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Some Textbooks

3



Topological Data Analysis (TDA)

Topology — Computational 
Topology

Homology — Persistent Homology
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Homological Sensor Networks
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It’s all linear algebra …



Topology and Topology Inference

Topology is the branch of mathematics that studies the 
connectivity of spaces, and the obstructions to such 
connectivity
Topology studies global structure
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Topological
Spaces

Algebraic 
structures: 

vector spaces, 
groups, rings

Sampled 
approximations, 

complexes

algebraic topology



From Data to Algebraic Objects
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Homology groups as
data descriptors



Topology
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The bridges of
Köningsberg



Connectivity for 2-Manifolds: 
Ordinary Surfaces

Topology does not take distances too seriously – we are 
allowed to stretch and shrink

Homeomorphism: 1-1, onto, bi-continuous

But we care about cutting, puncturing, stitching, gluing …

Note: connectivity information is indexed by dimension
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2-Manifold Zoo
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Sphere

Torus



More Exotic Animals
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Möbius strip

Projective plane

Klein bottle

Cross cap + disk



Projective Plane
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Connected Sums

Classification Theorem of 2-Manifolds (1860): Every closed 
connected compact surface is a connected sum of a sphere 
with a number of tori and projective planes (sphere + handles 
+ cross cups)
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Klein bottle = sphere + 2 cross cups

Handle Cross cup



J. Conway’s ZIP Proof
(Zero Irrelevancy Proof)
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Cup

Cross cup

[Francis and Weeks, AMM, 1999]



Sampled Spaces
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Recovering “Shape” from Sampled 
Data

16Aim: recover the topology of the underlying space from which the data was sampled



Example: The Space of Natural Images
(Carlsson, Ishkanov, de Silva, Zomorodian IJCVC 2008)

Lee-Mumford-Pedersen investigated whether a statistically 
significant difference exists between natural and random 
images
Natural images form a “subspace” of all images. Dimension of 
ambient space e.g. 640 x 480 = 307 200
This space of natural images should have:

high dimension: there are many different images
even higher co-dimension: random images look nothing like natural 
ones

Data is a collection of black-and-white images used in 
cognitive science research
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Natural 3 x 3 Patches

Instead of studying entire images, we consider the 
distribution of 3 x 3 pixel patches
Most of these are roughly constant in natural images -- they 
drown out structure
L.M.P. chose 8,500,000 patches with high contrast
Each 3 x 3-patch is considered a vector in R9

Normalize brightness: R9 → R8

Normalize contrast: R8 → S7
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High-Density Areas
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highest density

next highest density



Klein Bottle of Pixel Patches
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Klein Bottle Structure
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Applications of the Analysis

An efficient way to parametrize image patches

Image compression: a 3 x 3-cluster may be described using 4 
values

Position of its projection onto the Klein bottle
Original brightness
Original contrast

Texture analysis: textures yield distributions of occurring 
patches on the Klein bottle. Rotating the texture corresponds 
to translating the distribution.
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Simplicial Complexes:
Combinatorial Topology
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A Simplex
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d=0 d=1 d=2 d=3



Faces / Subsimplices
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Simplicial Complexes
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Good Models for Sensor Networks
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Size of a Simplex
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Binomial coefficients



Abstract Simplicial Complexes
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Natural partial order structure



Continuous to Discrete Link:
Triangulations
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Orientability
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Orientability
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Euler Characteristic: A Topological 
Invariant
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More on Euler

34denotes connected sum



Topological Classification via 
Invariants
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This is what classical topology tries to do



Algebraic Structures:
Groups, Vector Spaces
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Groups
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Subgroups
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Cosets
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Factor / Quotient Groups
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Example
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Group Homomorphisms

42



Decompositions for
Finitely Generated Abelian Groups
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Homological Algebra:
Functors and Categories
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Categories
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Example Categories
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Functors
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Functoriality
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Algebraic Topology: 
Homology

49



Topology of Simplicial Complexes
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Chain Groups
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Other coefficient
fields/rings also OK



Boundary Operator
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Boundary Examples
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Boundary Theorem
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Chain Complex
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Cycle Group
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Boundary Group
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Boundaries are Cycles!
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Nesting behavior



Equivalent Cycles
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Cosets!



Simplicial Homology
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To Repeat
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Homology of 2-Manifolds
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Homology Groups
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Invariance of Homology Groups
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In Vector Spaces
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Euler Revisited
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Euler - Poincaré
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Persistent Homology

68



Persistent Homology
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Sampled Data Has “Shape”
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Sampled Data Has “Shape”
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We do so by building various complexes on the point cloud



Complexes on Point 
Clouds
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𝜖𝜖-Balls
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A Model Space
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Complex Zoo
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Čech Alpha Rips

Combinatorial complexes provide discrete representations
of the underlying space

Must choose which simplices to introduce



Čech Complex
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Čech Complex
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Čech Complex
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Čech Complex

79Can be hard to compute …



General Čech Complex
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General Čech Complex
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Rips-Vietoris Complex
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The “poor man’s” alternative
to the Čech

This is a common complex
For computations



Rips vs. Čech
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Alpha Complex
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Alpha Complexes on the Stanford 
Bunny
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Computing Homology
via Bases
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Homology
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Matrix Representation of 
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[Two glued triangles, not the tetrahedron …]



Elementary Matrix Operations

89



Questions
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Reduction Algorithm
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Smith Normal Form
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For a complex with m simplices, this can take O(m3) operations

Introduce columns from let to right
Keep doing Gaussian elimination steps …



Reduction Example
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Reduction Example
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Can Simplify for Complexes in R3 / S3

Use a filtration
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Alexander Duality, Complements

96



Vertices
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Edges
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Triangles and Tetrahedra
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topological 
methods for 
networks…



homological coverage



sensors and simplices each have knowledge only of 
their identities and of their local connectivity...

sensors simplices

homological coverage



the Rips complex of a network
is the maximal simplicial completion

given node id’s, local communication links
count nodes & cancel via signal connectivity

C0 ←  C1 ←  C2 ←  C3 ← ...
[nodes] [pairs] [triples] [quads]

homology converts higher-order network connectivity into global structure...

[1-d network]

[flag complex]

[environment]

[H1  generator]

...without coordinates; density assumptions; uniform distributions, etc.

networks & complexes



1. compact polygonal domain D in R2

2. nodes broadcast unique id’s to neighbors
3. coverage regions of a 2-simplex of connected nodes contain the convex hull
4. dedicated fence cycle defines ∂D

F

coverage assumptions



Theorem [DG]: under above assumptions, the sensor network covers the 
domain without gaps if there exists [α] in H2(R ,F) with ∂α≠0

F

H2(R ,F) H1(F)

H2(R2,∂D) H1(∂D)

H2(R2-p,∂D)

∂*

∂*

σ* ≈σ*=0

proof:  build a commutative diagram of homology groups
map σ:(R ,F)→(R2,∂D) convex hulls of simplices

if p lies in D-σ(R), then the left passes through zero 
commutativity of diagram yields a contradiction

intuition: [α] “triangulates” the domain with covered simplices

coverage criterion



The End
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