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Homological Sensor Networks

It’s all linear algebra ...



Topology and Topology Inference

+ Topology is the branch of mathematics that studies the
connectivity of spaces, and the obstructions to such
connectivity

+ Topology studies global structure

Algebraic

Topological structures:

Spaces vector spaces,

groups, rings

algebraic topology

Sampled

approximations,
complexes




From Data to Algebraic Objects

~ ==__ Pierre Antoine Grillet
() Abstract Algebra
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Homology groups as
data descriptors




Topology

The bridges of
Kéningsberg




Connectivity for 2-Manifolds:
Ordinary Surfaces

¢+ Topology does not take distances too seriously — we are
allowed to stretch and shrink

+ Homeomorphism: 1-1, onto, bi-continuous

=

¢+ But we care about cutting, puncturing, stitching, gluing ...

+ Note: connectivity information is indexed by dimension



2-Manifold Zoo

Vv
,¢" | _-Foud
Sphere

() {r € R3 | |z| =1} (b) Identify boundary to v (¢) Instructions for a flat sphere
v b v ; e
E ~Fold «_
a A A a :" dim =
; o Torus
v b v :
(a) Donut surface (b) Diagram (c) Instructions for a flat torus
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S

(a) Embedded

1% b v

al Ya

v 5' 1%
(a) Diagram

More Exotic Animals

y d

(b) Diagram

w
ak
v
v b v
al ya
v b s
(a) Diagram

(b) An immersion

(c) Escher’s Mébius Strip II (on its side)

(¢) Cut in half (a
Maibius strip)

Mobius strip

Projective plane

Cut
e —
(b) Instructions for a flat RP2
Cut
A
// ' _~Fold
d — cut
1 L

~
= \1 :i
Fold Y

Part of cylinder is
passed through the cut

Line /

Klein bottle

(d) Instructions for a flat K2
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Projective Plane

12



Connected Sums

C@\ (= (=D
N N N

+ Classification Theorem of 2-Manifolds (1860): Every closed
connected compact surface is a connected sum of a sphere
with a number of tori and projective planes (sphere + handles
+ Cross cups)

Klein bottle = sphere + 2 cross cups

Handle Cross cup =



J. Conway’s ZIP Proof
(Zero Irrelevancy Proof)

Cross cup




Sampled Spaces

15



Recovering “Shape” from Sampled
Data

o O Oo
Oo OOOOgO °
o] % OO 8 Oo
00 o o) 5
Cboooo O
o] O
O . .
5 D & 1. Set of points in R?
Q O ]
g ° o 5 ° 2. Looks like an annulus.
O
o) o -8 5
O o O@ O%OOOO
o ot OO o ® 5
O
2 Oog 05
What is this?

What does it look like ?

Aim: recover the topology of the underlying space from which the data was sampled 16



Example: The Space of Natural Images
(Carlsson, Ishkanov, de Silva, Zomorodian IJCVC 2008)

¢+ Lee-Mumford-Pedersen investigated whether a statistically
significant difference exists between natural and random
Images

+ Natural images form a “subspace” of all images. Dimension of
ambient space e.g. 640 x 480 = 307 200

+ This space of natural images should have:
+ high dimension: there are many different images

#+ even higher co-dimension: random images look nothing like natural
ones

¢+ Data is a collection of black-and-white images used in
cognitive science research
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* * » »

Natural 3 x 3 Patches

Instead of studying entire images, we consider the
distribution of 3 x 3 pixel patches

Most of these are roughly constant in natural images -- they
drown out structure

L.M.P. chose 8,500,000 patches with high contrast
Each 3 x 3-patch is considered a vector in R®
Normalize brightness: R°® — R8

Normalize contrast: R® — S’

18



High-Density Areas

A F
Q highest density
- ™

[l[l[l EEQ
|l 1 — =
E —

next highest density
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Klein Bottle of Pixel Patches

—

IR N




Klein Bottle Structure

N

—
N
1l
A\ 4

V—/—4—4
—
. I N
I
y i 4

/
—
N
|

N\ (B1 = 5)

(source: [Carlsson, Ishkhanov, de Silva, Zomorodian 2008])
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Applications of the Analysis

+ An efficient way to parametrize image patches

+ Image compression: a 3 x 3-cluster may be described using 4
values
+ Position of its projection onto the Klein bottle
+ Original brightness
+ Original contrast

¢+ Texture analysis: textures yield distributions of occurring
patches on the Klein bottle. Rotating the texture corresponds
to translating the distribution.

22



Simplicial Complexes:
Combinatorial Topology

23



A Simplex

e A k-simplex is the convex hull of £ + 1 affinely independent points

S = {vg,v1,...,v;}. The points in S are the vertices of the simplex.

* A k-simplex is a k-dimensional subspace of R?, dim o = k.

b b
c
- a
a a b a
¢ d
vertex edge triangle tetrahedron
a [a, b] [a,b,c] [a,b,c.d]
=0 =1 d=2 d=3

24



o: a k-simplex defined by S = {vg,vi,..., v }.
7 defined by 7" C S'is a face of o

Faces / Subsimplices

o 18 1ts coface.

c>rTand 1T < 0.

oc<ocando > 0.

vertex

edge
[a. b]

c

b

A

triangle
[a,b,c]

ca

d

tetrahedron
[a,b,c,d]

25



Simplicial Complexes

A simplicial complex K is a finite set of simplices such that
lL.ocoe K,1<o=71€K,
2. 0,00 e K=0nNdo' <o,dorcnd =0.

The dimension of K is dim K = max{dimo | o € K}.
The vertices of K are the zero-simplices in K.

A simplex is principal if it has no proper coface in K.

(left) an example (right) a non example

26



Good Models for Sensor Networks




vertex

a
k/L|0 1 2 3
01 0 0 0
1 {2 100
2 13 310
3 14 6 4 1
41?2 2 2 2

Binomial coefficients

Size of a Simplex

edge triangle tetrahedron
[a, b] [a,b, ] [a,b,c,d]

¢ () is the (—1)-simplex.

k+1

e A k-simplex has (£+1

) faces of dimension [

zk: k+1 _ ok+1
[+1) ~

[=—1

e Total size 1s:

28



Abstract Simplicial Complexes

e An abstract simplicial complex is a set K, together with a collection

S of subsets of K called (abstract) simplices such that:
1. Forallv € K, {v} € 8. We call the sets {v} the vertices of K.
2. If rC o€ 8,thent € 8.

e We call S the complex.

Natural partial order structure -



Continuous to Discrete Link:
Triangulations

e The underlying space | K| of a simplicial complex K is
|K| = UO’EKJ-

e | K| is a topological space.

e A triangulation of a topological space X is a simplicial complex K
such that | K| ~ X.

u

30



Orientability

* An orientation of a k-simplex o € K, 0 = {vg,v1,..., 0k },v; € K

1s an equivalence class of orderings of the vertices of o, where

(V0,015 -+, V) ~ (V7(0)s Vr(1)s - - - s Vr(k))
are equivalent orderings if the parity of the permutation 7 1s even.

* We denote an oriented simplex, a simplex with an equivalence class
of orderings, by |o].

b b
c
L ] *——>»—8 a
a a b a
¢ d
vertex edge triangle tetrahedron
a [a. D] [a.b,c] [a.b.c.d]

31



Orientability

* Two k-simplices sharing a (k — 1)-face o are consistently oriented if
they induce different orientations on o.

* A triangulable d-manifold is orientable if all d-simplices can be
oriented consistently.

e Otherwise, the d-manifold is non-orientable

b
° ~ » o
a a b a
c
vertex edge triangle tetrahedron
a [a, b] [a,D, ] [a,b,c.d]

32



Euler Characteristic: A Topological
Invariant

K a simplicial complex with s k-simplices.

The Euler characteristic y (/) is

dim K
(K)= 3 (-Disi= 3 (-nime
1=0 ceK—{0}

* v — e+ f =1 (Graph Theory)

Invariant for | K|

Any triangulation gives the same answer!

Intrmsic property

33



More on Euler

2-Manifold

A Sphere S?
Torus T?

Klein bottle K2

—_ O O o |2

Projective plane RP?

(Theorem) For compact surfaces My, M,
x(My # M) = x(My) + x(M2) — 2.

x(gT?) =2 —2g
X(gRP*) =2 —g

The connected sum of g tori 1s called a surface with genus g.

34

# denotes connected sum



Topological Classification via
Invariants

e (Theorem) Closed compact surfaces M; and M are homeomorphic,
My ~ My iff
l. X(Ml) — X(Mg) and

2. either both surfaces are orientable or both are non-orientable.
o “iff” so tull answer. We’'re done!

* Higher dimensions?

This is what classical topology tries to do

35



Algebraic Structures:
Groups, Vector Spaces

36



Groups

A group (G, %) is a set (&, together with a binary operation * on G,
such that the following axioms are satisfied:

(a) = 1s associative.

(b) G has an identity e element for = such thate * © = x x e = x for
all z € G.

(c) any element a has an inverse a’ with respect to the operation =,
ie.Va € GG,da’ € Gsuchthata' xa = ax*a’ = e.

If G is finite, the order of G is |G].
We often omit the operation and refer to (7 as the group.
(Z,+), (R, -), (R, +), are all groups.

A group G is abelian if its binary operation * is commutative.

37



Subgroups

Let (G, %) be a group and S C G If S is closed under *, then * is the
induced operation on .S from G.

A subset H C G of group (G, *) is a subgroup of GG if H is a group
and 1s closed under *. The subgroup consisting of the 1dentity
element of &, {e} is the trivial subgroup of G. All other subgroups
are nontrivial.

(Theorem)H C G of a group (G, *) is a subgroup of G iff:

1. H 1s closed under x*,

2. the identity e of G'isin H,
3. foralla € H,a ' € H.

Example: subgroups of 7,

38



Cosets

Let H be a subgroup of . Let the relation ~, be defined on G by:
a~p biffa='b € H.Let ~p be defined by: a ~p biffab™! € H.

Then ~ and ~p are both equivalence relations on .

Let H be a subgroup of group 5. For a € (&, the subset

aH = {ah | h € H} of G is the left coset of H containing a, and
Ha = {ha | h € H} is the right coset of H containing a.

If left and right cosets match, the subgroup 1s normal.

All subgroups H of an abelian group & are normal, as

ah = ha,Ya € G,h ¢ H

{0, 2} is a subgroup of Zy4. It is normal. The coset of 1 is
1 4+{0,2} = {1,3}. That’s all folks!

39



Factor / Quotient Groups

* Let H be a normal subgroup of group G.

* Left coset multiplication 1s well-defined by the equation

(aH)(bH) = (ab)H
 The cosets of H form a group G/ H under left multiplication
e (G/H is the factor group (or quotient group) of G modulo H.

* The elements in the same coset of H are congruent modulo /.

40



Example

Z,
0
2
4
1
3
5

h W = | D OO
= n W O = |
WD = N OO &
S kB RN W =

PR O (= W W
= 0 S |WwW o= ||

« {0,2,4} is a normal subgroup
e Cosets {0,2,4},{1,3,5}
¢ ZS/{O* 2* 4} = ZQ

41



Group Homomorphisms

* A map ¢ of a group G into a group G’ is a homomorphism if
p(ab) = p(a)p(b) forall a,b € G.

o If e is the identity in &, then p(e) is the identity €’ in G’.

Ifa € G,then p(a™!) = p(a)™ 1.

If H is a subgroup of 7, then p(H ) is a subgroup of G’.

If K’ is a subgroup of , then ' (K”) is a subgroup of G.

The normal subgroup ker ¢ = o~ 1({e’}) C G, is the kernel of (.

42



Decompositions for
Finitely Generated Abelian Groups

Let G1,Go,...,G, be groups.
The set is H?:l (7; (Cartesian product)

Binary operation:

(al,ag, cee an) X (bl, bg, Cee bn) = (albl,agbg, e ,anbn).
Then ([];_, G;, x) is a group.
We call it the direct product of the groups G;.

Sometimes called direct sum with .

(Theorem) Every finitely generated abelian group is 1somorphic to
product of cyclic groups of the form

Ly X Loy X oo X i, X L X X ... X 1,

where m; divides m; 4y fore =1,...,r — 1.

The direct product is unique: the number of factors of Z is unique
and the cyclic group orders m; are unique.

* Free: basis, rank, vector space

* Torsion: module

43



Homological Algebra:
Functors and Categories

44



Categories

A collection Ob(€) of objects

Sets Mor( X, Y') of morphisms for each pair X,Y € Ob(C)

An identity morphism 1 = 1x € Mor (X, X) for each X.

* a composition of morphisms function
o:Mor(X,Y) x Mor(Y, Z) — Mor(X, Z) for each triple
X,Y.Z € 0Ob(C),satisfying fol =10 f = f, and

(fog)oh=fo(goh).

* A category C

45



Example Categories

category morphisms
sets arbitrary functions
groups homomorphisms

topological spaces

topological spaces

continuous maps

homotopy classes of maps

46



Functors

A B

Category C

Category D Q F)

e X E€C F(X)eD,
e feMor(X,Y),F(f) e Mor(F(X),F(Y))
* F(1)=1and F'(fog) = F(f)o F(g)

e F'1is a (covariant) functor

47



Functoriality

transformation of input = transformation of output
Specifically, this is a commutative diagram:

A |

Ho(X) 2O 1oy

Moral: Invariants are not artifacts of arbitrary choices!

48



Algebraic Topology:
Homology

49



Topology of Simplicial Complexes

A simplicial complex is a collection of sim-

plices
> & » Each simplex has a dimension.
b () abe () c > Collection is closed under subset relation.
be » Simplices of dimension d have d + 1
o S vertices
de » Each simplex represented by an ordered
O O list of vertices

50



Chain Groups

Other coefficient

fields/rings also OK
Simplicial complex A

k-chain: ¢ = ) . ni[oi|,ni € Z,0; € K (like a path)
o] = —|7] if 0 = 7 and ¢ and 7 have different orientations.

The kth chain group C;, of K is the free abelian group on its set of
oriented k-simplices

rank C, =7

51



Boundary Operator

The boundary operator d : C, — Cj_1 1s a homomorphism defined
linearly on a chain ¢ by 1ts action on any simplex

o = [vg,v1,...,0] € c,

oo = Y (=1)'[vo,v1,.. ., i, .. vk,

i
where v; indicates that v; is deleted from the sequence.
O1la,b] =b—a.

Balab, ] = [b,¢] — [a,c] + [a, 5] = [b, ] + [c,a] + [a,b].

Osla,b,c,d| = |b,c,d| — |a,c,d] + |a,b,d| — |a, b, c|.

52



Boundary Examples

e 01[a,b] =b—a.

o Oyla,b,c] = [b,d — [a,d + [a,b] = [b, ] + [c, a] + [a,b].
e O3[a,b,c,d] = [b,c,d] — [a,c,d] + [a,b,d] — [a,b,d].

e 0105[a,b,d] = [c] — [b] — [c] + [a] + [b] — [a] = O.

b b
c
* —>—2» a
a a b a
¢ d
vertex edge triangle tetrahedron
a [a, b] [a,b,c] [a,Db,c,d]
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Boundary Theorem

e (Theorem) 9y._10; = 0, for all k.

* Proof:

8k_13k[’003 Ulyen vy Uk] —

= 1 Z(_l)i[vﬂavla“'aﬁia'“avk]

as switching 7 and j in the second sum negates the first sum.
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Chain Complex

* The boundary operator connects the chain groups into a chain

complex C,:

dk+1
.—>Ck_|_1 Ck Ck 1 = oo

8]':+1

55



Cycle Group

Let ¢ be a k-chain
If it has no boundary, it is a k-cycle (zycle?)
Orc = 0, s0 ¢ € ker O

The kth cycle group is

Z;. = kerd,, = {C c C,. | orpc = @}

56



Boundary Group

* Let bbe a k-chain
e If b is a boundary of something, it is a /~-boundary.

e The £th boundary group is

B, = im 8“1 = {C c Cy | dd € Ck+1 . C = 8k+1d}.

57



Boundaries are Cycles!

Let b be a k-boundary.

Then, d¢ € C1,such that b = Oy c.

What is the boundary of b?

Okb = OkO41c =0,

by the boundary theorem.

That 1s, every boundary is a cycle!

Nesting behavior

58



Equivalent Cycles

z 18 a k-cycle

b 1s a k-boundary

We would like to have z + b be equivalent to =z

That is, if z; — 20 = b where b is a boundary, then z; ~ 2z

Any boundary would do!

z+b

Cosetsl!

59



Simplicial Homology

* The £th homology group is

Hk = Zk/Bk = ker@k/im(?kﬂ.

* If 2y = 20 + By, 21, 20 € £, we say 21 and z9 are homologous

® 21 ~ 29.

60



To Repeat

In other words..

a
» The kernel (null space) of Jx is the vector
> : > space of cycles in dimension k.
b () ab - () c » The image of Ok is the subspace of
¢ boundary cycles in dimension k — 1.
[ 8  Homology of a space X is the quotient:
O A Hi(X) = ker(dx)/ im(Ok1)

61



Homology of 2-Manifolds

(a) Sphere

2-manifold Ho H, Ha
sphere Z {0} Z
torus Z 7 X 7 7
projective plane || Z L {0}
Klein bottle Z | Zx1Zy | {0}

) {?_ ) b 14

al al y a

! b 1 b v

(b) Torus (c) Projective

plane

! b !

al ya

v b v
(d) Klein bottle
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Homology Groups

Homology groups are finitely generated abelian.

(Theorem) Every finitely generated abelian group 1s isomorphic to
product of cyclic groups of the form

Liypy X Loy X oo X Lagn,. X L X L X ... X 1L,

The kth Betti number 35 of a simplicial complex K is B = B(Hg),
the rank of the free part of Hy.

Torsion coefficients

* Alexander Duality:
— (o measures the number of components of the complex.
— (31 is the rank of a basis for the tunnels.

— [35 counts the number of voids in the complex.
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Invariance of Homology Groups

* (Hauptvermutung) Any two triangulations of a topological space

have a common refinement (Poincaré 1904)
— True for polyhedra of dimension < 2 (Papakyriakopoulos 1943)
— True for 3-manifolds (Moise 1953)
— False 1n dimensions > 6 (Milnor 1961)
— False for manifolds of dimension > 5 (Kirby and Siebenmann

1969)

* Singular homology
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In Vector Spaces

s

S

V =~ ker(f) @ im(f)

65



Euler Revisited

Let K be a simplicial complex and s; = |{oc € K | dimo = i}|. The
Euler characteristic (/) is

dim K
1=0 ce K—{0}
We have new language!

Let C, be the chain complex on A
rank(C;) = [{o € K |dimo =i}| (=n; = 2z; + b;_1)
X(K) = x(C.) = >,(=1)* rank(C;).

> (=1 (zi + bic1) = 2,(=1) (2 — by)
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Euler -

* Homology functors H.

e H.(C.,) is a chain complex:

Poincare

k41 e

o— Hyyr — Hy — Higg — oL

e What 1s i1ts Euler characteristic?

e (Theorem) x(K) = x(C,)

= x(H(Cy)).

¢ Zz‘(_l)iSi = Zi(—l)irank(Hi) = Zz‘(_l)iﬁi

e Sphere: 2=1-0+1
e Torus: 0=1-2+41

S (=1)zi +bim1) =D (1) (2 —

bi)
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Persistent Homology

68



Persistent Homology

Slides ack: Afra

Zomorodian, Ryan Lewis,

Fred Chazal, Robert Ghrist
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Sampled Data

o 045 00O
00 0 O g 5
) . Op
0o © = o
00
oS o}
(@] OO
o}
o o
o ® %
2 o ° 5
° o
o
o
o}
o 080 ©
0 0
© o O(p OOOO'
8 o]
o) oo
PN o o
Q © 0,4
© o0

Has “Shape”

2-dimensional

Approximates annulus
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Goal:

Sampled Data Has “Shape”

2-dimensional

Approximates annulus

Topological features of annulus:

1 component (By = 1)
1 loop (51 = 1)

Recover topology of annulus from point cloud

We do so by building various complexes on the point cloud

71



Complexes on Point
Clouds

12



e-Balls

o c-ball: Be(x) ={y | d(x,y) < €}.
* Open sets and topology

* Manifold is M = |, .5, Be(m:)
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A Model Space

For a dataset X we study the
topology of the union of balls

Me = | ] B(x)
xeX
Two lIssues:
Scale: No natural choice of €l

Conception: How to encode
M, on computer?
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Complex Zoo

Must choose which simplices to introduce

Cech Alpha Rips

oA

Combinatorial complexes provide discrete representations
of the underlying space

75



Cech Complex

« Co(M)={convT |T C M, ,,.crBe(msi) #0}.

* 2o (k) =2 -1

—

e C.(M)~M

76



Cech Complex

The Cech complex C. encodes the

Points as vertices
(0-cells)

intersection pattern of M.: Encode:

77



Cech Complex

The Cech complex C. encodes the
intersection pattern of M.: Encode:

Points as vertices
(0-cells)

Pairwise intersections
as edges (1-cells)

78



Cech Complex

The Cech complex C. encodes the
intersection pattern of M.: Encode:

Points as vertices
(0-cells)

Pairwise intersections
as edges (1-cells)

Threeway intersections
as triangles (2-cells)

k-way intersections as
Co (k+1)-cells

Lemma (Nerve Lemma, Leray '45)

W

Ce is topologically equivalent to M.. Can be hard to compute ...

79



General Cech Complex

) {-
u

e Let U = (U;)ics be a covering of a topological space X by open sets:
X = UerU;.

e The Céch complex C'(U) associated to the covering U is the simplicial
complex defined by:
- the vertex set of C'(U) is the set of the open sets U;
- [Uig, -+ ,Us, ) is a k-simplex in C(U) iff N*_oU;, # 0.

80



General Cech Complex

) {-
W &

Nerve theorem (Leray): If all the intersections between opens in U/ are either
empty or contractible then C(U) and X = U;c;U; are homotopy equivalent.

= The combinatorics of the covering (a simplicial complex) carries the
topology of the space.

Warning: even when the open sets are euclidean balls, the computation of

the Cé&ch complex is a very difficult task! o



Rips-Vietoris Complex

The “poor man’s” alternative
to the Cech

This is a common complex
For computations

* Ra(M)={convT | T C M, dim;,m;) <e,mim; €T}.
e Sull O ((TE)) for the kth skeleton
e Need (k + 1)st skeleton for computing Hj,
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Rips vs. Cech

N Rips vs Cech N

Let L = {po,---pn} be a (finite) point cloud (in a metric space).
The Rips complex R*(L): for po,---px € L,

o = [pop1---pr) € RY(L) iff Vi,j €{0,---k}, d(pi,pj) <«

e Easy to compute and fully determined by its 1-skeleton

e Rips-Cech interleaving: for any o > 0,

C%(L) S R(L) CC*(L) SR**(L) S -+ N



Alpha Complex

b V(mg
C V(mg
) Ae — {COHVT | T C Mﬂ nmszT V(mt) # Q)}

={z € R? | d(z,m;) < d(z,m;)Vm; € M}
= B.(m;) N V(m;)

)
)

e A(M) ~ M, A, C D, the Delaunay complex

e O(nlogn + nld/2] 84



Alpha Complexes on the Stanford
Bunny

hHhhen

* 34 834 points, 1,026,111 complexes

85



Computing Homology
via Bases

86



Homology

e The kth homology group is
Hk = Zk/B,{u — ker @k/iﬂl 3,{3+1.

e Compute a basis for ker 0

» Compute a basis for im Oy

87



Matrix Representation of O

Boundary homomorphism is linear, so it has a matrix
ak;: Ck — Ck—l
Use oriented simplices as bases for domain and codomain!

My, 1s the standard matrix representation for J

[ ab bec ed ad ac
a
b al-1 0 0o -1 -1
M, = b 1 —1 0 0 0
cl 0 1 —-1 0 1
d c 4|0 0 1 1 0

[Two glued triangles, not the tetrahedron ...]




Elementary Matrix Operations

* The elementary row operations on M, are
1. exchange row 7 and row 7,
2. multiply row z by —1,
3. replace row ¢ by (tow 7) + g(row j), where ¢ 1s an integer and
J F# 1.
e Similar elementary column operations on columns

» Effect: change of bases
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Questions

How do we find cycles?
How do we find boundaries?
What does a free generator correspond to?

How does a torsional element appear?
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Reduction Algorithm

* Like Gaussian elimination, we keep changing the basis to get to the
(Smith) normal form:

- ) _
0
fﬁk = 0 bﬁ""
0 0
e [, = rank M, = rank M, b¢ > 1
 b;|biy1 foralll <i < I, b; =1 Vi, if no torsion
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Smith Normal Form

rank Cp

I rankzp S

rank B, _;

rank G, _

Introduce columns from let to right
Keep doing Gaussian elimination steps ...
For a complex with m simplices, this can take O(m3) operations
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Reduction Example

a b
d c
[ cd be ab | z1 22_
d—c¢c| 1 0 010 0
M, = c—b| 0 1 0110 0
b—al|l 0 O 110 0
|« 0 0 00 0

* 21 —ad — bc — ed — aband z9 = ac — be — ab form a basis for Z4

* {d—c,c—bb— a} isabasis for By



Mo

Reduction Example

abc acd |
ac | —1 1
ad | 0O —1
Mz = ed| 0 1
be 1 0
| ab | 1 0
I —abe —acd 4+ abe |
ac — bc — ab 1 0
ad — c¢d — be — ab 0 1
cd 0 0
bc 0 0
ab 0 0
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Can Simplify for Complexes in R3 / S3

¢ Use a filtration

[0 ]l ab J][L |[ab%||[2 |[cdad]|[3 || ac ||[ 4 ][ abe ||[5 || acd |

A filtration of acomplex Kis ) = K°C K! C...C K™ =K.

A filtration 1s a partial ordering

Sort according to dimension

Break other ties arbitrarily

Algorithm for K = S?



Alexander Duality, Complements

* Alexander Duality:
— [3p measures the number of components of the complex.
— (31 1s the rank of a basis for the tunnels.

— [35 counts the number of voids in the complex.

* An incremental approach:
— add each simplex in turn

— check to see 1f we form a new cycle class or destroy one.

B = rank (of the free part) of Hy
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Vertices

Vertices always add a new component, so Fo+.

Union-find data-structure:
— MAKESET: mitializes a set with an item
— FIND: finds the set an element belongs to

— UNION: forms the union of two sets
Very simple to implement
O(n) space
Amortized a(m) FIND, UNION

MAKESET for each vertex

By requires maintaining connected components
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Edges

(@) Bo-

* (a) Two FINDs, one UNION

e (b) Two FINDs

(b) B1+
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Triangles and Tetrahedra

@ B1—- (b) Bo++

e Tetrahedra always fill voids, so 3--
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simplices )

sensors and simplices each have knowledge only of
their identities and of their local connectivity...



networks & complexes

given node id’s, local communication links O[Hl generator]

count nodes & cancel via signal connectivit

Co «— C «—C, «— Cj «— ...
[nodes]  [pairs] [triples]  [quads]

the Rips complex of a network
IS the maximal simplicial completion<———
P ity S =

[environment]

homology converts higher-order network connectivity into global structure...
...without coordinates; density assumptions; uniform distributions, etc.



coverage assumptions

1. compact polygonal domain D in R?
2. nodes broadcast unique id’s to neighbors
3. coverage regions of a 2-simplex of connected nodes contain the convex hull

4. dedicated fence cycle defines oD




coverage criterion

Theorem [DG]: under above assumptions, the sensor network covers the
domain without gaps if there exists [a] in H,(R_F) with daZ0

intuition: [a] “triangulates” the domain with covered simplices

proof: build a commutative diagram of homology groups V’
map (R, F)—(R2,0D) convex hulls of simplices /‘;
0.
H(R F ——— H
[~

H,(R2-p,éD) =0 lcr* o*lz “
/
S H,(R2,0D) %, H,(aD)
if p lies in D-o(R), then the left passes through zero
F J

commutativity of diagram yields a contradiction



The End
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