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Homology

e The kth homology group is
Hk = Zk/B,{u — ker @k/iﬂl 3,{3+1.

e Compute a basis for ker 0

» Compute a basis for im Oy1




Homology of 2-Manifolds

2-manifold Ho H; Ho
{0} Z
Z X 7 Z

sphere

torus

Z
Z

projective plane || Z Lo {0}
Z

Klein bottle Z x Zs | {0}




Computing Homology
via Bases



Computational Topology Software

+ JavaPlex (Henry Adams) -- has very nice tutorial

+ Dionysus (Dmitriy Morozov)
# PHAT (Michael Kerber)

ONA LA




Matrix Representation of O

Boundary homomorphism is linear, so it has a matrix
ak;: Ck — Ck—l
Use oriented simplices as bases for domain and codomain!

My, 1s the standard matrix representation for J

[ ab bec ed ad ac
a
b al-1 0 0o -1 -1
M, = b 1 —1 0 0 0
cl 0 1 —-1 0 1
d c 4|0 0 1 1 0

[Two glued triangles, not the tetrahedron ...]




Elementary Matrix Operations

* The elementary row operations on M, are
1. exchange row 7 and row 7,
2. multiply row z by —1,
3. replace row ¢ by (tow 7) + g(row j), where ¢ 1s an integer and
J F# 1.
e Similar elementary column operations on columns

» Effect: change of bases



Smith Normal Form

rank Cp

I rankzp S

rank B, _;

rank G, _

Introduce columns from let to right
Keep doing Gaussian elimination steps ...
For a complex with m simplices, this can take O(m3) operations
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Reduction Algorithm

* Like Gaussian elimination, we keep changing the basis to get to the
(Smith) normal form:

) ) )
0
fﬁk = L b,
0 0
e [, = rank M, = rank M, b¢ > 1
o bi|birq foralll < i< I b; =1 Vi, if no torsion
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Reduction Example

a b
d c
[ cd be ab | z1 22_
d—c¢c| 1 0 010 0
M, = c—b| 0 1 0110 0
b—al|l 0 O 110 0
|« 0 0 00 0

* 21 —ad — bc — ed — aband z9 = ac — be — ab form a basis for Z4

* {d—c,c—bb— a} isabasis for By



Mo

Reduction Example

abc acd |
ac | —1 1
ad | 0O —1
Mz = ed| 0 1
be 1 0
| ab | 1 0
I —abe —acd 4+ abe |
ac — bc — ab 1 0
ad — c¢d — be — ab 0 1
cd 0 0
bc 0 0
ab 0 0
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Persistent Homology
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Filtrations
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How to Choose €?

+ How to determine the topology of the underlying space from
a point cloud approximation?
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How to Choose €7

+ How to determine the topology of the underlying space from
a point cloud approximation?
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How to Choose €?

+ How to determine the topology of the underlying space from
a point cloud approximation?
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How to Choose €?

+ How to determine the topology of the underlying space from
a point cloud approximation?
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Filtrations

O O \
Ol O O
O
® O o

A filtration of a (finite) simplicial complex K is a sequence of subcomplexes
such that

))=K'cK'c...c K=K,
i) K" = K'U o' where o't is a simplex of K.

Sub-simplices of a simplex must be added before the simplex!
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The Sub-Level Set Filtration

e f a real valued function defined on the vertices of K
e For o = PUQ, 0 = © 7‘014;] e K, f(O') = MaxX;—o,... k f(fUz)

e The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

21



Persistent Homology:
Do not choose an €!
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Standard Homology

b 01

—> —>

(> vector space of faces (1 vector space of edges Co vector space of vertices

Take the linear extension of the boundary operator:

d
Od([Vo - --va]) = D (1) [vo.... 0, ... vq]
=0

Fact: Jg_1004=0= 1m0y C kerdy_1
Definition:  Hy(K) = ker 04/ Im 041
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We Can Track Topological Features
in a Filtration

1§ ==y A
.' W_'.. »
A

\

.L;, b

\
X

()
.\3(.
\ 1

R

A/

7/
at

The inclusion map among the complexes translates to a homomorphism
between the homology groups



Persistent Homology is
Functorial Homology

Homology of the entire filtration

Homomorphisms at the homology level allow us
to track homology classes —i.e., topological features
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Barcodes are the Lifetimes of
Topological Features

e

7 M
S

= s
H, T —
S - > €
H, —_—
» €

Barcodes are the output of persistent homology 26



Another View: Persistence
Diagrams

= persistence persistence
% barcode diagram
[ .

-
L~

1—-—_.__

] i

1 d b

Short barcodes =

long barcodes = points near
points away from :g*‘ the diagonal =
the diagonal = noise

robust features

3
birth

Map 1-D intervals to points in 2-D e



Persistence Provides a Pairing:
Birth and Death of a Top Feature

+ Sublevel sets of a function example

>, O
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Persistence Provides a Pairing

+ Sublevel sets of a function example
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Persistence Provides a Pairing

+ Sublevel sets of a function example

o Ol
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Persistence Provides a Pairing

+ Sublevel sets of a function example

S O
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Persistence Provides a Pairing

+ Sublevel sets of a function example
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Persistence Provides a Pairing

+ Sublevel sets of a function example
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Persistence Provides a Pairing

+ Sublevel sets of a function example

+ Pair thresholds that create components with those that
destroy them
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Persistence Provides a Pairing

+ That pairing is the persistence diagram

¢+ The diagonal is always included
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Filtering Out Topological Noise

//
7"\ -
\\ //
d .: "
g " !
b \ |
\ \./’
f;i-
&
A ﬁ’

Persistence
diagrams
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Computing Persistent
Homology
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Simplicial Filtrations for Low D

# Use a simplicial filtration

[0 ]l ab J][ L |[ab%||[2 |[cdad]|[3 || ac ||[ 4 ][ abe ||| 5 |] acd |

A filtration of acomplex Kis ) = KC K'! C ... C K™ =K.

A filtration 1s a partial ordering

Sort according to dimension

Break other ties arbitrarily



Vertices

Vertices always add a new component, so Fo+.

Union-find data-structure:
— MAKESET: mitializes a set with an item
— FIND: finds the set an element belongs to

— UNION: forms the union of two sets
Very simple to implement
O(n) space
Amortized a(m) FIND, UNION

MAKESET for each vertex

Bo requires maintaining connected components
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Edges

(@) Bo-

* (a) Two FINDs, one UNION

e (b) Two FINDs

(b) B1+
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Triangles and Tetrahedra

@ B1—- (b) Bo++

e Tetrahedra always fill voids, so 3--
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Positive and Negative Simplices

let ) = K° c K' ¢ --- ¢ K™ = K be a filtration of a simplicial complex
Ks. t. K"t = K*Uo*™! where o*™! is a simplex of K.

< (|

Definition: A (k+1)-simplex o* is if it is contained in a (k-+1)-cycle
in K*. It isotherwise. c

Destroy a k-cycle in K*

reate a new (k + 1)-cycle in K*

Br(K) = f(positive simplices) — Z(negative simplices)
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Tracking Topological Features

Definition: A (k+1)-simplex o* is if it is contained in a (k+1)-cycle
in K. It is @egativd otherwise.

Create a new (k + 1)-cycle in K*
Destroy a k-cycle in K*

Br(K) = g(positive simplices) — f(negative simplices)

e How to keep track of the evolution of the topology
all along the filtration?

e What are the created/destroyed cycles?

e What is the lifetime of a cycle?

e How to compute rank(H;, (K*) — H;,(K7))?

L’. This is where topological persistence comes into

play!
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Notation

In the following:

o let ) = K ¢ K' ¢ --- ¢ K™ = K be a filtration of a simplicial
complex K s. t. Kt = K* Uo*T! where o*! is a simplex of K.

o 7! = the k-cycles of K*, B} = the k-boundaries of K* and H}. = the
kt"-homology group of K*.

e Z)CZLC---CZ, C---C I = Z(K)

« BYCBLC---CBiC--CBp = By(K)

a4



Cycle Associated to a Positive
Simplex

LAL LN N

Lemma: If o' is a positive k-simplex, then there exists a k-cycle ¢, s.t.:

- ¢, is not a boundary in K,
- ¢, contains o' but no other positive k-simplex.

The cycle ¢? is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.
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Updating the Homology Basis

e At the beginning: the basis of Hg Is empty.

e |f a basis of H;i_l has been built and ¢* is a positive k-simplex then one

adds the homology class of the cycle ¢' associated to o’ to the basis of
H;u,_l = basis of H}.

e If a basis of Hg_l has been built and o7 is a negative (k + 1)-simplex:

— let ¢"1,--- ¢’ be the cycles associated to the positive simplices
o ... o' that form a basis of Hf:_l
—d= 00 = . £ C*

— I(j) = max{i} : e = 1}
— Remove the homology class of c!(9) from the basis of Hg_l =
basis of Hj.



Pairing Simplices

e If a basis of Hf;_l has been built and o7 is a negative (k + 1)-simplex:

— let ¢, --- ,c'» be the cycles associated to the positive simplices
o",... o' that form a basis of Hi_l
—d= 803' = I.Z-.zl Ekcik :

— I(j) = max{iy : g, = 1}
— Remove the homology class of ¢//) from the basis of Hﬁ_l =

basis of Hi

The simplices 0'(%) and o7 are paired to form a persistent pair (a!l), o9).
— The homology class created by o!(/) in K!) is killed by o7 in K7. The
persistence (or life-time) of this cycle is : 7 —1(j) — 1.

The persistence pairing

47



Matrix of Boundary Operator

1 J
( 01 0010 \
0010100

00 00001

6 3 —> 0ooofr1o| 15

=
—

7 0 0000O00O0T1
0000001
4 2 \ 0000000/
5

o M = (mjj)ij=1,...m With coefficient in Z/2 defined by

m;; = 1 if o' is a face of ¢/ and m;; = 0 otherwise

e For any column C, [(j) is defined by

(Z = Z(])) p— (‘Tng;j — 1 and mirj = 0 Vi > Z) 48



Persistence Algorithm, Version 2

Input: ) = K ¢ K' ¢ --- ¢ K™ = K a d-dimensional filtration of a
simplicial complex K s. t. K't! = K* Uo'"! where ¢! is a simplex of K.

For j =0tom
While (there exists j < j such that I(j") == 1(j))
End while

End for

Output the pairs (I(j),7);

Remark: The worst case complexity of the algorithm is O(m?) but much
lower in most practical cases.
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Persistence Algorithm Through
Matrix Operations

# See the Edelsbrunner-Harer book

low (j) | 1 |

51



Topology Inference
Pipeline

52



Persistence of Homology Classes

0 0 0 0
Hy H; H H
< >

Lifetime of vy 53



Barcodes and Persistence
Diagrams, Stability

54



Barcodes vs Persistence Diagrams

+ oo

persistence barcode _ _
persistence diagram

Structure Thm. [Carlsson, Zomorodian 04]
the kth persistent homology of (X, f) is fully de-
scribed by a finite set of intervals, each of which
represents the lifespan of an element in a basis
that is compatible accross the filtration.
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Barcodes vs Persistence Diagrams

= persistence persistence
% barcode diagram
[ .

-
L~

1—-—_.__

] i

1 d b

Short barcodes =

long barcodes = points near
points away from :g*‘ the diagonal =
the diagonal = noise

robust features

3
birth

Map 1-D intervals to points in 2-D 28



Persistence Provides a Pairing

+ That pairing is the persistence diagram

¢+ The diagonal is always included

57



Filtering Out Topological Noise

Stability: What if f is slightly perturbed?

Structure Thm. [Carlsson, Zomorodian 04]
the kth persistent homology of (X, f) is fully de-
scribed by a finite set of intervals, each of which
represents the lifespan of an element in a basis
that is compatible accross the filtration.

58



Filtering Out Topological Noise

//
7"\ -
\\ //
d .: "
g " !
b \ |
\ \./’
f;i-
&
A ﬁ’

Persistence
diagrams
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Bottleneck Distance Between
Persistence Diagrams

oo"\. ‘/.

Let /X be a simplicial complex and f, g two functions defined on the vertices
of K. Let D¢ and D, be the persistence diagrams of f and g.

The bottleneck distance between D¢ and Dy is

dp(Dy,Dy) = inf sup ||p —v(p)lloo
'yEFpepf
where " is the set of all the bijections between D; and D, and ||p — q|lcc =

max (|zp — 2q|, [Yp — Yql)- 60



Stability Theorems

Theorem: Let /K be a simplicial complex and let f,g: K — R.

dp(Dy, Dg) < ||If = 9lles

where ”f o g”OO — SUPyevertices(K) |f(’b’) o g(®)|

61



Persistent Homology
Examples

62



Detecting a Torus from Samples

Point Cloud Data
(PCD)

63



Recall: Betti Numbers J3,

¢+ Ranks of the free part of homology groups H,
+ 3, counts the number of connected components
+ [3, counts the number of independent loops

+ 3, counts the number of independent voids

Topology is fundamentally a tool for classification



10N

Filtrat

ips

A R

Question of Scale

65

B

Bo=1
B, =2

B, =37

Bo=1

B,=0



From Complex Inclusions to
Homology Homomorphisms

— —

Functoriality J
H(K®)  —— H(K®) —— H(K») —— H(K¥?)

ldea: Follow homology basis elements from birth to death
while maintaining compatible bases
66



Consistent Bases Exist

Basis elements for 1-homology

67









Deconstructing the Barcode

PCD

——]
—
—

B, Graph g |

Torus!

B, Barcode

Persistence barcode for
the torus
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Back to the Natural Images Example

Input: 4 million data points on S, coming from high-contrast 3 x 3 image patches

(source: [Lee, Pederson, Mumford 03])
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Back to the Natural Images Example

- sample 5000 points uniformly at random from filtered point sei

Preprocessing: - select bottom z% of data points according to k-NN distance
I

¢ 9

S
b, v v.L- .
g }
w.“ 5.
" il

50 landmarks -

>

k= 1200, = 10 k= 1200, = = 20 k = 1200, = = 30
k = 8000, = = 10 k = 8000, x = 20 k = 8000, = = 30
(B1 = 5)
0 ’ 50 landmarks *
i : 70
k = 24000, = = 10 k = 24000, = 20 k = 24000, = = 30

(source: [de Silva, Carlsson 04])



Back to the Natural Images Example

Preprocessing: - select bottom 2% of data points according to k-NN distance

- sample 5000 points uniformly at random from filtered point set

5000 landmarks

k = 1200, z = 30

| —= |
-2 -1

(source: [O., Sheehy 13])
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Back to the Natural Images Example

Preprocessing: - select bottom 2% of data points according to k-NN distance

- sample 5000 points uniformly at random from filtered point set

N\ I—%—= N | a

B ] j ; k () Diagram S
N V- \

A i—r—m \

= I - AN (B1 =5)

(source: [Carlsson, Ishkhanov, de Silva, Zomorodian 2008]) 72



FYl, Other Methods

™
N~




Getting More Out of
Topology
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Topology for Describing Shape:
A Crude Descriptor

+ Topology of the alphabet

F A B
B,=0 B,=1 B, =2
# Problem:
+# Cannot detect sharp features U V

B,=0 B,=0

O o

B,=1 B,=1

# Cannot detect soft features
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Making Topology a Finer Tool

Geometry Topology
discriminating classifying

+ Topology: connectivity of a space

¢+ Key ldea: no reason to look at the original space only

+ Add geometry = look at derived space(s)
+ Compute topology of derived space(s)

1. Find filtration via the tangent complex

2. Compute persistence v\

Our recipe
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2-D Curve Tangent Complex

(. C) Uﬂ
(x, G Uﬂ

q
X
@)

Covering space

T(X) has two A corner point has four
components: tangent directions:

Bo(T(X)) =2 Bo(T(X)) =4

There are two points \‘
In its fiber w1(x) //
Every point x on a ‘\\

smooth curve X has

two tangent
directions. \/
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3-D Curvature-Filtered Tangent

Complex
# Derived space 4 : i,
+ T9(X): space of (point, tangent) X T )
¢ Tangent complex T(X): closure of T°_ =

# Filtration by increasing curvature

¢ Let p(x, C) be the radius of the circle of second order
contact

+ T9(X): points of TO(X) with 1/p < o.
¢ T5(X): closure of T59(X)

+ Filtered tangent complex TMt(X) is the family

Ts(X)}s2 0 "



Persistence Barcodes: Circle vs.

Ellipse

T fit(circle of radius R) is simple: B, o
the entire complex (2 copies of circle)
appears at once, at 0 = 1/R. B o

L

] Ly

T fit(ellipse) evolves through four

stages: points at lower curvature .
appear earlier.
) ) 187 0
X“ .y
@b
a a a b

SopP0dJieyg =20uU-lSISiad
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Applying Barcodes to 2D PCDs

Input: Shape Output: Descriptor

|
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Fibers

Q

# PCD P c X, sampled from smooth closed 1-manifold

¢ We compute tangent fibers '(P) by normal estimation at
each point






Filtering by Curvature

Q

¢+ Construct tangent complex incrementally

¢+ Transform points to coordinate frame provided by tangent
computation

+ Fit osculating parabola to estimate curvature (more robust
integral methods possible)

82






Approximating T(X)

'h} e .%\‘5\;&
et —

e e g \
k1 A =

£ ™

b
»

Ty o ui"h}

[ ] L " | 4

3 \ -
e A

¢ R"” § S™1 with ds? = dx? + ®? d(?
& T(X) — Up c TC']'(P) Be(p)

83



Family of Ellipses

" e s sy
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Articulated Arm Parametrization

85



The Mapper Algorithm
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Review: Covers and Nerves

Finite cover of a topological space X
» U = {Ua}aeca for a finite index set A.
» each U, C X is open and X = J_ ., Ua

Nerve of a cover

» Simplicial complex: N(U) with vertex set A.
» simplices: ADoc e NU) & ... Us #0.

o
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Pullback Covers and Their Nerves

Studying data by looking at “lens” functions over the data

A55u.me you havej f:X— Z well behave;dl /{\‘
continuous function and U = {Uqa }aca finite
open cover of Z.

X

For each o € A consider the connected

components of fH(Us) = {Via, 1 <i<ja}.

Let f*(U) be the (finite) open cover of X thus =
induced: TN

f*(u) ::{V},aalgflgja-,&'e}q}. U

This is the pullback of U via f.

Now consider the nerve of the pullback: f
N(f*(U)). This complex often retains >

structural information about underlying space
X.




Pullback Covers and Their Nerves
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Another Example
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The Mapper Algorithm

(Carlsson, Mémoli, Singh 2007)

Let f : X — Z be well behaved and continuous and {{ be finite open cover of
Z, then the Mapper output corresponding to U4 and f is

MU, f) == N(f*(U)).

Uy Uy UsUy

X, X, X3 X4 X5

" 1 D
o8




In Practice

Mapper

92

(G = d-neighborhood graph



Step 1: Choose a Lens / Filter
Function

Function f: Data Set 2 R
Ex 1: x-coordinate f: (x,y, z) 2 x
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Step 2: Partition into Overlapping
Bins

Cover data via overlapping
bins.

Example: fi(a, b)
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Step 3: Form Connected
Components in the Bins

® = Clusters
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Step 4: Form a Network of
Intersecting Clusters

: éi 180 N
JJ




Centrality Filter Under Deformation

\ . ’I...
!
\ '
[} -
[} Fs e
A 4
1 4




Many, Many Choices

“It is useful to think of Mapper as a camera, with lens
adjustments and other settings. A different filter function may
generate a network with a different shape, thus allowing one to
explore the data from a different mathematical perspective.”
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Persistence-Based
Segmentation

99



3D Shape Segmentation

Partition a 3D model into meaningful components




Key Segmentation Method Goals

+ Robust to noise
# Intrinsic (invariant to isometric deformations)
+ Efficiently computable

# Parametrizable

101



Approach: Use a Filter or Lens
Function

+ Unlike Mapper, we want the data to guide us on how to
aggregate function values

+ Use the persistence diagram of the filter function to guide the
segmentation process

R
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Persistence Approximation

3

e PD represents the structure of Bottleneck distance

the function

&5 (D, D) = inf (sup . 500 )
@:D— D’ multibijection \peD

e Stable

- noise in the function

- noise in the domain 103



Computing Segments

X

How do we compute segments from a PD?

e Do not merge segments with persistence less than a threshold 7!
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Computing Segments

o =

X

How do we compute segments from a PD?

e Do not merge segments with persistence less than a threshold 7!
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Computing Segments

X

How do we compute segments from a PD?

e Do not merge segments with persistence less than a threshold 7!
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Computing Segments

R

Yes, merge

X

How do we compute segments from a PD?

e Do not merge segments with persistence less than a threshold 7!
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Computing Segments

X

How do we compute segments from a PD?

e Do not merge segments with persistence less than a threshold 7!
108



Computing Segments

!

X

How do we compute segments from a PD?

R

e Do not merge segments with persistence less than a threshold 7!
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Algorithm
e Input: f(x), M,

1. Sort x according to f

2. Forx € L

2a. For neighbors of  in M
If no higher neighbors = new cluster
else assign = to Vf

2b. For adjacent clusters y to x

it |f(y) — f(z)] <«

merge into oldest adjacent cluster

110
Union-find



Interpreting Persistence Diagrams

e |f peaks are prominent enough, number of segments is stable

e T[heoretically,

- The number of segments is stable

- The finer the mesh, the smaller the noise

'

The PD itself can
help us decide what

the merging
threshold should be

111




Choice of Filter Function is Crucial

+ |deal function should be
# Stable under perturbations
# Invariant under rigid and isometric deformations
# Informative: local maxima should correspond to segments
# Efficiently computable

# Use heat kernel signature (HKS) or wave kernel signature

# These are functions obtained from solving certain partial differential
equations on the surface of a 3D shape

+ More later ...
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Horse
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Caveats

+ No single function is likely to be truly informative

+ Regions is which a function is featureless create inherently
unstable regions

# Possible solution: perturb the mesh and look for stable regions
+ ldentify segments stable under perturbations
# Treat unstable regions separately
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Extended Algorithm

1. Run the algorithm to obtain persistence diagram

2. Choose threshold and perturbation amount

0 . 8 L
- . 4
. i
- : ™Y
L
L [ ] ® J
0 - 6 L .\ 'c
L
A
.
o
0 5 :
0.4 \
\\\ 0.
W~ * R
- N
0 3 | “0 o. N
3 N
. \\\‘ i \c‘ L
‘\“ o‘ \‘\\ ®
0 2 I \\\ ‘. \
.

\\\‘ * \\“
IIIIIIIIIIIIIIIIIIIIIIIIIIiIIIIIIIIIIIﬂIIIIIIIIIIBIIIIIIIIIIIIIIIIIIII
= u =

> 02030405060708
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Extended Algorithm

. Run the algorithm to obtain persistence diagram

. Choose threshold and perturbation amount

. Fori=1...N

a. Perturb function values
b. Run clustering algorithm

c. Find one-to-one correspondance between segments

. Find stable and unstable parts

Each point has a distribution over possible segments

117






Scalar Field Analysis

119



Scalar Field Analysis

Setting: topological space X, f: X — R

Input: a finite sampling L of X, the values of f at the sample points

- assuming f is smooth (Lipschitz condition)

Goal: Analyze landscape of graph(f):

prominent peaks/valleys
basins of attraction

in the presence of noise

without explicit knowledge of
the sample positions
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Motivating Applications

e sensor networks:

- collection of sensors monitoring an area
- sensors measure a physical quantity ¢
- sensors communicate within radius 0

Goal: analyze landscape of ¢
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Motivating Applications

e unsupervised learning:

- data points drawn at random from some unknown density distribution f

~

- approximate f through some density estimator f

- cluster data points according to prominent basins of attraction of f

density : ______
|

estimation
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Extant Approaches

e (lassical: when a parametrization of X is available, this
is a standard function interpolation or regression problem

e Persistence-based: using a triangulation of X based on
L, obtained from a parametrization or other means
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Cluster Analysis

Input: a finite set of observations: - point cloud with coordinates

- distance / (dis-)similarity matrix

Task:

partition the data points into a collection of relevant subsets called clusters
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Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density
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Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density
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Mode-Seeking Paradigm

e Assume the data points are sampled from some unknown probability distribution

e Partition the data according to the basins of attraction of the peaks of the density
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Mean-Shift and Variations

estimate density

-

at the data points

approximate gradient

by a graph edge
at each data point
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Can Go Wrong
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Persistence-Based Approach

Assumptions: X triangulated space, f : X — R Lipschitz continuous

— build PL approximation f of f

— apply persistence algo. to j:f [Edelsbrunner, Letscher, Zomorodian '00]
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Clustering Example A

ions: X Riemannian manifold, f : X — R c-Lipschitz,

Assumpt

L geodesic e-cover of X, for some unknown ¢ > 0.

—f,

il

JIJ_.I|II. |.._‘..|I..

-0.5 |

-2.5

-0.5

-25

b1

(ring-shaped basin of attraction)

o

(6 prominent peaks)
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The Persistence Approach: ToMATo

e Density estimator f defines an order on the point cloud

(sort data points by decreasing estimated density values)

e Extend order to the graph edges — upper-star filtration
(f ([, v]) = min{f (u), f(v)})

e Compute the O-dimensional persistence diagram of this filtration

(apply O-dimensional persistence algorithm — union-find data structure)
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Estimating the Prominent Clusters

6 prominent]
peaks

The gap parameter T
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Merging Clusters

e O-dimensional persistence builds a hierarchy of the peaks of f (merge tree)
e merge clusters according to the hierarchy (merge each cluster into its parent)

e given a fixed threshold 7 > 0, only merge those clusters of prominence < 7

v—90 <7< +00




Basins of Attraction for A

Goal: approximate basins of attraction of significant peaks of f

= segmentation/clustering of point cloud L

Approach:

e rough approximation of gradient
of f within Rips graph,

e merge clusters according to =
0-dimensional barcode.

........

g Wl b s
. . e R
— union-find data structure 3 *2‘“\‘”-’;;?}#9%‘%
] N - _.-:--'-':_-rf ._._:.I __45 =T
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Clustering B — The Rips Parameter 0

Input: X =[0,1]%; |L| = 100, 000;
f = # { data pts in fixed-radius ball }
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Clustering B

ot .

Clustering B . P ———

Input: X = [0,1]%; |L| = 100, 000;
[ = # { data pts in fixed-radius ball }
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Clustering B

Clustering B .

Input: X = [0,1]% |L| = 100, 000;

-12

f = # { data pts in fixed-radius ball }
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FYI, Spectral Clustering

Synthetic Data

p3i Spectral clustering

. .f..

»(k-means in eigenspace) |
0.996
0.994 -
0992 -
099 -
0988 -
0.986 -
0984 -

0.982
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Another Hard Example

Figure 7:
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Figure 8: Outputs of ToMATo on the rings data set: the obtained PD with (a) §-Rips graph, (b) k-nn graph, and
(c) Delaunay graph. (d) Clustering obtained with the §-Rips graph.
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Topological Signal Processing

Michael Robinson

Topological
Signal

Processing
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The End
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