Lecture \#4: $\quad 6$ April 2011
Topics: A Weak Upper Bound on Lower Envelopes of Line Segments
Scribe:
Nan Hu

Lower Envelope of Segments

Let $\mathcal{L}=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ be a set of n nonvertical line segments in the plane, in general position. By general position we mean that any two segments intersect in at most a single point, and that no three segments share a single point. Let $\mathcal{A}(\mathcal{L})$ denote the arrangement of \mathcal{L}. An intersection point p between the interiors of two segments of \mathcal{L} is said to be a k-level inner vertex of $\mathcal{A}(\mathcal{L})$ if there are exactly k segments in \mathcal{L} passing strictly below p. (We refer to such vertices as inner vertices, to distinguish them from the endpoints of the segments.) Let $C_{k}(\mathcal{L})$ denote the number of k-level inner vertices in $\mathcal{A}(\mathcal{L})$, and let $C_{k}(n)$ denote the maximum of $C_{k}(\mathcal{L})$ over all sets of n segments in the plane, in general position. We want to bound $C_{0}(n)$, the maximum number of inner vertices on the lower envelope of \mathcal{L}. It is well known that $C_{0}(n)=\Theta(n \alpha(n))$; here we only prove a weaker upper bound of $O(n \log n)$. For a similar proof of the theorem from a probabilistic point of view, interested readers are referred to [1].

Theorem 1. For n line segments in the plane, the complexity of the lower envelope is $O(n \log n)$.

Proof:

1. Let p be a 0 -level inner vertex of $\mathcal{A}(\mathcal{L})$. We sweep a vertical line from p to the right, and stop the sweeping as soon as we encounter one of the following two types of events (see Fig. 1):
(i) We reach an endpoint of one of the segments.
(ii) We reach a 1-level vertex.

An important observation is that the sweeping line can never reach a 0-level inner vertex before any of these events are encountered, so we can reach every such event only from (at most) one 0 -level vertex. Let $D(\mathcal{L})$ denote the number of events of type (i); we clearly have $D(\mathcal{L})<2 n$, which leads to the inequality

$$
\begin{equation*}
C_{0}(\mathcal{L}) \leq C_{1}(\mathcal{L})+D(\mathcal{L})<C_{1}(\mathcal{L})+2 n . \tag{1}
\end{equation*}
$$

2. We now consider removing each of the line segments in turn. Let \mathcal{L}_{i} be the set of line segments with s_{i} removed, namely, $\mathcal{L}_{i}=\left\{s_{1}, \cdots, s_{i-1}, s_{i+1}, \cdots, s_{n}\right\}, c_{i}=C_{0}\left(\mathcal{L}_{i}\right)$, and $C=\sum_{i} c_{i}$. Each 0-level inner vertex p of $\mathcal{A}(\mathcal{L})$ will appear as a 0 -level vertex of

type (i) event

type (ii) event

Figure 1: Sweeping from a 0-level inner vertex: terminal events of type (i) and (ii).
$\mathcal{A}\left(\mathcal{L}_{i}\right)$ if and only if the two intersecting segments containing p are in \mathcal{L}_{i}. This happens $(n-2)$ times in all \mathcal{L}_{i} 's. Similarly, each 1-level inner vertex p^{\prime} of $\mathcal{A}(\mathcal{L})$ will appear as a 0-level vertex of $\mathcal{A}\left(\mathcal{L}_{i}\right)$ if and only if the segment in \mathcal{L} below p^{\prime} is not chosen in \mathcal{L}_{i}. This will happen once for each p^{\prime}. Besides that, no other inner vertex of $\mathcal{A}(\mathcal{L})$ can appear as a 0 -level vertex of $\mathcal{A}\left(\mathcal{L}_{i}\right)$. Above all, we will have

$$
\begin{equation*}
C=(n-2) C_{0}(\mathcal{L})+C_{1}(\mathcal{L}) \tag{2}
\end{equation*}
$$

3. From (1) and (2), we have

$$
\begin{aligned}
(n-1) C_{0}(\mathcal{L}) & =(n-2) C_{0}(\mathcal{L})+C_{0}(\mathcal{L}) \\
& \leq(n-2) C_{0}(\mathcal{L})+C_{1}(\mathcal{L})+2 n \\
& =C+2 n
\end{aligned}
$$

While $C_{0}(n)=\max _{\mathcal{L}} C_{0}(\mathcal{L})$, clearly we will have

$$
\begin{equation*}
(n-1) C_{0}(n)=\max _{\mathcal{L}} C_{0}(\mathcal{L}) \leq C+2 n \leq n C_{0}(n-1)+2 n . \tag{3}
\end{equation*}
$$

Therefore, we would have the following recursive relationship (by simply dividing $n(n-1)$ on both sides of (3))

$$
\frac{C_{0}(n)}{n}-\frac{C_{0}(n-1)}{n-1} \leq \frac{2}{n-1} .
$$

Summing over all n, and note that $C_{0}(2)=1$, we have

$$
\begin{aligned}
C_{0}(n) & \leq n\left(C_{0}(2)+2 \sum_{i=1}^{n-1} \frac{1}{i}\right) \\
& =n\left(1+2 H_{n-1}\right)=O(n \log n)
\end{aligned}
$$

An event on the lower envelope will be to encounter either i) an endpoint or ii) a $0-$ level inner vertex. As the total number of endpoints on the lower envelope is bounded by $2 n$, the overall complexity of the lower envelope will be $O(n \log n)$. Q.E.D.

References

[1] Boaz Tagansky. A New Technique for Analyzing Substructures in Arrangements of Piecewise Linear Surfaces. Discrete and Computational Geometry, 16(5), pp. 455479, 1996.

