
CS268: Geometric Algorithms Handout # 3
Design and Analysis
Stanford University Monday, 10 October 2016

Homework #1: Arrangements, zones, straight and topological sweeps [100 points]
Due Date: Monday, 24 October 2016

This assignment contains a number of theory problems and a programming problem. You are
expected to do all the problems.
Doing problems is a very important part of this course. Although you have two weeks to
do this assignment, do not delay starting to work on it — several of these problems are not
routine exercises. If you cannot solve the problem fully, please write up whatever you can do
and document any partial results you have obtained in the process. We intend to be generous
with partial credit when your effort is well documented.
You are encouraged to collaborate in study groups of up to three students on the solution of the
homeworks. If you do collaborate on theory problems, you must write up solutions on your own
and acknowledge your collaborators by name in the write-up for each problem. If you obtain
a solution with outside help (e.g., through literature search, another student not in the class,
etc.), acknowledge your source, and write up the solution on your own. For programming
problems a single write-up per group is acceptable.
It is very important in this course that every homework be turned in on time. We recognize
that occasionally there are circumstances beyond one’s control that prevent an assignment from
being completed before it is due. You will be allowed two classes of grace during the quarter.
This means that you can either hand-in two assignments late by one class, or one assignment
late by two classes. Any other assignment handed in late will be penalized by 20% for each
class that it is late, unless special arrangements have been made previously with the instructor.
For grading we will use Gradescope in this class ((https://gradescope.com/). More
details will be posted on Piazza soon.

• The Theory Problems

Problem 1. [10 points]

In an arrangement A of n lines in the plane, a single face can have at most n sides.
Prove that any m distinct faces can have at most n + 4(m

2 ) sides altogether. [[This
bound is best possible if 4(m

2 ) ≤ n and is known as Canham’s Lemma; it implies, for
instance, that any

√
n faces can have a total of only O(n) sides altogether.]]

Problem 2. [15 points]

We saw in class that, in an arrangement A of n lines in the plane, the zone of another
line ` has combinatorial complexity O(n) (zone theorem). Given as input only the n
lines of the arrangement and ` (say by their line equations), show how to compute all
the faces of A comprising the zone of `, in linear space and O(n log n) time.



2 CS268: Handout # 3

Problem 3. [20 points]

Suppose that we modify the Bentley-Ottmann straight-line sweep method for com-
puting a line arrangement so that, when processing an event, the future events cor-
responding to intersections for newly created adjacencies between active segments
are added to the priority queue, but the events corresponding to the adjacencies just
destroyed are not removed. This will still give a correct algorithm, but now the pri-
ority queue size may increase, as each event adds possibly two new adjacencies but
removes only one.

(a) Prove that, given any four lines a, b, x, y in descending slope order, not all three
intersections ax, ay, by can be events present in the priority queue at once. (Note
that this problem is about infinite lines, not line segments.)

(b) Use this fact to argue that maximum size of the priority queue is still at most
O(n log n). (Partial credit will be given for any subquadratic upper bound.)

(c) Give an example of a line arrangement family showing that, in the worst case, the
maximum size of the priority queue is Ω(n log n) — so the above bound is in
fact tight.

Problem 4. [15 points]

Show how to implement the topological sweep we discussed in class using only a
single horizon tree, say the upper horizon tree, and at most a constant amount of ad-
ditional memory — while still maintaining the O(n2) running time. (Hint: The crucial
step is to discover efficiently a vertex of the tree where an elementary step can be
carried out.)

• The Programming Problem

Problem 5. [40 points]

The goal of this problem is to start building some familiarity with implementing geo-
metric computations.

Download the zip file for the assignment from the Handouts page on the course
web site. This zip file contains starter code in Java and README file that explains
how to setup Java programming environment. Feel free to contact the CA if you have
any problem starting the homework.

Implement your algorithm for solving the earlier Problem 2 (or another algorithm,
if you think it is preferable in practice) using the provided starter code. The input of
the program is a list L of n lines `1, `2, · · · , `n, and the output is the zone of the y-axis in
the arrangementA(L), i.e. the collection of all the convex faces ofA(L) crossed by the
y-axis. The input lines are specified in text files that are passed in as an argument to
the program. Find TODO in Manager.java file and add the algorithm code below. The



CS268: Handout # 3 3

starter code currently reads the input lines and renders them, along with the y-axis; it
also renders an array of faces, currently empty, which you will need to populate.

All input sets of lines will be free of degeneracies, i.e. no parallel lines, no horizon-
tal or vertical lines, no three lines intersecting at the same point (and no two lines with
an intersection point on the y-axis). Each test case will have at least one input line.
Furthermore, all lines will intersect the y-axis in the visible window, which goes from
(-300, -300) to (300, 300); you may take advantage of this fact to choose large finite
values to represent infinity.

For up to 5 points extra credit, you may augment your code to handle degenerate
input.

Submission instructions: Pack all of your source files into a single zip file and email
the file to the CA (mhsung@cs.stanford.edu) with the subject line starting with [cs268-
hw1]. Include your own README file with the names of all team members, as well
as what degenerate cases (if any) you are able to handle.


