two vertices of P and does not intersect the exterior of P).

2 Funnels

The concept of a funnel is used to compute shortest paths. A funnel is defined as
follows. Let α and β be the endpoints of an edge or diagonal of P, and let s be a point
inside P. The shortest paths π(s, α) and π(s, β), together with αβ, define a region
called a funnel. Funnels possess the following properties.

1. π(s, α) and π(s, β) share a common initial chain, then separate at a vertex a,
called the apex of the funnel (by Lemma 1), as shown in Fig. 2.

2. The region bounded by π(a, α), π(a, β) and αβ is contained in P. (For simplicity,
assume s, α and β are vertices of P. π(s, α) excludes one chain of the boundary
of P and π(s, β) excludes the other; therefore the funnel interior does not contain
any edges of P.)

3. π(a, α) and π(a, β) are inward convex (any outward convex portions could be
removed to form a shorter path).

Triangulation

Our shortest path algorithms are based on triangulation. Therefore, we assume from
now on that P has been triangulated. Let τ(p) be the triangle containing p, and τ(q)
be the triangle containing q. We define τ(π(p, q)) to be the minimal set of triangles
containing π(p, q).

Lemma 3. τ(π(p, q)) forms a path in the dual tree of the triangulation. This sequence
of triangles is called a sleeve.

Proof: π(p, q) crosses each diagonal of the triangulation at most once (else it could
be shortened). Therefore, it crosses only the diagonals that separate p and q, each
exactly once. ¤
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Figure 2: Illustration of a funnel; point a is the apex

3 The Funnel Algorithm for Computing a Shortest Path

The funnel algorithm computes the funnel from p to every diagonal separating p and
q in O(n) total time. It marches from p to q, maintaining a current funnel and apex
as it goes. In the process, it computes, for every sleeve vertex x, the vertex pred(x)
adjacent to x along π(p, x). This vertex is the predecessor of x; see Fig. 4. The algorithm
consists of the following steps.

1. Locate τ(p) and τ(q).

2. Identify τ(π(p, q)) ⇐⇒ an ordered sequence d1, d2, . . . , dm of the diagonals sep-
arating p and q, in the order that the shortest path crosses them. If dm = αmβm
then set dm+1 = αmq (see Fig. 3).

3. The funnel Fi from p to di can be represented as a double-ended queue that stores
the vertices in order, with the endpoints of di at the ends of the queue. The initial
funnel is F1 = (α1, p, β1), the funnel defined by π(p, α1), π(p, β1), and α1β1. The
quantity in parentheses is the double-ended queue. Set pred(α1) ← pred(β1) ←
p, and set the funnel apex, a ← p.

4. For i ← 2 to m + 1 do (modify Fi−1 to get Fi):
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Figure 3: The diagonals d1, d2, . . . , dm crossed by the shortest path from p to q. Segment
dm+1 is added so that the algorithm terminates at point q.
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Figure 4: t is the predecessor of αi, i.e., t is the point preceding αi in the shortest path
from p to αi.
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• Without loss of generality assume αi−1 is not incident to di (see Fig. 4).

• Pop off vertices from the left (L) end of the double-ended queue until the
head of this end is the predecessor of αi on π(αi, p), (To see more concretely
which vertex is the predecessor of αi, consider extending the edges of Fi into
rays directed across the diagonal di−1. These extensions partition the plane
into triangular wedges, exactly one of which contains αi. The vertex at the
head of this wedge is the predecessor of αi. See Fig. 4).

• Set pred(αi) ← Head(L)

• If the apex was popped, set a ← Head(L)

• Push (αi, L), i.e., add αi to the funnel by pushing it onto the left end of the
double-ended queue.

The pred(·) pointers encode a linked list of the vertices on the shortest path from
q to p. Each vertex of the sleeve is pushed exactly once and popped at most once.
Pushes and pops dominate the cost. The overall time complexity is linear in m, and
O(m) = O(n).

4 The Shortest Path Tree

Let s be a point in P, and let pi be the vertices of P. Then the Shortest Path Tree (SPT)
is defined as SPT = ∪i π(s, pi). It is a tree by Lemma 1. The tree thus contains the
shortest path from s to each vertex of P. The following algorithm computes the SPT
by recursively splitting funnels. The algorithm is essentially a depth first exploration
of the dual tree, starting from τ(s). Without loss of generality assume s is a vertex of
P. Here is the top level of the algorithm (initialization and recursive invocation):

For each triangle incident to s do

• Let d be the edge opposite s, and let α and β be the left and right endpoints of d,
respectively, as seen from s.

• Construct the funnel F = (α, s, β) with apex a = s.

• Set pred(α) ← pred(β) ← s.

• Call Split(d, F, a).

Split(d, F, a) is a recursive procedure that computes a single predecessor vertex,
uses that vertex to split the current funnel in two, and calls itself recursively on each
sub-funnel. Here is pseudo-code for Split:

Split(d, F, a) (d is the current edge or diagonal, F is the funnel to it,
and a is the apex of F)



6 CS268: 7

1

a t

d

d

2
d

v

Figure 5: Notation for the definition of the Split operator

1. If d is a polygon edge, then return.

2. Let v be the opposite vertex of the triangle beyond d (we know d is a diagonal),
and define d1 and d2 as shown in Fig. 5.

3. Compute t = pred(v). That is, locate v in one of the triangular sectors defined
by the extensions of the funnel edges, as described on page 5.

4. Without loss of generality assume the order of F is . . . , t, . . . , a, . . . , and define
prefix(F) and suffix(F) as follows:

prefix(F)︷︸︸︷
. . . , t, . . . , a, . . .︸ ︷︷ ︸

suffix(F)

5. Adding the edge vt splits the funnel F into two smaller funnels; the Split op-
eration is repeated on each new funnel:

Call Split(d1, prefix(F)‖v, t)
Call Split(d2, v‖suffix(F), a)

Here the ‖ operator concatenates v onto the appropriate end of the prefix or
suffix of F.
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5 Analysis of the SPT Algorithm

If |F| = m and t is in the k’th position of F, the cost of computing pred(v) = t is some
function g(k, m − k), which is monotone non-decreasing in each argument. Assume
for now that the cost of constructing the arguments for the recursive calls to Split is
also O(g(k, m− k)). We’ll justify this assumption below.

How can we analyze the cost of the shortest path tree construction? As a first
attempt, we might define f (m) be the worst-case cost of a recursive call on a funnel of
size m. Then

f (m) ≤ f (k + 1) + f (m− k + 2) + g(k, m− k), 1 ≤ k ≤ m

But this is no good, since nothing enforces termination. We need to include informa-
tion from the triangulation structure in the recurrence relation.

To define a better recurrence relation, let m be the current funnel size, and introduce
a new parameter r that counts the number of triangles beyond the current diagonal d
(that is, on the side of d away from s). The cost of a recursive call to Split is then

f (r, m) ≤ f (h, k + 1) + f (r− h− 1, m− k + 2) + g(k, m− k)

1 ≤ k ≤ m, 0 ≤ h ≤ r− 1

where f (0, m) = 0. The sum of the first arguments in the f (·, ·) terms on the right
hand side shows a decrease of one (because the triangle incident to d is not processed
by either recursive call), while the sum of the second arguments shows an increase of
three. Using this fact we combine the arguments to get a relation with just a single
argument. Let f (r, m) ≡ C(3r + m). Now,

C(3r + m) ≤ C(3h + k + 1) + C(3r− 3h + m− k− 1) + g(k, m− k)

≤ C(3h + k + 1) + C(3r− 3h + m− k− 1)
+g(3h + k + 1, 3r− 3h + m− k− 1),

since k ≤ 3h + k + 1 and m − k ≤ 3r − 3h + m − k − 1. Letting N = 3r + m and
K = 3h + k + 1 we get

C(N) ≤ C(K) + C(N − K) + g(K, N − K), 2 ≤ K ≤ N − 2,

where C(2) = 0. Initially N ≤ 3n. The running time of the algorithm is therefore
O(C(3n)).

6 Implementation of the SPT Algorithm

There are several ways to implement the double-ended queue that represents F:
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6.1 Binary search trees

Represent F by a binary search tree. In this case g(i, j) = O(log(i + j)); splitting F
at the prefix and suffix costs the same, as does appending v to one end of each sub-
funnel. This implies C(N) = O(N log N).

6.2 Linked lists

Use linked lists and a dovetailed linear search from both ends of F. (That is, search
from both ends of F simultaneously, alternating steps inward. Stop both searches
when either succeeds.) In this case g(i, j) = O(min(i, j)); splitting F is the same cost.
Thus C(N) ≤ C(K) + C(N − K) + min(K, N − K).

Digression: How to analyze recurrence relations of the form

C(N) 6 C(K) + C(N − K) + G(min(K, N − K)), 0 < K < N

C(1) = 0.

This models the cost of recursively partitioning a set when the cost of partitioning
is a function of the size of the smaller subset. A convenient way to analyze the cost
is to charge each element of the smaller subset for an equal share of the splitting
cost. That is, if K ≤ N/2, charge each element of the K-element set an amount
equal to G(K)/K. Each element gets charged at most once when it belongs to a set
of size 2i ≤ K < 2i+1, for each i. (The next time it is charged, its set size will be at
most K/2.) Therefore, the total charge applied to each element is at most

log n

∑
i=1

G(2i)/2i−1.

If G(K) = K, as in the present case, each element is charged at most ∑
log n
i=1 2 =

O(log n), for a total cost of O(N log N).

Thus the total cost of this implementation is proportional to C(N) = O(N log N).

6.3 Finger search trees or equivalents

Represent funnels by finger search trees or by an array-based scheme with equiva-
lent performance. Finger search trees support searching and splitting on an ordered
list in amortized time O(log min(k, m − k)), where m is the size of the list and k is
the rank of the searched-for or splitting element in the list. It follows that g(i, j) =
O(log min(i, j)), and C(N) = O(N) by the charge-based analysis above. (For more
information on finger search trees refer to Huddleston and Mehlhorn, Acta Informat-
ica 17 (1982), 157–184, or to Mehlhorn, Data Structures and Efficient Algorithms, Vol. I:
Sorting and Searching, Springer-Verlag (1984).)
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Figure 6: Data structures for array-based searching and splitting.

Finger search trees are complicated and hard to program, so it is worth looking for
simpler structures with the same performance. An alternative to finger search trees
for the SPT algorithm was recently discovered by Hershberger and Snoeyink (WADS
’91, 331–342).

We can achieve the desired searching performance with a dovetailed doubling
search on an array. Suppose F is stored in the middle part of an array, between ar-
ray indices L and R, as shown in Fig. 6. Then we can search for t from both ends of
the queue at the same time, using a search that takes O(log d) time, where d is the
distance of t from the end of the queue where the search started. Both searches stop
when either one succeeds, so the total search time is O(log min(k, m− k)), as desired.
Pseudo-code for searching from the left end of the queue is shown below; this search
would be dovetailed with a similar search from the right end.

• incr ← 1

• while goal is outside the subarray F[L . . . L + incr] do:
incr ← 2 ∗ incr

• Find goal by binary search in F[L . . . L + incr]

The funnel-splitting algorithm does not need the full power provided by finger
search trees. Because it explores the triangulation with a depth first search, it processes
one of the two sub-funnels completely before starting to process the other. We exploit
this fact by storing the two sub-funnels in the same array, one after the other.

Our algorithm uses three operations for funnel manipulation:

Add(v, LR): Push v onto the left or right end of F, as indicated by LR.
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Remove(k, LR): Remove k elements from the specified end of F.

Undo(): Reverse the effect of the most recent Add or Remove operation that has not
yet been undone.

These operations are implemented using a history stack that records enough informa-
tion about each Add or Remove operation to undo it later. Consider the operation
Add(v, LR). Let F[k] be the array element that will be overwritten (either k = L− 1 or
k = R + 1). We push onto the history stack a record (Add, LR, F[k]), then set F[k] ← v
and set the specified one of L and R to be k. To implement Remove(k, LR), we push
onto the history stack a record (Remove, LR, k), then set L ← L + k or R ← R− k, as
appropriate. To implement Undo(), we pop the top record off the history stack and
reverse the effect of the operation it records.

Here is a version of Split that uses these operations. The array representing F
has space for 2n elements, and we initialize it by putting the three vertices of the first
funnel in the middle of the array (so L = n− 1 and R = n + 1). No more than n− 2
vertices are pushed on either end of the array during the algorithm, so the array cannot
overflow.

Split(d, F, a) (d is the current edge or diagonal, F is the funnel to it,
and a is the apex of F)

1. If d is a polygon edge, then return.

2. Define v, d1, and d2 as in Fig. 5.

3. Compute t = pred(v). Let t be the k’th element of F. Without loss of generality
assume that t is left of a in F.

4. Remove(m− k, 〈right〉); Add(v, 〈right〉);
Split(d1, F, t);
Undo(); Undo();

Remove(k− 1, 〈left〉); Add(v, 〈left〉);
Split(d2, F, a);
Undo(); Undo();

Observe that each time Split is called recursively, the array containing F has been
modified to represent the appropriate sub-funnel, as specified in the first version of
Split on page 5. The three operations Add, Remove, and Undo take O(1) time apiece,
so the running time of this algorithm is dominated by the search in step 3, which takes
O(log min(k, m− k)) time. The total running time of the algorithm is therefore O(n),
as for finger search trees.
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7 The Shortest Path Map

The shortest path map is an enhancement of the shortest path tree. Whereas the short-
est path tree encodes the shortest path from every polygon vertex to the source s, the
shortest path map encodes the shortest path from every point inside P to s. To pro-
duce a shortest path map, given a shortest path tree, we subdivide each funnel of the
shortest path tree. For each polygon edge e, we partition the funnel associated with
it by extending the funnel edges (as in the predecessor computation on page 5). This
partitions the funnel into triangular sectors, each with a distinguished apex, namely
the vertex opposite e. For any point q inside a particular sector, pred(q) is the apex of
the sector.

Using the shortest path map, we can answer queries about the length of the short-
est path from s to a query point in O(log n) time. We construct the shortest path
map for s, then preprocess it for point location. At the same time we compute d(s, pi)
for each polygon vertex pi. Given a query point q, we locate its containing sector in
O(log n) time. Let a be the apex of the sector. Then d(q, s) = d(q, a) + d(a, s). The
second term has already been precomputed, and the first term is just the length of the
segment qa. If we need the full shortest path π(q, s), we can extract it from the pred
pointers in time proportional to the number of vertices along it.


