
CS268: Geometric Algorithms Handout # 5
Design and Analysis
Stanford University Monday, 24 October 2016

Homework #2: Voronoi and Delaunay diagrams [80 points]
Due Date: Monday, 7 November 2016

• The Theory Problems

Problem 1. [5 points]

In the plane the edges of both the Delaunay and Voronoi diagrams are line segments.
Give a simple necessary and sufficient condition on a pair of sites A and B so that AB
is a Delaunay edge and AB intersects its dual Voronoi edge.

Problem 2. [15 points]

Delaunay’s theorem states that the triangulation of a set S on n sites in the plane is a
Delaunay triangulation if and only if every edge passes the InCircle test with re-
spect to its two adjacent triangles. This gives a linear-time algorithm to verify that a
triangulation is Delaunay, and it also suggests the following algorithm to fix it up, if
it is not: Start with any triangulation of the n sites. If an edge fails the InCircle test,
then swap it with the other diagonal of the quadrilateral formed by the two adjacent
triangles (the new edge must pass this local test). Continue in this fashion, until all the
edges pass the InCircle test. Make this idea into a rigorous algorithm and prove its
correctness. For example, is such a swap always feasible? Prove that your algorithm
always terminates in O(n2) steps [Hint: define some quantity that monotonically de-
creases after each flip].

Problem 3. [15 points]

Davenport-Schinzel sequences of order 2 and triangulations:
Let P be a convex polygon with n vertices. A triangulation of P is a collection of n− 3
non-intersecting diagonals connecting pairs of vertices of P and partitioning P into
n− 2 triangles. Set up a correspondence between such triangulations and DS(n− 1, 2)
sequences (Davenport-Schinzel sequences), as follows. Number the vertices 1, 2, . . . , n
in their order along the boundary ∂P. Let T be a given triangulation. Include in
T the edges of P too. For each vertex i, let T(i) be the sequence of vertices j < i
connected to i in T and arranged in decreasing order, and let UT be the concatenation
of T(2), T(3), . . . , T(n).

(a) Show that UT is a DS(n− 1, 2) sequence of maximum length.

(b) Show that any DS(n− 1, 2)-sequence of maximum length can be realized in this
manner, perhaps with an appropriate renumbering of its symbols.
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(c) Use (a) and (b) to show that the number of different DS(n − 1, 2) sequences of
maximum length is 1

n−1(
2n−4
n−2 ) (where two sequences are different if one cannot

obtain one sequence from the other by renumbering its symbols).

Problem 4. [10 points]

We discussed in class the lifting map λ(x, y) : (x, y) 7→ (x, y, x2 + y2) from points in
the xy-plane to points on the paraboloid of revolution z = x2 + y2. As we mentioned,
the downwards-looking faces of the convex hull of the lifted images of a collection of
sites in the xy-plane correspond to the Delaunay diagram of the sites. In this prob-
lem we will investigate what the upward-looking faces correspond to. These define
planes that have all all other lifted sites not above but below them, implying that the
corresponding triangles in the plane have circumcircles that contain all the other sites
inside.

(a) Prove that these triangles form a triangulation of the convex hull of the sites; in
other words, prove that the sites that are included in the triangulation are exactly
the sites on the convex hull.

(b) The dual of this triangulation defines a new Voronoi diagram (partition of the
plane) of the original sites. Show that this diagram is actually the furthest point
Voronoi diagram of the sites, where the Voronoi region of a point p is defined to
be the set of all points that are farther from p than any other point in the set. Use
this to show that sites not on the convex hull have empty Voronoi regions in this
diagram.

(c) How fast can the furthest point Voronoi diagram be computed?

• The Programming Problem

Problem 5. [35 points]

Kinetic Delaunay Triangulation:
The goal of the problem is to produce an animation of the Delaunay triangula-

tion among moving points in the plane. The points will follow linearly parametrized
motions and will be confined to move within a specified square in the plane. The
latter constraint will be enforced by having the point bounce (reflect) off the walls of
the square container. When they do so, their entire trajectory is reflected around the
bounding wall. The points themselves have a ‘non-zero size’ (think of small disks of
a fixed radius), and so they bounce off each other when their disks collide.

Since the motion of the points will be simple and predictable in the short term, this
is an ideal setting for using the framework of Kinetic Data Structures, which are event-
driven structures that allow the efficient maintenance of geometric attributes. We re-
marked in class that a Delaunay triangulation can be certified locally: if every edge of
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the triangulation is locally Delaunay (passes its InCircle test), then the whole trian-
gulation is globally Delaunay. This implies that the points can move and, as long as
all the edge InCircle tests remain valid, the triangulation is still Delaunay. Since we
know the motion of the points, we can predict when these InCircle certificates will
fail. If we put these failure times into an event queue, we can then allow the motions
to proceed until the first certificate fails. At that instant the Delaunay triangulation
can be repaired with a single operation, the edge-flip we discussed in class. The new
edge must then add the failure time of its InCircle certificate to the the event queue,
and the simulation can proceed.

The above is a very simple example of kinetic proof repair for the certification of a
geometric structure. More information about this approach and several worked out
examples can be found in handout 4 and the following two papers, which can be
accessed on from the “Lecture Notes” part of the class web page.

1. Kinetic data structures — a state of the art report, L. Guibas. Proc. 3rd Workshop on
Algorithmic Foundations of Robotics, Houston, TX, 191–209, 1998.

2. Data structures for mobile data, J. Basch, L. Guibas, and J. Hershberger. J. Algo-
rithms, 31, 1–28 (1999).

Download the zip file for the assignment from the Handouts page on the course
web site. This zip file contains starter code in Java and README file that explains
how to setup Java programming environment. Feel free to contact the CA if you have
any problem starting the homework.

The code uses the half-edge data structure for storing triangulations – you may read
more about this data structure here http://cs184.eecs.berkeley.edu/cs184_
sp16/article/7.

You have been provided with starter code that, when run, looks just like what your
code should look like when it is complete; it is simply (far) less efficient than what we
are aiming for. In particular, the starter code does the following:

• It reads in the input files to load the points and their initial trajectories. It then
computes an initial Delaunay triangulation of the point set. This section is fine
as is. Note that the triangulation includes an additional enclosing triangle for
convenience, as discussed in class. This means that changes to the convex hull
of the point set are simply changes to Delaunay edges involving this enclosing
triangle, and so a single edge flip event type suffices to handle all changes to the
triangulation.

• It provides a half-edge data structure (with all half-edges oriented counterclock-
wise) for your use in manipulating the triangulation. Edge flipping is already
implemented; all you need to do is call it at the appropriate times. If you require
assistance traversing the half-edge data structure, please come to office hours.

• It handles the real-time rendering and updating of the point set. You do not need
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to touch the rendering code; you will be focusing on when to insert and remove
events.

• Every time it renders the triangulation, it first recomputes the triangulation from
scratch, using the current position of the points. This is clearly way too slow, but
it allows you to see what your output needs to look like.

• It maintains an event queue of all potential reflection and collision events, be-
tween all points and the walls, and between all pairs of points. This gives you
an idea of how events work in kinetic data structures; however, it is currently
slower than our goal, since it maintains more potential events than is necessary.

• It provides a variety of utility methods that you will find useful; the most impor-
tant one is the one that computes the failure time of an edge in order to generate
an edge flip event. Note that these events currently do nothing, nor are they
inserted into the event queue.

While it is entirely possible to do this assignment without opening several of the
starter code files, we encourage you to briefly read over all of the files to understand
how they fit together. Obviously, you should carefully read the files you need to mod-
ify.

The starter code contains a few TODOs marked in two files: Manager.java and
EdgeFlipEvent.java. The Manager.java file handles the bulk of the work, in-
cluding the management of the event queue. The EdgeFlipEvent.java file han-
dles the processing of edge flip events in particular. You must modify these two files
to complete the following 3 (interconnected) tasks:

• You must not recompute the triangulation; instead, you must update it on the
fly.

• You must handle edge flip events. This includes not only flipping the edge that
fails, but also inserting additional edge flip events and updating any associated
reflection and collision events. Furthermore, be warned that the processing of
reflection and collision events can affect the edge flip events of incident edges.

• You must be more efficient with reflection and collision events. In particular,
only points currently on the convex hull of the point set should have their re-
flection events tracked, and only pairs of points sharing a Delaunay edge should
have their collision events tracked.

For up to 5 points extra credit, you may augment your code to support constant
acceleration on any or all of the points.

Submission instructions: Pack all of your source files into a single zip file and email
the file to the CA (mhsung@cs.stanford.edu). Include a README file with the names
of all team members, and what augmentations (if any) you make to the input format
to handle the extra credit.


