4 Linear Programming

Manufacturing with Molds

Most objects we see around us today-from car bodies to plastic cups and cutlery-are made using some form of automated manufacturing. Computers play an important role in this process, both in the design phase and in the construction phase; CAD/CAM facilities are a vital part of any modern factory. The construction process used to manufacture a specific object depends on factors such as the material the object should be made of, the shape of the object, and whether the object will be mass produced. In this chapter we study some geometric aspects of manufacturing with molds, a commonly used process for plastic or metal objects. For metal objects this process is often referred to as casting.

Figure 4.1 illustrates the casting process: liquid metal is poured into a mold, it solidifies, and then the object is removed from the mold. The last step is not always as easy as it seems; the object could be stuck in the mold, so that it cannot be removed without breaking the mold. Sometimes we can get around this problem by using a different mold. There are also objects, however, for which no good mold exists; a sphere is an example. This is the problem we shall study in this chapter: given an object, is there a mold for it from which it can be removed?

We shall confine ourselves to the following situation. First of all, we assume that the object to be constructed is polyhedral. Secondly, we only consider

Figure 4.1
The casting process

Chapter 4 LINEAR PROGRAMMING
molds of one piece, not molds consisting of two or more pieces. (Using molds consisting of two pieces, it is possible to manufacture objects such as spheres, which cannot be manufactured using a mold of a single piece.) Finally, we only allow the object to be removed from the mold by a single translation. This means that we will not be able to remove a screw from its mold. Fortunately, translational motions suffice for many objects.

4.1 The Geometry of Casting

If we want to determine whether an object can be manufactured by casting, we have to find a suitable mold for it. The shape of the cavity in the mold is determined by the shape of the object, but different orientations of the object give rise to different molds. Choosing the orientation can be crucial: some orientations may give rise to molds from which the object cannot be removed, while other orientations allow removal of the object. One obvious restriction on the orientation is that the object must have a horizontal top facet. This facet will be the only one not in contact with the mold. Hence, there are as many potential orientations-or, equivalently, possible molds-as the object has facets. We call an object castable if it can be removed from its mold for at least one of these orientations. In the following we shall concentrate on determining whether an object is removable by a translation from a specific given mold. To decide on the castability of the object we then simply try every potential orientation.

Let \mathcal{P} be a 3-dimensional polyhedron-that is, a 3-dimensional solid bounded by planar facets-with a designated top facet. (We shall not try to give a precise, formal definition of a polyhedron. Giving such a definition is tricky and not necessary in this context.) We assume that the mold is a rectangular block with a cavity that corresponds exactly to \mathcal{P}. When the polyhedron is placed in the mold, its top facet should be coplanar with the topmost facet of the mold, which we assume to be parallel to the $x y$-plane. This means that the mold has no unnecessary parts sticking out on the top that might prevent \mathcal{P} from being removed.

We call a facet of \mathcal{P} that is not the top facet an ordinary facet. Every ordinary facet f has a corresponding facet in the mold, which we denote by \hat{f}.

We want to decide whether \mathcal{P} can be removed from its mold by a single translation. In other words, we want to decide whether a direction \vec{d} exists such that \mathcal{P} can be translated to infinity in direction \vec{d} without intersecting the interior of the mold during the translation. Note that we allow \mathcal{P} to slide along the mold. Because the facet of \mathcal{P} not touching the mold is its top facet, the removal direction has to be upward, that is, it must have a positive z-component. This is only a necessary condition on the removal direction; we need more constraints to be sure that a direction is valid.

Let f be an ordinary facet of \mathcal{P}. This facet must move away from, or slide along, its corresponding facet \hat{f} of the mold. To make this constraint precise, we need to define the angle of two vectors in 3-space. We do this as follows.

Take the plane spanned by the vectors (we assume both vectors are rooted at the origin); the angle of the vectors is the smaller of the two angles measured in this plane. Now \hat{f} blocks any translation in a direction making an angle of less than 90° with $\vec{\eta}(f)$, the outward normal of f. So a necessary condition on \vec{d} is that it makes an angle of at least 90° with the outward normal of every ordinary facet of \mathcal{P}. The next lemma shows that this condition is also sufficient.

Lemma 4.1 The polyhedron \mathcal{P} can be removed from its mold by a translation in direction \vec{d} if and only if \vec{d} makes an angle of at least 90° with the outward normal of all ordinary facets of \mathcal{P}.

Proof. The "only if" part is easy: if \vec{d} made an angle less than 90° with some outward normal $\vec{\eta}(f)$, then any point q in the interior of f collides with the mold when translated in direction \vec{d}.

To prove the "if" part, suppose that at some moment \mathcal{P} collides with the mold when translated in direction \vec{d}. We have to show that there must be an outward normal making an angle of less than 90° with \vec{d}. Let p be a point of \mathcal{P} that collides with a facet \hat{f} of the mold. This means that p is about to move into the interior of the mold, so $\vec{\eta}(\hat{f})$, the outward normal of \hat{f}, must make an angle greater than 90° with \vec{d}. But then \vec{d} makes an angle less than 90° with the outward normal of the ordinary facet f of \mathcal{P} that corresponds to \hat{f}.

Lemma 4.1 has an interesting consequence: if \mathcal{P} can be removed by a sequence of small translations, then it can be removed by a single translation. So allowing for more than one translation does not help in removing the object from its mold.

We are left with the task of finding a direction \vec{d} that makes an angle of at least 90° with the outward normal of each ordinary facet of \mathcal{P}. A direction in 3-dimensional space can be represented by a vector rooted at the origin. We already know that we can restrict our attention to directions with a positive z-component. We can represent all such directions as points in the plane $z=1$, where the point $(x, y, 1)$ represents the direction of the vector $(x, y, 1)$. This way every point in the plane $z=1$ represents a unique direction, and every direction with a positive z-value is represented by a unique point in that plane.

Lemma 4.1 gives necessary and sufficient conditions on the removal direction \vec{d}. How do these conditions translate into our plane of directions? Let $\vec{\eta}=\left(\vec{\eta}_{x}, \vec{\eta}_{y}, \vec{\eta}_{z}\right)$ be the outward normal of an ordinary facet. The direction $\vec{d}=\left(d_{x}, d_{y}, 1\right)$ makes an angle at least 90° with $\vec{\eta}$ if and only if the dot product of \vec{d} and $\vec{\eta}$ is non-positive. Hence, an ordinary facet induces a constraint of the form

$$
\vec{\eta}_{x} d_{x}+\vec{\eta}_{y} d_{y}+\vec{\eta}_{z} \leqslant 0
$$

This inequality describes a half-plane on the plane $z=1$, that is, the area left or the area right of a line on the plane. (This last statement is not true for horizontal facets, which have $\vec{\eta}_{x}=\vec{\eta}_{y}=0$. In this case the constraint is either impossible to satisfy or always satisfied, which is easy to test.) Hence, every non-horizontal facet of \mathcal{P} defines a closed half-plane on the plane $z=1$, and any point in the

Section 4.1

THE GEOMETRY OF CASTING

Chapter 4

common intersection of these half-planes corresponds to a direction in which \mathcal{P} can be removed. The common intersection of these half-planes may be empty; in this case \mathcal{P} cannot be removed from the given mold.

We have transformed our manufacturing problem to a purely geometric problem in the plane: given a set of half-planes, find a point in their common intersection or decide that the common intersection is empty. If the polyhedron to be manufactured has n facets, then the planar problem has at most $n-1$ half-planes (the top facet does not induce a half-plane). In the next sections we will see that the planar problem just stated can be solved in expected linear time-see Section 4.4, where also the meaning of "expected" is explained.

Recall that the geometric problem corresponds to testing whether \mathcal{P} can be removed from a given mold. If this is impossible, there can still be other molds, corresponding to different choices of the top facet, from which \mathcal{P} is removable. In order to test whether \mathcal{P} is castable, we try all its facets as top facets. This leads to the following result.

Theorem 4.2 Let \mathcal{P} be a polyhedron with n facets. In $O\left(n^{2}\right)$ expected time and using $O(n)$ storage it can be decided whether \mathcal{P} is castable. Moreover, if \mathcal{P} is castable, a mold and a valid direction for removing \mathcal{P} from it can be computed in the same amount of time.

4.2 Half-Plane Intersection

Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of linear constraints in two variables, that is, constraints of the form

$$
a_{i} x+b_{i} y \leqslant c_{i}
$$

where a_{i}, b_{i}, and c_{i} are constants such that at least one of a_{i} and b_{i} is non-zero. Geometrically, we can interpret such a constraint as a closed half-plane in \mathbb{R}^{2}, bounded by the line $a_{i} x+b_{i} y=c_{i}$. The problem we consider in this section is to find the set of all points $(x, y) \in \mathbb{R}^{2}$ that satisfy all n constraints at the same time. In other words, we want to find all the points lying in the common intersection of the half-planes in H. (In the previous section we reduced the casting problem to finding some point in the intersection of a set of half-planes. The problem we study now is more general.)

The shape of the intersection of a set of half-planes is easy to determine: a half-plane is convex, and the intersection of convex sets is again a convex set, so the intersection of a set of half-planes is a convex region in the plane. Every point on the intersection boundary must lie on the bounding line of some half-plane. Hence, the boundary of the region consists of edges contained in these bounding lines. Since the intersection is convex, every bounding line can contribute at most one edge. It follows that the intersection of n half-planes is a convex polygonal region bounded by at most n edges. Figure 4.2 shows a few examples of intersections of half-planes. To which side of its bounding
line a half-plane lies is indicated by dark shading in the figure; the common intersection is shaded lightly. As you can see in Figures 4.2 (ii) and (iii), the

(iii)

(v)

intersection does not have to be bounded. The intersection can also degenerate to a line segment or a point, as in (iv), or it can be empty, as in (v).

We give a rather straightforward divide-and-conquer algorithm to compute the intersection of a set of n half-planes. It is based on a routine IntersectconvexRegions to compute the intersection of two convex polygonal regions. We first give the overall algorithm.

Algorithm Intersecthalfplanes (H)

Input. A set H of n half-planes in the plane.
Output. The convex polygonal region $C:=\bigcap_{h \in H} h$.

1. if $\operatorname{card}(H)=1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else Split H into sets H_{1} and H_{2} of size $\lceil n / 2\rceil$ and $\lfloor n / 2\rfloor$.
4. $\quad C_{1} \leftarrow$ Intersect $\operatorname{Halfplanes}\left(H_{1}\right)$
5. $\quad C_{2} \leftarrow \mathrm{Intersecthalfplanes}\left(H_{2}\right)$
6. $\quad C \leftarrow$ Intersect $\operatorname{CONVEXREGIONS}\left(C_{1}, C_{2}\right)$

What remains is to describe the procedure IntersectConvexRegions. But wait-didn't we see this problem before, in Chapter 2? Indeed, Corollary 2.7 states that we can compute the intersection of two polygons in $O(n \log n+$ $k \log n)$ time, where n is the total number of vertices in the two polygons. We must be a bit careful in applying this result to our problem, because the regions we have can be unbounded, or degenerate to a segment or a point. Hence, the regions are not necessarily polygons. But it is not difficult to modify the algorithm from Chapter 2 so that it still works.

Let's analyze this approach. Assume we have already computed the two regions C_{1} and C_{2} by recursion. Since they are both defined by at most $n / 2+1$ halfplanes, they both have at most $n / 2+1$ edges. The algorithm from Chapter 2 computes their overlay in time $O((n+k) \log n)$, where k is the number of intersection points between edges of C_{1} and edges of C_{2}. What is k ? Look

Section 4.2

HALF-PLANE INTERSECTION

Figure 4.2
Examples of the intersection of half-planes

Chapter 4 LINEAR PROGRAMMING

$\mathcal{L}_{\text {left }}(C)=h_{3}, h_{4}, h_{5}$
$\mathcal{L}_{\text {right }}(C)=h_{2}, h_{1}$
at an intersection point v between an edge e_{1} of C_{1} and an edge e_{2} of C_{2}. No matter how e_{1} and e_{2} intersect, v must be a vertex of $C_{1} \cap C_{2}$. But $C_{1} \cap C_{2}$ is the intersection of n half-planes, and therefore has at most n edges and vertices. It follows that $k \leqslant n$, so the computation of the intersection of C_{1} and C_{2} takes $O(n \log n)$ time.

This gives the following recurrence for the total running time:

$$
T(n)= \begin{cases}O(1), & \text { if } n=1, \\ O(n \log n)+2 T(n / 2), & \text { if } n>1\end{cases}
$$

This recurrence solves to $T(n)=O\left(n \log ^{2} n\right)$.
To obtain this result we used a subroutine for computing the intersection of two arbitrary polygons. The polygonal regions we deal with in IntersectHalfplanes are always convex. Can we use this to develop a more efficient algorithm? The answer is yes, as we show next. We will assume that the regions we want to intersect are 2-dimensional; the case where one or both of them is a segment or a point is easier and left as an exercise.

First, let's specify more precisely how we represent a convex polygonal region C. We will store the left and the right boundary of C separately, as sorted lists of half-planes. The lists are sorted in the order in which the bounding lines of the half-planes occur when the (left or right) boundary is traversed from top to bottom. We denote the left boundary list by $\mathcal{L}_{\text {left }}(C)$, and the right boundary list by $\mathcal{L}_{\text {right }}(C)$. Vertices are not stored explicitly; they can be computed by intersecting consecutive bounding lines.

To simplify the description of the algorithm, we shall assume that there are no horizontal edges. (To adapt the algorithm to deal with horizontal edges, one can define such edges to belong to the left boundary if they bound C from above, and to the right boundary if they bound C from below. With this convention only a few adaptations are needed to the algorithm stated below.)

The new algorithm is a plane sweep algorithm, like the one in Chapter 2: we move a sweep line downward over the plane, and we maintain the edges of C_{1} and C_{2} intersecting the sweep line. Since C_{1} and C_{2} are convex, there are at most four such edges. Hence, there is no need to store these edges in a complicated data structure; instead we simply have pointers left_edge_Cl, right_edge_Cl, left_edge_C2, and right_edge_C2 to them. If the sweep line does not intersect the right or left boundary of a region, then the corresponding pointer is nil. Figure 4.3 illustrates the definitions.

How are these pointers initialized? Let y_{1} be the y-coordinate of the topmost vertex of C_{1}; if C_{1} has an unbounded edge extending upward to infinity then we define $y_{1}=\infty$. Define y_{2} similarly for C_{2}, and let $y_{\text {start }}=\min \left(y_{1}, y_{2}\right)$. To compute the intersection of C_{1} and C_{2} we can restrict our attention to the part of the plane with y-coordinate less than or equal to $y_{\text {start }}$. Hence, we let the sweep line start at $y_{\text {start }}$, and we initialize the edges left_edge_Cl, right_edge_Cl, left_edge_C2, and right_edge_C2 as the ones intersecting the line $y=y_{\text {start }}$.

In a plane sweep algorithm one normally also needs a queue to store the events. In our case the events are the points where edges of C_{1} or of C_{2} start or stop to intersect the sweep line. This implies that the next event point, which determines the next edge to be handled, is the highest of the lower endpoints of the edges intersecting the sweep line. (Endpoints with the same y-coordinate are handled from left to right. If two endpoints coincide then the leftmost edge is treated first.) Hence, we don't need an event queue; the next event can be found in constant time using the pointers left_edge_C1, right_edge_C1, left_edge_C2, and right_edge_C2.

At each event point some new edge e appears on the boundary. To handle the edge e we first check whether e belongs to C_{1} or to C_{2}, and whether it is on the left or the right boundary, and then call the appropriate procedure. We shall only describe the procedure that is called when e is on the left boundary of C_{1}. The other procedures are similar.

Let p be the upper endpoint of e. The procedure that handles e will discover three possible edges that C might have: the edge with p as upper endpoint, the edge with $e \cap$ left_edge_C2 as upper endpoint, and the edge with $e \cap$ right_edge_C2 as upper endpoint. It performs the following actions.

- First we test whether p lies in between left_edge_C2 and right_edge_C2. If this is the case, then e contributes an edge to C starting at p. We then add the half-plane whose bounding line contains e to the list $\mathcal{L}_{\text {left }}(C)$.
- Next we test whether e intersects right_edge_C2. If this is the case, then the intersection point is a vertex of C. Either both edges contribute an edge to C starting at the intersection point-this happens when p lies to the right of right_edge_C2, as in Figure 4.4(i)—or both edges contribute an edge ending there-this happens when p lies to the left of right_edge_C2, as in Figure 4.4(ii). If both edges contribute an edge starting at the intersection point, then we have to add the half-plane defining e to $\mathcal{L}_{\text {left }}(C)$ and the half-plane defining right_edge_C2 to $\mathcal{L}_{\text {right }}(C)$. If they contribute an edge ending at the intersection point we do nothing; these edges have already been discovered in some other way.
- Finally we test whether e intersects left_edge_C2. If this is the case, then the

Section 4.2
HALF-PLANE INTERSECTION

Figure 4.3
The edges maintained by the sweep line algorithm

Chapter 4 LINEAR PROGRAMMING

Figure 4.4 The two possibilities when e intersects
right_edge_C2

(i)

(ii)

intersection point is a vertex of C. The edge of C starting at that vertex is either a part of e or it is a part of left_edge_C2. We can decide between these possibilities in constant time: if p lies to the left of left_edge_C2 then it is a part of e, otherwise it is a part of left_edge_C2. After we decided whether e or left_edge_C2 contributes the edge to C, we add the appropriate half-plane to $\mathcal{L}_{\text {left }}(C)$.

Notice that we may add two half-planes to $\mathcal{L}_{\text {left }}(C)$: the half-plane bounding e and the half-plane bounding left_edge_C2. In which order should we add them? We add left_edge_C2 only if it defines an edge of C starting at the intersection point of left_edge_C2 and e. If we also decide to add the half-plane of e, it must be because e defines an edge of C starting at its upper endpoint or at its intersection point with right_edge_C2. In both cases we should add the half-plane bounding e first, which is guaranteed by the order of the tests given above.

We conclude that it takes constant time to handle an edge, so the intersection of two convex polygons can be computed in time $O(n)$. To show that the algorithm is correct, we have to prove that it adds the half-planes defining the edges of C in the right order. Consider an edge of C, and let p be its upper endpoint. Then p is either an upper endpoint of an edge in C_{1} or C_{2}, or it is the intersection of two edges e and e^{\prime} of C_{1} and C_{2}, respectively. In the former case we discover the edge of C when p is reached, and in the latter case when the lower of the upper endpoints of e and e^{\prime} is reached. Hence, all half-planes defining the edges of C are added. It is not difficult to prove that they are added in the correct order.

We get the following result:
Theorem 4.3 The intersection of two convex polygonal regions in the plane can be computed in $O(n)$ time.

This theorem shows that we can do the merge step in Intersecthalfplanes in linear time. Hence, the recurrence for the running time of the algorithm becomes

$$
T(n)= \begin{cases}O(1), & \text { if } n=1, \\ O(n)+2 T(n / 2), & \text { if } n>1\end{cases}
$$

leading to the following result:

Corollary 4.4 The common intersection of a set of n half-planes in the plane can be computed in $O(n \log n)$ time and linear storage.

The problem of computing the intersection of half-planes is intimately related to the computation of convex hulls, and an alternative algorithm can be given that is almost identical to algorithm Convexhull from Chapter 1. The relationship between convex hulls and intersections of half-planes is discussed in detail in Sections 8.2 and 11.4. Those sections are independent of the rest of their chapters, so if you are curious you can already have a look.

4.3 Incremental Linear Programming

In the previous section we showed how to compute the intersection of a set of n half-planes. In other words, we computed all solutions to a set of n linear constraints. The running time of our algorithm was $O(n \log n)$. One can prove that this is optimal: as for the sorting problem, any algorithm that solves the half-plane intersection problem must take $\Omega(n \log n)$ time in the worst case. In our application to the casting problem, however, we don't need to know all solutions to the set of linear constraints; just one solution will do fine. It turns out that this allows for a faster algorithm.

Finding a solution to a set of linear constraints is closely related to a wellknown problem in operations research, called linear optimization or linear programming. (This term was coined before "programming" came to mean "giving instructions to a computer".) The only difference is that linear programming involves finding one specific solution to the set of constraints, namely the one that maximizes a given linear function of the variables. More precisely, a linear optimization problem is described as follows:

$$
\begin{array}{cl}
\text { Maximize } & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d} \\
& \\
\text { Subject to } & a_{1,1} x_{1}+\cdots+a_{1, d} x_{d} \leqslant b_{1} \\
& a_{2,1} x_{1}+\cdots+a_{2, d} x_{d} \leqslant b_{2} \\
& \vdots \\
& a_{n, 1} x_{1}+\cdots+a_{n, d} x_{d} \leqslant b_{n}
\end{array}
$$

where the c_{i}, and $a_{i, j}$, and b_{i} are real numbers, which form the input to the problem. The function to be maximized is called the objective function, and the set of constraints together with the objective function is a linear program. The number of variables, d, is the dimension of the linear program. We already saw that linear constraints can be viewed as half-spaces in \mathbb{R}^{d}. The intersection of these half-spaces, which is the set of points satisfying all constraints, is called the feasible region of the linear program. Points (solutions) in this region are called feasible, points outside are infeasible. Recall from Figure 4.2 that the feasible region can be unbounded, and that it can be empty. In the latter case, the linear program is called infeasible. The objective function can be viewed as a direction in \mathbb{R}^{d}; maximizing $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d}$ means finding

Section 4.3

INCREMENTAL LINEAR
PROGRAMMING

Chapter 4 LINEAR PROGRAMMING

Figure 4.5
Different types of solutions to a linear program.
a point $\left(x_{1}, \ldots, x_{d}\right)$ that is extreme in the direction $\vec{c}=\left(c_{1}, \ldots, c_{d}\right)$. Hence, the solution to the linear program is a point in the feasible region that is extreme in direction \vec{c}. We let $f_{\vec{c}}$ denote the objective function defined by a direction vector \vec{c}.

Many problems in operations research can be described by linear programs, and a lot of work has been dedicated to linear optimization. This has resulted in many different linear programming algorithms, several of which-the famous simplex algorithm for instance-perform well in practice.

Let's go back to our problem. We have n linear constraints in two variables and we want to find one solution to the set of constraints. We can do this by taking an arbitrary objective function, and then solving the linear program defined by the objective function and the linear constraints. For the latter step we can use the simplex algorithm, or any other linear programming algorithm developed in operations research. However, this particular linear program is quite different from the ones usually studied: in operations research both the number of constraints and the number of variables are large, but in our case the number of variables is only two. The traditional linear programming methods are not very efficient in such low-dimensional linear programming problems; methods developed in computational geometry, like the one described below, do better.

We denote the set of n linear constraints in our 2-dimensional linear programming problem by H. The vector defining the objective function is $\vec{c}=\left(c_{x}, c_{y}\right)$; thus the objective function is $f_{\vec{c}}(p)=c_{x} p_{x}+c_{y} p_{y}$. Our goal is to find a point $p \in \mathbb{R}^{2}$ such that $p \in \bigcap H$ and $f_{\vec{c}}(p)$ is maximized. We denote the linear program by (H, \vec{c}), and we use C to denote its feasible region. We can distinguish four cases for the solution of a linear program (H, \vec{c}). The four cases are illustrated in Figure 4.5; the vector defining the objective function is vertically downward in the examples.
(i)

(ii)

(iii)

(iv)

(i) The linear program is infeasible, that is, there is no solution to the set of constraints.
(ii) The feasible region is unbounded in direction \vec{c}. In this case there is a ray ρ completely contained in the feasible region C, such that the function $f_{\vec{c}}$ takes arbitrarily large values along ρ. The solution we require in this case is the description of such a ray.
(iii) The feasible region has an edge e whose outward normal points in the direction \vec{c}. In this case, there is a solution to the linear program, but it is not unique: any point on e is a feasible point that maximizes $f_{\vec{c}}(p)$.
(iv) If none of the preceding three cases applies, then there is a unique solution, which is the vertex v of C that is extreme in the direction \vec{c}.

Our algorithm for 2-dimensional linear programming is incremental. It adds the constraints one by one, and maintains the optimal solution to the intermediate linear programs. It requires, however, that the solution to each intermediate problem is well-defined and unique. In other words, it assumes that each intermediate feasible region has a unique optimal vertex as in case (iv) above.

To fulfill this requirement, we add to our linear program two additional constraints that will guarantee that the linear program is bounded. For example, if $c_{x}>0$ and $c_{y}>0$ we add the contraints $p_{x} \leqslant M$ and $p_{y} \leqslant M$, for some large $M \in \mathbb{R}$. The idea is that M should be chosen so large that the additional constraints do not influence the optimal solution, if the original linear program was bounded.

In many practical applications of linear programming, a bound of this form is actually a natural restriction. In our application to the casting problem, for instance, mechanical limitations will not allow us to remove the polyhedron in a direction that is nearly horizontal. For instance, we may not be able to remove the polyhedron in a direction whose angle with the $x y$-plane is less than 1 degree. This constraint immediately gives a bound on the absolute value of p_{x}, p_{y}.

We will discuss in Section 4.5 how we can correctly recognize unbounded linear programs, and how we can solve bounded ones without enforcing artificial constraints on the solution.

For preciseness, let's give a name to the two new constraints:

$$
m_{1}:= \begin{cases}p_{x} \leqslant M & \text { if } c_{x}>0 \\ -p_{x} \leqslant M & \text { otherwise }\end{cases}
$$

and

$$
m_{2}:= \begin{cases}p_{y} \leqslant M & \text { if } c_{y}>0 \\ -p_{y} \leqslant M & \text { otherwise }\end{cases}
$$

Note that m_{1}, m_{2} are chosen as a function of \vec{c} only, they do not depend on the half-planes H. The feasible region $C_{0}=m_{1} \cap m_{2}$ is an orthogonal wedge.

Another simple convention now allows us to say that case (iii) also has a unique solution: if there are several optimal points, then we want the lexicographically smallest one. Conceptually, this convention is equivalent to rotating \vec{c} a little, such that it is no longer normal to any half-plane.

We have to be careful when doing this, as even a bounded linear program may not have a lexicographically smallest solution (see Exercise 4.11). Our choice of the two constraints m_{1} and m_{2} is such that this cannot happen.

With these two conventions, any linear program that is feasible has a unique solution, which is a vertex of the feasible region. We call this vertex the optimal vertex.

Let (H, \vec{c}) be a linear program. We number the half-planes $h_{1}, h_{2}, \ldots, h_{n}$. Let H_{i} be the set of the first i constraints, together with the special constraints m_{1} and m_{2}, and let C_{i} be the feasible region defined by these constraints:

$$
\begin{aligned}
& H_{i}:=\left\{m_{1}, m_{2}, h_{1}, h_{2} \ldots, h_{i}\right\}, \\
& C_{i}:=m_{1} \cap m_{2} \cap h_{1} \cap h_{2} \cap \cdots \cap h_{i} .
\end{aligned}
$$

Section 4.3

INCREMENTAL LINEAR
PROGRAMMING

By our choice of C_{0}, each feasible region C_{i} has a unique optimal vertex, denoted v_{i}. Clearly, we have

$$
C_{0} \supseteq C_{1} \supseteq C_{2} \cdots \supseteq C_{n}=C .
$$

This implies that if $C_{i}=\emptyset$ for some i, then $C_{j}=\emptyset$ for all $j \geqslant i$, and the linear program is infeasible. So our algorithm can stop once the linear program becomes infeasible.

The next lemma investigates how the optimal vertex changes when we add a half-plane h_{i}. It is the basis of our algorithm.

Lemma 4.5 Let $1 \leqslant i \leqslant n$, and let C_{i} and v_{i} be defined as above. Then we have (i) If $v_{i-1} \in h_{i}$, then $v_{i}=v_{i-1}$.
(ii) If $v_{i-1} \notin h_{i}$, then either $C_{i}=\emptyset$ or $v_{i} \in \ell_{i}$, where ℓ_{i} is the line bounding h_{i}.

Proof. (i) Let $v_{i-1} \in h_{i}$. Because $C_{i}=C_{i-1} \cap h_{i}$ and $v_{i-1} \in C_{i-1}$ this means that $v_{i-1} \in C_{i}$. Furthermore, the optimal point in C_{i} cannot be better than the optimal point in C_{i-1}, since $C_{i} \subseteq C_{i-1}$. Hence, v_{i-1} is the optimal vertex in C_{i} as well.
(ii) Let $v_{i-1} \notin h_{i}$. Suppose for a contradiction that C_{i} is not empty and that v_{i} does not lie on ℓ_{i}. Consider the line segment $\overline{v_{i-1} v_{i}}$. We have $v_{i-1} \in C_{i-1}$ and, since $C_{i} \subset C_{i-1}$, also $v_{i} \in C_{i-1}$. Together with the convexity of C_{i-1}, this implies that the segment $\overline{v_{i-1} v_{i}}$ is contained in C_{i-1}. Since v_{i-1} is the optimal point in C_{i-1} and the objective function $f_{\vec{c}}$ is linear, it follows that $f_{\vec{c}}(p)$ increases monotonically along $\overline{v_{i-1} v_{i}}$ as p moves from v_{i} to v_{i-1}. Now consider the intersection point q of $\overline{v_{i-1} v_{i}}$ and ℓ_{i}. This intersection point exists, because $v_{i-1} \notin h_{i}$ and $v_{i} \in C_{i}$. Since $\overline{v_{i-1} v_{i}}$ is contained in C_{i-1}, the point q must be in C_{i}. But the value of the objective function increases along $\overline{v_{i-1} v_{i}}$, so $f_{\vec{c}}(q)>f_{\vec{c}}\left(v_{i}\right)$. This contradicts the definition of v_{i}.

Figure 4.6 illustrates the two cases that arise when adding a half-plane. In Figure 4.6(i), the optimal vertex v_{4} that we have after adding the first four half-planes is contained in h_{5}, the next half-plane that we add. Therefore the optimal vertex remains the same. The optimal vertex is not contained in h_{6}, however, so when we add h_{6} we must find a new optimal vertex. According

Figure 4.6 Adding a half-plane

to Lemma 4.5, this vertex v_{6} is contained in the line bounding h_{6}, as is shown in Figure 4.6(ii). But Lemma 4.5 does not tell us how to find the new optimal vertex. Fortunately, this is not so difficult, as we show next.

Assume that the current optimal vertex v_{i-1} is not contained in the next halfplane h_{i}. The problem we have to solve can be stated as follows:

Find the point p on ℓ_{i} that maximizes $f_{\vec{c}}(p)$, subject to the constraints $p \in h$, for $h \in H_{i-1}$.

To simplify the terminology, we assume that ℓ_{i} is not vertical, and so we can parameterize it by x-coordinate. We can then define a function $\overline{f_{\vec{c}}}: \mathbb{R} \mapsto \mathbb{R}$ such that $f_{\vec{c}}(p)=\overline{f_{\vec{c}}}\left(p_{x}\right)$ for points $p \in \ell_{i}$. For a half-plane h, let $\sigma\left(h, \ell_{i}\right)$ be the x-coordinate of the intersection point of ℓ_{i} and the bounding line of h. (If there is no intersection, then either the constraint h is satisfied by any point on ℓ_{i}, or by no point on ℓ_{i}. In the former case we can ignore the constraint, in the latter case we can report the linear program infeasible.) Depending on whether $\ell_{i} \cap h$ is bounded to the left or to the right, we get a constraint on the x-coordinate of the solution of the form $x \geqslant \sigma\left(h, \ell_{i}\right)$ or of the form $x \leqslant \sigma\left(h, \ell_{i}\right)$. We can thus restate our problem as follows:

$$
\text { Maximize } \overline{f_{\bar{c}}}(x)
$$

subject to $\quad x \geqslant \sigma\left(h, \ell_{i}\right), \quad h \in H_{i-1}$ and $\ell_{i} \cap h$ is bounded to the left $x \leqslant \sigma\left(h, \ell_{i}\right), \quad h \in H_{i-1}$ and $\ell_{i} \cap h$ is bounded to the right

This is a 1-dimensional linear program. Solving it is very easy. Let

$$
x_{\text {left }}=\max _{h \in H_{i-1}}\left\{\sigma\left(h, \ell_{i}\right): \ell_{i} \cap h \text { is bounded to the left }\right\}
$$

and

$$
x_{\text {right }}=\min _{h \in H_{i-1}}\left\{\sigma\left(h, \ell_{i}\right): \ell_{i} \cap h \text { is bounded to the right }\right\} .
$$

The interval $\left[x_{\text {left }}: x_{\mathrm{right}}\right.$] is the feasible region of the 1-dimensional linear program. Hence, the linear program is infeasible if $x_{\text {left }}>x_{\text {right }}$, and otherwise the optimal point is the point on ℓ_{i} at either $x_{\text {left }}$ or $x_{\text {right }}$, depending on the objective function.

Note that the 1-dimensional linear program cannot be unbounded, due to the constraints m_{1} and m_{2}.

We get the following lemma:
Lemma 4.6 A 1-dimensional linear program can be solved in linear time. Hence, if case (ii) of Lemma 4.5 arises, then we can compute the new optimal vertex v_{i}, or decide that the linear program is infeasible, in $O(i)$ time.

We can now describe the linear programming algorithm in more detail. As above, we use ℓ_{i} to denote the line that bounds the half-plane h_{i}.

Algorithm 2DBoundedLP $\left(H, \vec{c}, m_{1}, m_{2}\right)$
Input. A linear program $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$, where H is a set of n half-planes, $\vec{c} \in \mathbb{R}^{2}$, and m_{1}, m_{2} bound the solution.
Output. If $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

Section 4.3

INCREMENTAL LINEAR
PROGRAMMING

Chapter 4 LINEAR PROGRAMMING

1. Let v_{0} be the corner of C_{0}.
2. Let h_{1}, \ldots, h_{n} be the half-planes of H.
3. for $i \leftarrow 1$ to n
4. do if $v_{i-1} \in h_{i}$
5. then $v_{i} \leftarrow v_{i-1}$
6. else $v_{i} \leftarrow$ the point p on ℓ_{i} that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1}. if p does not exist
then Report that the linear program is infeasible and quit.
```
return }\mp@subsup{v}{n}{
```

We now analyze the performance of our algorithm.
Lemma 4.7 Algorithm 2DBoundedLP computes the solution to a bounded linear program with n constraints and two variables in $O\left(n^{2}\right)$ time and linear storage.

Proof. To prove that the algorithm correctly finds the solution, we have to show that after every stage-whenever we have added a new half-plane h_{i}-the point v_{i} is still the optimum point for C_{i}. This follows immediately from Lemma 4.5. If the 1-dimensional linear program on ℓ_{i} is infeasible, then C_{i} is empty, and consequently $C=C_{n} \subseteq C_{i}$ is empty, which means that the linear program is infeasible.

It is easy to see that the algorithm requires only linear storage. We add the half-planes one by one in n stages. The time spent in stage i is dominated by the time to solve a 1 -dimensional linear program in line 6 , which is $O(i)$. Hence, the total time needed is bounded by

$$
\sum_{i=1}^{n} O(i)=O\left(n^{2}\right) .
$$

Although our linear programming algorithm is nice and simple, its running time is disappointing-the algorithm is much slower than the previous algorithm, which computed the whole feasible region. Is our analysis too crude? We bounded the cost of every stage i by $O(i)$. This is not always a tight bound: Stage i takes $\Theta(i)$ time only when $v_{i-1} \notin h_{i}$; when $v_{i-1} \in h_{i}$ then stage i takes constant time. So if we could bound the number of times the optimal vertex changes, we might be able to prove a better running time. Unfortunately the optimum vertex can change n times: there are orders for some configurations where every new half-plane makes the previous optimum illegal. The figure in the margin shows such an example. This means that the algorithm will really spend $\Theta\left(n^{2}\right)$ time. How can we avoid this nasty situation?

4.4 Randomized Linear Programming

If we have a second look at the example where the optimum changes n times, we see that the problem is not so much that the set of half-planes is bad. If we
had added them in the order $h_{n}, h_{n-1}, \ldots, h_{3}$, then the optimal vertex would not change anymore after the addition of h_{n}. In this case the running time would be $O(n)$. Is this a general phenomenon? Is it true that, for any set H of half-planes, there is a good order to treat them? The answer to this question is "yes," but that doesn't seem to help us much. Even if such a good order exists, there seems to be no easy way to actually find it. Remember that we have to find the order at the beginning of the algorithm, when we don't know anything about the intersection of the half-planes yet.

We now meet a quite intriguing phenomenon. Although we have no way to determine an ordering of H that is guaranteed to lead to a good running time, we have a very simple way out of our problem. We simply pick a random ordering of H. Of course, we could have bad luck and pick an order that leads to a quadratic running time. But with some luck, we pick an order that makes it run much faster. Indeed, we shall prove below that most orders lead to a fast algorithm. For completeness, we first repeat the algorithm.

Algorithm 2DRAndomizedBoundedLP(H, \vec{c}, m_{1}, m_{2})

Input. A linear program $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$, where H is a set of n half-planes, $\vec{c} \in \mathbb{R}^{2}$, and m_{1}, m_{2} bound the solution.
Output. If $\left(H \cup\left\{m_{1}, m_{2}\right\}, \vec{c}\right)$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

1. Let v_{0} be the corner of C_{0}.
2. Compute a random permutation h_{1}, \ldots, h_{n} of the half-planes by calling RandomPermutation $(H[1 \cdots n]$).
3. for $i \leftarrow 1$ to n
4. do if $v_{i-1} \in h_{i}$
5. then $v_{i} \leftarrow v_{i-1}$
6. else $v_{i} \leftarrow$ the point p on ℓ_{i} that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1}.
7. if p does not exist
8. then Report that the linear program is infeasible and quit.
9. return v_{n}

The only difference from the previous algorithm is in line 2 , where we put the half-planes in random order before we start adding them one by one. To be able to do this, we assume that we have a random number generator, RANDOM (k), which has an integer k as input and generates a random integer between 1 and k in constant time. Computing a random permutation can then be done with the following linear time algorithm.

Algorithm RandomPermutation (A)

Input. An array $A[1 \cdots n]$.
Output. The array $A[1 \cdots n]$ with the same elements, but rearranged into a random permutation.

1. for $k \leftarrow n$ downto 2
2. do rndindex $\leftarrow \operatorname{RANDOM}(k)$
3. Exchange $A[k]$ and $A[$ rndindex $]$.

Section 4.4
RANDOMIZED LINEAR

Chapter 4 LINEAR PROGRAMMING

The new linear programming algorithm is called a randomized algorithm; its running time depends on certain random choices made by the algorithm. (In the linear programming algorithm, these random choices were made in the subroutine RandomPermutation.)

What is the running time of this randomized version of our incremental linear programming algorithm? There is no easy answer to that. It all depends on the order that is computed in line 2 . Consider a fixed set H of n half-planes. 2DRANDOMIZEDBOUNDEDLP treats them depending on the permutation chosen in line 2 . Since there are n ! possible permutations of n objects, there are n ! possible ways in which the algorithm can proceed, each with its own running time. Because the permutation is random, each of these running times is equally likely. So what we do is analyze the expected running time of the algorithm, which is the average running time over all n! possible permutations. The lemma below states that the expected running time of our randomized linear programming algorithm is $O(n)$. It is important to realize that we do not make any assumptions about the input: the expectancy is with respect to the random order in which the half-planes are treated and holds for any set of half-planes.

Lemma 4.8 The 2-dimensional linear programming problem with n constraints can be solved in $O(n)$ randomized expected time using worst-case linear storage.

Proof. As we observed before, the storage needed by the algorithm is linear.
The running time RandomPermutation is $O(n)$, so what remains is to analyze the time needed to add the half-planes h_{1}, \ldots, h_{n}. Adding a half-plane takes constant time when the optimal vertex does not change. When the optimal vertex does change we need to solve a 1-dimensional linear program. We now bound the time needed for all these 1 -dimensional linear programs.

Let X_{i} be a random variable, which is 1 if $v_{i-1} \notin h_{i}$, and 0 otherwise. Recall that a 1 -dimensional linear program on i constraints can be solved in $O(i)$ time. The total time spent in line 6 over all half-planes h_{1}, \ldots, h_{n} is therefore

$$
\sum_{i=1}^{n} O(i) \cdot X_{i} .
$$

To bound the expected value of this sum we will use linearity of expectation: the expected value of a sum of random variables is the sum of the expected values of the random variables. This holds even if the random variables are dependent. Hence, the expected time for solving all 1 -dimensional linear programs is

$$
\mathrm{E}\left[\sum_{i=1}^{n} O(i) \cdot X_{i}\right]=\sum_{i=1}^{n} O(i) \cdot \mathrm{E}\left[X_{i}\right] .
$$

But what is $\mathrm{E}\left[X_{i}\right]$? It is exactly the probability that $v_{i-1} \notin h_{i}$. Let's analyze this probability.

We will do this with a technique called backwards analysis: we look at the algorithm "backwards." Assume that it has already finished, and that it has computed the optimum vertex v_{n}. Since v_{n} is a vertex of C_{n}, it is defined by at
least two of the half-planes. Now we make one step backwards in time, and look at C_{n-1}. Note that C_{n-1} is obtained from C_{n} by removing the half-plane h_{n}. When does the optimum point change? This happens exactly if v_{n} is not a vertex of C_{n-1} that is extreme in the direction \vec{c}, which is only possible if h_{n} is one of the half-planes that define v_{n}. But the half-planes are added in random order, so h_{n} is a random element of $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$. Hence, the probability that h_{n} is one of the half-planes defining v_{n} is at most $2 / n$. Why do we say "at most"? First, it is possible that the boundaries of more than two half-planes pass through v_{n}. In that case, removing one of the two half-planes containing the edges incident to v_{n} may fail to change v_{n}. Furthermore, v_{n} may be defined by m_{1} or m_{2}, which are not among the n candidates for the random choice of h_{n}. In both cases the probability is less than $2 / n$.

The same argument works in general: to bound $\mathrm{E}\left[X_{i}\right]$, we fix the subset of the first i half-planes. This determines C_{i}. To analyze what happened in the last step, when we added h_{i}, we think backwards. The probability that we had to compute a new optimal vertex when adding h_{i} is the same as the probability that the optimal vertex changes when we remove a half-plane from C_{i}. The latter event only takes place for at most two half-planes of our fixed set $\left\{h_{1}, \ldots, h_{i}\right\}$. Since the half-planes are added in random order, the probability that h_{i} is one of the special half-planes is at most $2 / i$. We derived this probability under the condition that the first i half-planes are some fixed subset of H. But since the derived bound holds for any fixed subset, it holds unconditionally. Hence, $\mathrm{E}\left[X_{i}\right] \leqslant 2 / i$. We can now bound the expected total time for solving all 1-dimensional linear programs by

$$
\sum_{i=1}^{n} O(i) \cdot \frac{2}{i}=O(n) .
$$

We already noted that the time spent in the rest of the algorithm is $O(n)$ as well.

Note again that the expectancy here is solely with respect to the random choices made by the algorithm. We do not average over possible choices for the input. For any input set of n half-planes, the expected running time of the algorithm is $O(n)$; there are no bad inputs.

4.5 Unbounded Linear Programs

In the preceding sections we avoided handling the case of an unbounded linear program by adding two additional, artificial constraints. This is not always a suitable solution. Even if the linear program is bounded, we may not know a large enough bound M. Furthermore, unbounded linear programs do occur in practice, and we have to solve them correctly.

Let's first see how we can recognize whether a given linear program (H, \vec{c}) is unbounded. As we saw before, that means that there is a ray ρ completely

Section 4.5

Chapter 4 LINEAR PROGRAMMING
contained in the feasible region C, such that the function $f_{\vec{c}}$ takes arbitrarily large values along ρ.

If we denote the ray's starting point as p, and its direction vector as \vec{d}, we can parameterize ρ as follows:

$$
\rho=\{p+\lambda \vec{d}: \lambda>0\} .
$$

The function $f_{\vec{c}}$ takes arbitrarily large values if and only if $\vec{d} \cdot \vec{c}>0$. On the other hand, if $\vec{\eta}(h)$ is the normal vector of a half-plane $h \in H$ oriented towards the feasible side of h 's bounding line, we have $\vec{d} \cdot \vec{\eta}(h) \geqslant 0$. The next lemma shows that these two necessary conditions on \vec{d} are sufficient to test whether a linear program is unbounded.

Lemma 4.9 A linear program (H, \vec{c}) is unbounded if and only if there is a vector \vec{d} with $\vec{d} \cdot \vec{c}>0$ such that $\vec{d} \cdot \vec{\eta}(h) \geqslant 0$ for all $h \in H$ and the linear program $\left(H^{\prime}, \vec{c}\right)$ is feasible, where $H^{\prime}=\{h \in H: \vec{\eta}(h) \cdot \vec{d}=0\}$.

Proof. The "only if" direction follows from the argument above, so it remains to show the "if" direction.

We consider a linear program (H, \vec{c}) and a vector \vec{d} with the conditions of the lemma. Since $\left(H^{\prime}, \vec{c}\right)$ is feasible, there is a point $p_{0} \in \bigcap_{h \in H^{\prime}} h$. Consider now the ray $\rho_{0}:=\left\{p_{0}+\lambda \vec{d}: \lambda>0\right\}$. Since $\vec{d} \cdot \vec{\eta}(h)=0$ for $h \in H^{\prime}$, the ray ρ_{0} is completely contained in each $h \in H^{\prime}$. Furthermore, since $\vec{d} \cdot \vec{c}>0$ the objective function $f_{\vec{c}}$ takes arbitrarily large values along ρ_{0}.

For a half-plane $h \in H \backslash H^{\prime}$, we have $\vec{d} \cdot \vec{\eta}(h)>0$. This implies that there is a parameter λ_{h} such that $p_{0}+\lambda \vec{d} \in h$ for all $\lambda \geqslant \lambda_{h}$. Let $\lambda^{\prime}:=\max _{h \in H \backslash H^{\prime}} \lambda_{h}$, and $p:=p_{0}+\lambda^{\prime} \vec{d}$. It follows that the ray

$$
\rho=\{p+\lambda \vec{d}: \lambda>0\}
$$

is completely contained in each half-plane $h \in H$, and so (H, \vec{c}) is unbounded.

We can now test whether a given 2-dimensional linear program (H, \vec{c}) is unbounded by proceeding similarly to Section 4.1 , and solving a 1 -dimensional linear program.

Let's first rotate the coordinate system so that \vec{c} is the upward vertical direction, $\vec{c}=(0,1)$. Any direction vector $\vec{d}=\left(d_{x}, d_{y}\right)$ with $\vec{d} \cdot \vec{c}>0$ can be normalized to the form $\vec{d}=\left(d_{x}, 1\right)$, and be represented by the point d_{x} on the line $y=1$. Given a normal vector $\vec{\eta}(h)=\left(\eta_{x}, \eta_{y}\right)$, the inequality

$$
\vec{d} \cdot \vec{\eta}(h)=d_{x} \eta_{x}+\eta_{y} \geqslant 0
$$

translates to the inequality $d_{x} \eta_{x} \geqslant-\eta_{y}$. We thus obtain a system of n linear inequalities, or, in other words, a 1 -dimensional linear program \bar{H}. (This is actually an abuse of the terminology, since a linear program consists of constraints and an objective function. But since at this point we are only interested in feasibility, it is convenient to ignore the objective function.)

If \bar{H} has a feasible solution d_{x}^{*}, we identify the set $H^{\prime} \subseteq H$ of half-planes h for which the solution is tight, that is, where $d_{x}^{*} \eta_{x}+\eta_{y}=0$. We still need to verify that the system H^{\prime} is feasible. Are we again left with a 2 -dimensional linear programming problem? Yes, but a very special one: For each $h \in H^{\prime}$ the normal $\vec{\eta}(h)$ is orthogonal to $\vec{d}=\left(d_{x}^{*}, 1\right)$, and that means that the bounding line of h is parallel to \vec{d}. In other words, all half-planes in H^{\prime} are bounded by parallel lines, and by intersecting them with the x-axis, we have again a 1-dimensional linear program $\overline{H^{\prime}}$. If $\overline{H^{\prime}}$ is feasible, then the original linear program is unbounded, and we can construct a feasible ray ρ in time $O(n)$ as in the lemma above. If $\overline{H^{\prime}}$ is infeasible, then so is H^{\prime} and therefore H.

If \bar{H} does not have a feasible solution, by the lemma above the original linear program (H, \vec{c}) is bounded. Can we extract some more information in this case? Recall the solution for 1-dimensional linear programs: \bar{H} is infeasible if and only if the maximum boundary of a half-line $\overline{h_{1}}$ bounded to the left is larger than the minimum boundary of a half-line $\overline{h_{2}}$ bounded to the right. These two half-lines $\overline{h_{1}}$ and $\overline{h_{2}}$ have an empty intersection. If h_{1} and h_{2} are the original half-planes that correspond to these two constraints, then this is equivalent to saying that $\left(\left\{h_{1}, h_{2}\right\}, \vec{c}\right)$ is bounded. We can call h_{1} and h_{2} certificates: they 'prove' that (H, \vec{c}) is really bounded.

How useful certificates are becomes clear with the following observation: After finding the two certificates h_{1} and h_{2}, we can use them like m_{1} and m_{2} in 2DRANDOMIZEDBoundedLP. That means that we no longer need to make an artificial restriction on the range in which we allow the solution to lie.

Again, we must be careful. It can happen that the linear program $\left(\left\{h_{1}, h_{2}\right\}, \vec{c}\right)$ is bounded, but has no lexicographically smallest solution. This is the case when the 1-dimensional linear program is infeasible due to a single constraint h_{1}, namely when $\vec{\eta}\left(h_{1}\right)=-\vec{c}=(0,-1)$. In that case we scan the remaining list of half-planes for a half-plane h_{2} with $\eta_{x}\left(h_{2}\right)>0$. If we are successful, h_{1} and h_{2} are certificates that guarantee a unique lexicographically smallest solution. If no such h_{2} exists, the linear program is either infeasible, or it has no lexicographically smallest solution. We can solve it by solving the 1-dimensional linear program formed by all half-planes h with $\vec{\eta}_{x}(h)=0$. If it is feasible, we can return a ray ρ in direction $(-1,0)$, such that all points on ρ are feasible optimal solutions.

We can now give a general algorithm for the 2-dimensional linear programming problem:

Algorithm 2dRandomizedLP (H, \vec{c})

Input. A linear program (H, \vec{c}), where H is a set of n half-planes and $\vec{c} \in \mathbb{R}^{2}$.
Output. If (H, \vec{c}) is unbounded, a ray is reported. If it is infeasible, then two or three certificate half-planes are reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

1. Determine whether there is a direction vector \vec{d} such that $\vec{d} \cdot \vec{c}>0$ and $\vec{d} \cdot \vec{\eta}(h) \geqslant 0$ for all $h \in H$.
if \vec{d} exists
then compute H^{\prime} and determine whether H^{\prime} is feasible.
2. \quad if H^{\prime} is feasible

Section 4.5

UNBOUNDED LINEAR PROGRAMS

Chapter 4
LINEAR PROGRAMMING
5.
6.
7. Let $h_{1}, h_{2} \in H$ be certificates proving that (H, \vec{c}) is bounded and has a unique lexicographically smallest solution.
8. Let v_{2} be the intersection of ℓ_{1} and ℓ_{2}.
9. Let $h_{3}, h_{4}, \ldots, h_{n}$ be a random permutation of the remaining half-planes in H.
for $i \leftarrow 3$ to n
do if $v_{i-1} \in h_{i}$
then $v_{i} \leftarrow v_{i-1}$
else $v_{i} \leftarrow$ the point p on ℓ_{i} that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1}. if p does not exist
14. if p does
15. then Let h_{j}, h_{k} (with $j, k<i$) be the certificates (possibly $h_{j}=h_{k}$) with $h_{j} \cap h_{k} \cap \ell_{i}=\emptyset$.
16. Report that the linear program is infeasible, with h_{i}, h_{j}, h_{k} as certificates, and quit.

17. return v_{n}

We summarize our results so far in the following theorem.
Theorem 4.10 A 2-dimensional linear programming problem with n constraints can be solved in $O(n)$ randomized expected time using worst-case linear storage.

4.6* Linear Programming in Higher Dimensions

The linear programming algorithm presented in the previous sections can be generalized to higher dimensions. When the dimension is not too high, then the resulting algorithm compares favorably with traditional algorithms, such as the simplex algorithm.

Let H be a set of n closed half-spaces in \mathbb{R}^{d}. Given a vector $\vec{c}=\left(c_{1}, \ldots, c_{d}\right)$, we want to find the point $p=\left(p_{1}, \ldots, p_{d}\right) \in \mathbb{R}^{d}$ that maximizes the linear function $f_{\vec{c}}(p):=c_{1} p_{1}+\cdots+c_{d} p_{d}$, subject to the constraint that p lies in h for all $h \in H$. To make sure that the solution is unique when the linear program is bounded, we agree to look for the lexicographically smallest point that maximizes $f_{\vec{c}}(p)$.

As in the planar version, we maintain the optimal solution while incrementally adding the half-space constraints one by one. For this to work, we again need to make sure that there is a unique optimal solution at each step. We do this as in the previous section: We first determine whether the linear program is unbounded. If not, we obtain a set of d certificates $h_{1}, h_{2}, \ldots, h_{d} \in H$ that guarantee that the solution is bounded and that there is a unique lexicographically smallest solution. We'll look at the details of finding these certificates later, and concentrate on the main algorithm for the moment.

Let $h_{1}, h_{2}, \ldots, h_{d}$ be the d certificate half-spaces obtained by checking that the linear program is bounded, and let $h_{d+1}, h_{d+2}, \ldots, h_{n}$ be a random permutation of the remaining half-spaces in H. Furthermore, define C_{i} to be the feasible
region when the first i half-spaces have been added, for $d \leqslant i \leqslant n$:

$$
C_{i}:=h_{1} \cap h_{2} \cap \cdots \cap h_{i} .
$$

Let v_{i} denote the optimal vertex of C_{i}, that is, the vertex that maximizes $f_{\vec{c}}$. Lemma 4.5 gave us an easy way to maintain the optimal vertex in the 2 dimensional case: either the optimal vertex doesn't change, or the new optimal vertex is contained in the line that bounds the half-plane h_{i} that we are adding. The following lemma generalizes this result to higher dimensions; its proof is a straightforward generalization of the proof of Lemma 4.5.

Lemma 4.11 Let $1 \leqslant i \leqslant n$, and let C_{i} and v_{i} be defined as above. Then we have
(i) If $v_{i-1} \in h_{i}$, then $v_{i}=v_{i-1}$.
(ii) If $v_{i-1} \notin h_{i}$, then either $C_{i}=\emptyset$ or $v_{i} \in g_{i}$, where g_{i} is the hyperplane that bounds h_{i}.

If we denote the hyperplane that bounds the half-space h_{i} by g_{i}, the optimal vertex v_{i} of C_{i} can be found by finding the optimal vertex of the intersection $g_{i} \cap C_{i-1}$.

But how do we find the optimal vertex of $g_{i} \cap C_{i-1}$? In two dimensions this was easy to do in linear time, because everything was restricted to a line. Let's look at the 3 -dimensional case. In three dimensions, g_{i} is a plane, and $g_{i} \cap C_{i-1}$ is a 2-dimensional convex polygonal region. What do we have to do to find the optimum in $g_{i} \cap C_{i-1}$? We have to solve a 2-dimensional linear program! The linear function $f_{\vec{c}}$ defined in \mathbb{R}^{3} induces a linear function in g_{i}, and we need to find the point in $g_{i} \cap C_{i-1}$ that maximizes this function. In case \vec{c} is orthogonal to g_{i}, all points on g_{i} are equally good: following our rule, we then need to find the lexicographically smallest solution. We achieve this by choosing the objective function correctly-for instance, when g_{i} is not orthogonal to the x_{1}-axis, we obtain the vector \vec{c} by projecting the vector $(-1,0,0)$ onto g_{i}.

So in the 3-dimensional case we find the optimal vertex of $g_{i} \cap C_{i-1}$ as follows: we compute the intersection of all $i-1$ half-spaces with g_{i}, and project the vectors

$$
\vec{c},\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
$$

on g_{i} until a projection is non-zero. This results in a linear program in two dimensions, which we solve using algorithm 2DRANDOMIZEDLP.

By now you can probably guess how we will attack the general, d-dimensional case. There, g_{i} is a hyperplane, a $(d-1)$-dimensional subspace, and we have to find the point in the intersection $C_{i-1} \cap g_{i}$ that maximizes $f_{\vec{c}}$. This is a linear program in $d-1$ dimensions, and so we will solve it by making a recursive call to the $(d-1)$-dimensional version of our algorithm. The recursion bottoms out when we get to a 1-dimensional linear program, which can be solved directly in linear time.

We still need to determine whether the linear program is unbounded, and to find suitable certificates if that is not the case. We first verify that Lemma 4.9

Section 4.6*

LINEAR PROGRAMMING IN HIGHER DIMENSIONS

Chapter 4 LINEAR PROGRAMMING
holds in arbitrary dimensions. The lemma and its proof need no change. The lemma implies that the d-dimensional linear program (H, \vec{c}) is bounded if and only if a certain $(d-1)$-dimensional linear program is infeasible. We will solve this $(d-1)$-dimensional linear program by a recursive call.

If the $(d-1)$-dimensional linear program is feasible, we obtain a direction vector \vec{d}. The d-dimensional linear program is then either unbounded in direction \vec{d}, or infeasible. This can be determined by verifying whether $\left(H^{\prime}, \vec{c}\right)$ is feasible, where H^{\prime} is as defined in Lemma 4.9. The boundaries of all the half-spaces in H^{\prime} are parallel to \vec{d}, and so this can be decided by solving a second $(d-1)$-dimensional program, with a second recursive call.

If the $(d-1)$-dimensional linear program is infeasible, its solution will give us k certificate half-spaces $h_{1}, h_{2}, \ldots, h_{k} \in H$, with $k<d$, that 'prove' that (H, \vec{c}) is bounded. If $k<d$, then the set of optimal solutions to $\left(\left\{h_{1}, \ldots, h_{k}\right\}, \vec{c}\right)$ is unbounded. In that case, these optimal solutions form a $(d-k)$-dimensional subspace. We determine whether the linear program restricted to this subspace is bounded with respect to the lexicographical order. If not, we can report the solution, otherwise we can repeat the process until we obtain a set of d certificates with a unique solution.

The global algorithm now looks as follows. Again we use g_{i} to denote the hyperplane that bounds the half-space h_{i}.

Algorithm RandomizedLP (H, \vec{c})
Input. A linear program (H, \vec{c}), where H is a set of n half-spaces in \mathbb{R}^{d} and $\vec{c} \in \mathbb{R}^{d}$.
Output. If (H, \vec{c}) is unbounded, a ray is reported. If it is infeasible, then at most $d+1$ certificate half-planes are reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

1. Determine whether a direction vector \vec{d} exists such that $\vec{d} \cdot \vec{c}>0$ and $\vec{d} \cdot \vec{\eta}(h) \geqslant 0$ for all $h \in H$.
2. if \vec{d} exists
3. then compute H^{\prime} and determine whether H^{\prime} is feasible.
4. if H^{\prime} is feasible
5. then Report a ray proving that (H, \vec{c}) is unbounded and quit.
6. else Report that (H, \vec{c}) is infeasible, provide certificates, and quit.
7. Let $h_{1}, h_{2}, \ldots, h_{d}$ be certificates proving that (H, \vec{c}) is bounded.
8. Let v_{d} be the intersection of $g_{1}, g_{2}, \ldots, g_{d}$.
9. Compute a random permutation h_{d+1}, \ldots, h_{n} of the remaining half-spaces in H.
10. for $i \leftarrow d+1$ to n
11. do if $v_{i-1} \in h_{i}$
12. then $v_{i} \leftarrow v_{i-1}$
13. else $v_{i} \leftarrow$ the point p on g_{i} that maximizes $f_{\vec{c}}(p)$, subject to the constraints $\left\{h_{1}, \ldots, h_{i-1}\right\}$
14. if p does not exist then Let H^{*} be the at most d certificates for the infeasibility of the ($d-1$)-dimensional program.
15.
16. return v_{n}

Report that the linear program is infeasible, with $H^{*} \cup h_{i}$ as certificates, and quit.

The following theorem states the performance of RandomizedLP. Although we consider d a constant, which means we can state an $O(n)$ bound on the running time, it is useful to have a close look at the dependency of the running time on d-see the end of the proof the following theorem.

Theorem 4.12 For each fixed dimension d, a d-dimensional linear programming problem with n constraints can be solved in $O(n)$ expected time.

Proof. We must prove that there is a constant C_{d} such that the algorithm takes at most $C_{d} n$ expected time. We proceed by induction on the dimension d. For two dimensions, the result follows from Theorem 4.10, so let's assume $d>2$. The induction step is basically identical to the proof of the 2-dimensional cases.

We start by solving at most d linear programs of dimension $d-1$. By the induction assumption, this takes time $O(d n)+d C_{d-1} n$.

The algorithm spends $O(d)$ time to compute v_{d}. Testing whether $v_{i-1} \in h_{i}$ takes $O(d)$ time. The running time is therefore $O(d n)$ as long as we do not count the time spent in line 13.

In line 13 , we need to project \vec{c} on g_{i}, in time $O(d)$, and to intersect i half-spaces with g_{i}, in time $O(d i)$. Furthermore, we make a recursive call with dimension $d-1$ and $i-1$ half-spaces.

Define a random variable X_{i}, which is 1 if $v_{i-1} \notin h_{i}$, and 0 otherwise. The total expected time spent by the algorithm is bounded by

$$
O(d n)+d C_{d-1} n+\sum_{i=d+1}^{n}\left(O(d i)+C_{d-1}(i-1)\right) \cdot \mathrm{E}\left[X_{i}\right] .
$$

To bound $\mathrm{E}\left[X_{i}\right]$, we apply backwards analysis. Consider the situation after adding h_{1}, \ldots, h_{i}. The optimum point is a vertex v_{i} of C_{i}, so it is defined by d of the half-spaces. Now we make one step backwards in time. The optimum point changes only if we remove one of the half-spaces defining v_{i}. Since h_{d+1}, \ldots, h_{i} is a random permutation, the probability that this happens is at most $d /(i-d)$.

Consequently, we get the following bound for the expected running time of the algorithm:

$$
O(d n)+d C_{d-1} n+\sum_{i=d+1}^{n}\left(O(d i)+C_{d-1}(i-1)\right) \frac{d}{i-d}
$$

This can be bounded by $C_{d} n$, with $C_{d}=O\left(C_{d-1} d\right)$, so $C_{d}=O\left(c^{d} d!\right)$ for a constant c indpendent on the dimension.

When d is a constant, it is correct to say that the algorithm runs in linear time. Still, that would be quite misleading. The constant factor C_{d} grows so fast as a function of d that this algorithm is useful only for rather small dimensions.

Section 4.6*

LINEAR PROGRAMMING IN HIGHER dimensions

Chapter 4

 LINEAR PROGRAMMING

4.7* Smallest Enclosing Discs

The simple randomized technique we used above turns out to be surprisingly powerful. It can be applied not only to linear programming but to a variety of other optimization problems as well. In this section we shall look at one such problem.

Consider a robot arm whose base is fixed to the work floor. The arm has to pick up items at various points and place them at other points. What would be a good position for the base of the arm? This would be somewhere "in the middle" of the points it must be able to reach. More precisely, a good position is at the center of the smallest disc that encloses all the points. This point minimizes the maximum distance between the base of the arm and any point it has to reach. We arrive at the following problem: given a set P of n points in the plane (the points on the work floor that the arm must be able to reach), find the smallest enclosing disc for P, that is, the smallest disc that contains all the points of P. This smallest enclosing disc is unique-see Lemma 4.14(i) below, which is a generalization of this statement.

As in the previous sections, we will give a randomized incremental algorithm for the problem: First we generate a random permutation p_{1}, \ldots, p_{n} of the points in P. Let $P_{i}:=\left\{p_{1}, \ldots, p_{i}\right\}$. We add the points one by one while we maintain D_{i}, the smallest enclosing disc of P_{i}.

In the case of linear programming, there was a nice fact that helped us to maintain the optimal vertex: when the current optimal vertex is contained in the next half-plane then it does not change, and otherwise the new optimal vertex lies on the boundary of the half-plane. Is a similar statement true for smallest enclosing discs? The answer is yes:

Lemma 4.13 Let $2<i<n$, and let P_{i} and D_{i} be defined as above. Then we have
(i) If $p_{i} \in D_{i-1}$, then $D_{i}=D_{i-1}$.
(ii) If $p_{i} \notin D_{i-1}$, then p_{i} lies on the boundary of D_{i}.

We shall prove this lemma later, after we have seen how we can use it to design a randomized incremental algorithm that is quite similar to the linear programming algorithm.

Algorithm MiniDisc (P)

Input. A set P of n points in the plane.
Output. The smallest enclosing disc for P.

1. Compute a random permutation p_{1}, \ldots, p_{n} of P.
2. Let D_{2} be the smallest enclosing disc for $\left\{p_{1}, p_{2}\right\}$.
3. \quad for $i \leftarrow 3$ to n
4. do if $p_{i} \in D_{i-1}$
5. then $D_{i} \leftarrow D_{i-1}$
6. else $D_{i} \leftarrow \operatorname{MiniDiscWithPoint}\left(\left\{p_{1}, \ldots, p_{i-1}\right\}, p_{i}\right)$
7. return D_{n}

The critical step occurs when $p_{i} \notin D_{i-1}$. We need a subroutine that finds the smallest disc enclosing P_{i}, using the knowledge that p_{i} must lie on the boundary of that disc. How do we implement this routine? Let $q:=p_{i}$. We use the same framework once more: we add the points of P_{i-1} in random order, and maintain the smallest enclosing disc of $P_{i-1} \cup\{q\}$ under the extra constraint that it should have q on its boundary. The addition of a point p_{j} will be facilitated by the following fact: when p_{j} is contained in the currently smallest enclosing disc then this disc remains the same, and otherwise it must have p_{j} on its boundary. So in the latter case, the disc has both q and p_{j} and its boundary. We get the following subroutine.

MinidiscWithPoint (P, q)

Input. A set P of n points in the plane, and a point q such that there exists an enclosing disc for P with q on its boundary.
Output. The smallest enclosing disc for P with q on its boundary.

1. Compute a random permutation p_{1}, \ldots, p_{n} of P.
2. Let D_{1} be the smallest disc with q and p_{1} on its boundary.
3. for $j \leftarrow 2$ to n
4. do if $p_{j} \in D_{j-1}$
5. then $D_{j} \leftarrow D_{j-1}$
6. else $D_{j} \leftarrow \operatorname{MiniDiscWith} 2 \operatorname{Points}\left(\left\{p_{1}, \ldots, p_{j-1}\right\}, p_{j}, q\right)$
7. return D_{n}

How do we find the smallest enclosing disc for a set under the restriction that two given points q_{1} and q_{2} are on its boundary? We simply apply the same approach one more time. Thus we add the points in random order and maintain the optimal disc; when the point p_{k} we add is inside the current disc we don't have to do anything, and when p_{k} is not inside the current disc it must be on the boundary of the new disc. In the latter case we have three points on the disc boundary: q_{1}, q_{2}, and p_{k}. This means there is only one disc left: the unique disc with q_{1}, q_{2}, and p_{k} on its boundary. This following routine describes this in more detail.

MiniDiscWith2Points (P, q_{1}, q_{2})

Input. A set P of n points in the plane, and two points q_{1} and q_{2} such that there exists an enclosing disc for P with q_{1} and q_{2} on its boundary.
Output. The smallest enclosing disc for P with q_{1} and q_{2} on its boundary.

1. Let D_{0} be the smallest disc with q_{1} and q_{2} on its boundary.
2. for $k \leftarrow 1$ to n
3. do if $p_{k} \in D_{k-1}$
4. then $D_{k} \leftarrow D_{k-1}$
5. else $D_{k} \leftarrow$ the disc with q_{1}, q_{2}, and p_{k} on its boundary
6. return D_{n}

This finally completes the algorithm for computing the smallest enclosing disc of a set of points. Before we analyze it, we must validate its correctness by proving some facts that we used in the algorithms. For instance, we used the

Chapter 4 LINEAR PROGRAMMING
fact that when we added a new point and this point was outside the current optimal disc, then the new optimal disc must have this point on its boundary.

Lemma 4.14 Let P be a set of points in the plane, let R be a possibly empty set of points with $P \cap R=\emptyset$, and let $p \in P$. Then the following holds:
(i) If there is a disc that encloses P and has all points of R on its boundary, then the smallest such disc is unique. We denote it by $m d(P, R)$.
(ii) If $p \in m d(P \backslash\{p\}, R)$, then $m d(P, R)=m d(P \backslash\{p\}, R)$.
(iii) If $p \notin m d(P \backslash\{p\}, R)$, then $m d(P, R)=m d(P \backslash\{p\}, R \cup\{p\})$.

Proof. (i) Assume that there are two distinct enclosing discs D_{0} and D_{1} with centers x_{0} and x_{1}, respectively, and with the same radius. Clearly, all points of P must lie in the intersection $D_{0} \cap D_{1}$. We define a continuous family $\{D(\lambda) \mid 0 \leqslant \lambda \leqslant 1\}$ of discs as follows. Let z be an intersection point of ∂D_{0} and ∂D_{1}, the boundaries of D_{0} and D_{1}. The center of $D(\lambda)$ is the point $x(\lambda):=(1-\lambda) x_{0}+\lambda x_{1}$, and the radius of $D(\lambda)$ is $r(\lambda):=d(x(\lambda), z)$. We have $D_{0} \cap D_{1} \subset D(\lambda)$ for all λ with $0 \leqslant \lambda \leqslant 1$ and, in particular, for $\lambda=1 / 2$. Hence, since both D_{0} and D_{1} enclose all points of P, so must $D(1 / 2)$. Moreover, $\partial D(1 / 2)$ passes through the intersection points of ∂D_{0} and ∂D_{1}. Because $R \subset \partial D_{0} \cap \partial D_{1}$, this implies that $R \subset \partial D(1 / 2)$. In other words, $D(1 / 2)$ is an enclosing disc for P with R on its boundary. But the radius of $D(1 / 2)$ is strictly less than the radii of D_{0} and D_{1}. So whenever there are two distinct enclosing discs of the same radius with R on their boundary, then there is a smaller enclosing disc with R on its boundary. Hence, the smallest enclosing disc $m d(P, R)$ is unique.
(ii) Let $D:=m d(P \backslash\{p\}, R)$. If $p \in D$, then D contains P and has R on its boundary. There cannot be any smaller disc containing P with R on its boundary, because such a disc would also be a containing disc for $P \backslash\{p\}$ with R on its boundary, contradicting the definition of D. It follows that $D=m d(P, R)$.
(iii) Let $D_{0}:=m d(P \backslash\{p\}, R)$ and let $D_{1}:=m d(P, R)$. Consider the family $D(\lambda)$ of discs defined above. Note that $D(0)=D_{0}$ and $D(1)=D_{1}$, so the family defines a continous deformation of D_{0} to D_{1}. By assumption we have $p \notin D_{0}$. We also have $p \in D_{1}$, so by continuity there must be some $0<\lambda^{*} \leqslant 1$ such that p lies on the boundary of $D\left(\lambda^{*}\right)$. As in the proof of (i), we have $P \subset D\left(\lambda^{*}\right)$ and $R \subset \partial D\left(\lambda^{*}\right)$. Since the radius of any $D(\lambda)$ with $0<\lambda<1$ is strictly less than the radius of D_{1}, and D_{1} is by definition the smallest enclosing disc for P, we must have $\lambda^{*}=1$. In other words, D_{1} has p on its boundary.

Lemma 4.14 implies that MiNIDISC correctly computes the smallest enclosing disc of a set of points. The analysis of the running time is given in the proof of the following theorem.

Theorem 4.15 The smallest enclosing disc for a set of n points in the plane can be computed in $O(n)$ expected time using worst-case linear storage.

Proof. MiniDiscWith2Points runs in $O(n)$ time because every iteration of the loop takes constant time, and it uses linear storage. MiniDiscWithPoint
and MiniDisc also need linear storage, so what remains is to analyze their expected running time.

The running time of MiniDiscWithPoint is $O(n)$ as long as we don't count the time spent in calls to MiniDiscWith2Points. What is the probability of having to make such a call? Again we use backwards analysis to bound this probability: Fix a subset $\left\{p_{1}, \ldots, p_{i}\right\}$, and let D_{i} be the smallest disc enclosing $\left\{p_{1}, \ldots, p_{i}\right\}$ and having q on its boundary. Imagine that we remove one of the points $\left\{p_{1}, \ldots, p_{i}\right\}$. When does the smallest enclosing circle change? That happens only when we remove one of the three points on the boundary. One of the points on the boundary is q, so there are at most two points that cause the smallest enclosing circle to shrink. The probability that p_{i} is one of those points is $2 / i$. (When there are more than three points on the boundary, then the probability that the smallest enclosing circle changes can only get smaller.) So we can bound the total expected running time of MiniDiscWithPoint by

$$
O(n)+\sum_{i=2}^{n} O(i) \frac{2}{i}=O(n) .
$$

Applying the same argument once more, we find that the expected running time of MiniDisc is $O(n)$ as well.

Algorithm MiniDisc can be improved in various ways. First of all, it is not necessary to use a fresh random permutation in every instance of subroutine MiniDiscWithPoint. Instead, one can compute a permutation once, at the start of MiniDisc, and pass the permutation to MiniDiscWithPoint. Furthermore, instead of writing three different routines, one could write a single algorithm MiniDiscWithPoints (P, R) that computes $m d(P, R)$ as defined in Lemma 4.14.

4.8 Notes and Comments

In this chapter we have studied an algorithmic problem that arises when one wants to manufacture an object using casting. Other manufacturing processes lead to challenging algorithmic problems as well, and a number of such problems have been studied within computational geometry over the past years-see for example the book by Dutta et al. [152] or the surveys by Janardan and Woo [220] and Bose and Toussaint [72].

The computation of the common intersection of half-planes is an old and well-studied problem. As we will explain in Chapter 11, the problem is dual to the computation of the convex hull of points in the plane. Both problems have a long history in the field, and Preparata and Shamos [323] already list a number of solutions. More information on the computation of 2-dimensional convex hulls can be found in the notes and comments of Chapter 1.

Computing the common intersection of half-spaces, which can be done in $O(n \log n)$ time in the plane and in 3-dimensional space, becomes a more computationally demanding problem when the dimension increases. The reason

Section 4.8

NOTES AND COMMENTS

points that together with q define D_{i}

Chapter 4 LINEAR PROGRAMMING
is that the number of (lower-dimensional) faces of the convex polytope formed as the common intersection can be as large as $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$ [158]. So if the only goal is to find a feasible point, computing the common intersection explicitly soon becomes an unattractive approach.

Linear programming is one of the basic problems in numerical analysis and combinatorial optimization. It goes beyond the scope of this chapter to survey this literature, and we restrict ourselves to mentioning the simplex algorithm and its variants [139], and the polynomial-time solutions of Khachiyan [234] and Karmarkar [227]. More information on linear programming can be found in books by Chvátal [129] and Schrijver [339].

Linear programming as a problem in computational geometry was first considered by Megiddo [273], who showed that the problem of testing whether the intersection of half-spaces is empty is strictly simpler than the computation of the intersection. He gave the first deterministic algorithm for linear programming whose running time is of the form $O\left(C_{d} n\right)$, where C_{d} is a factor depending on the dimension only. His algorithm is linear in n for any fixed dimension. The factor C_{d} in his algorithm is $2^{2^{d}}$. This was later improved to $3^{d^{2}}[130,153]$. More recently, a number of simpler and more practical randomized algorithms have been given [132, 346, 354]. There are a number of randomized algorithms whose running time is subexponential, but still not polynomial in the dimension [222, 267]. Finding a strongly polynomial algorithm, that is of combinatorial polynomial complexity, for linear programming is one of the major open problems in the area.

The simple randomized incremental algorithm for two and higher dimensions given here is due to Seidel [346]. Unlike in our presentation, he deals with unbounded linear programs by treating the parameter M symbolically. This is probably more elegant and efficient than the algorithm we present, which was chosen to demonstrate the relationship between unbounded d-dimensional linear programs and feasible ($d-1$)-dimensional ones. In Seidel's version, the factor C_{d} can be shown to be $O(d!)$.

The generalization to the computation of smallest enclosing discs is due to Welzl [385], who also showed how to find the smallest enclosing ball of a set of points in higher dimensions, and the smallest enclosing ellipse or ellipsoid. Sharir and Welzl further generalized the technique and introduced the notion of LP-type problems, which can be solved efficiently with an algorithm similar to the ones described here [189, 354]. Generally speaking, the technique is applicable to optimization problems where the solution either does not change when a new constraint is added, or the solution is partially defined by the new constraint so that the dimension of the problem is reduced. It has also been shown that the special properties of LP-type problems give rise to so-called Helly-type theorems [16].

Randomization is a technique that often produces algorithms that are simple and efficient. We will see more examples in the following chapters. The price we pay is that the running time is only an expected bound and-as we observedthere is a certain chance that the algorithm takes much longer. Some people take this as a reason to say that randomized algorithms cannot be trusted and
shouldn't be used (think of a computer in an intensive care station in a hospital, or in a nuclear power plant).

On the other hand, deterministic algorithms are only perfect in theory. In practice, any non-trivial algorithm may contain bugs, and even if we neglect this, there is the risk of hardware malfunction or "soft errors": single bits in core memory flipping under the influence of ambient α-radiation. Because randomized algorithms are often much simpler and have shorter code, the probability of such a mishap is smaller. Therefore the total probability that a randomized algorithm fails to produce the correct answer in time need not be larger than the probability that a deterministic algorithm fails. Moreover, we can always reduce the probability that the actual running time of a randomized algorithm exceeds its expected running time by allowing a larger constant in the expected running time.

4.9 Exercises

4.1 In this chapter we studied the casting problem for molds of one piece. A sphere cannot be manufactured in this manner, but it can be manufactured if we use a two-piece mold. Give an example of an object that cannot be manufactured with a two-piece mold, but that can be manufactured with a three-piece mold.
4.2 Consider the casting problem in the plane: we are given polygon \mathcal{P} and a 2-dimensional mold for it. Describe a linear time algorithm that decides whether \mathcal{P} can be removed from the mold by a single translation.
4.3 Suppose that, in the 3-dimensional casting problem, we do not want the object to slide along a facet of the mold when we remove it. How does this affect the geometric problem (computing a point in the intersection of half-planes) that we derived?
4.4 Let \mathcal{P} be a castable simple polyhedron with top facet f. Let \vec{d} be a removal direction for \mathcal{P}. Show that any line with direction \vec{d} intersects \mathcal{P} if and only if it intersects f. Also show that for any line ℓ with direction \vec{d}, the intersection $\ell \cap \mathcal{P}$ is connected.
4.5 Let \mathcal{P} be a simple polyhedron with n vertices. If \mathcal{P} is castable with some facet f as top facet, then a necessary condition is that the facets adjacent to f must lie completely to one side of h_{f}, the plane through f. (The reverse is not necessarily true, of course: if all adjacent facets lie to one side of h_{f} then \mathcal{P} is not necessarily castable with f as top facet.) Give a linear time algorithm to compute all facets of \mathcal{P} for which this condition holds.
4.6* Consider the restricted version of the casting problem in which we insist that the object is removed from its mold using a vertical translation (perpendicular to the top facet).

Section 4.9
EXERCISES

a. Prove that in this case there is always only a constant number of possible top facets.
b. Give a linear time algorithm that determines whether for a given object a mold exists under this restricted model.
4.7 Instead of removing the object from the mold by a single translation, we can also try to remove it by a single rotation. For simplicity, let's consider the planar variant of this version of the casting problem, and let's only look at clockwise rotations.
a. Give an example of a simple polygon \mathcal{P} with top facet f that is not castable when we require that \mathcal{P} should be removed from the mold by a single translation, but that is castable using rotation around a point. Also give an example of a simple polygon \mathcal{P} with top facet f that is not castable when we require that \mathcal{P} should be removed from the mold by a rotation, but that is castable using a single translation.
b. Show that the problem of finding a center of rotation that allows us to remove \mathcal{P} with a single rotation from its mold can be reduced to the problem of finding a point in the common intersection of a set of half-planes.
4.8 The plane $z=1$ can be used to represent all directions of vectors in 3dimensional space that have a positive z-value. How can we represent all directions of vectors in 3-dimensional space that have a non-negative z-value? And how can we represent the directions of all vectors in 3dimensional space?
4.9 Suppose we want to find all optimal solutions to a 3-dimensional linear program with n constraints. Argue that $\Omega(n \log n)$ is a lower bound for the worst-case time complexity of any algorithm solving this problem.
4.10 Let H be a set of at least three half-planes with a non-empty intersection such that not all bounding lines are parallel. We call a half-plane $h \in H$ redundant if it does not contribute an edge to $\cap H$. Prove that for any redundant half-plane $h \in H$ there are two half-planes $h^{\prime}, h^{\prime \prime} \in H$ such that $h^{\prime} \cap h^{\prime \prime} \subset h$. Give an $O(n \log n)$ time algorithm to compute all redundant half-planes.
4.11 Give an example of a 2-dimensional linear program that is bounded, but where there is no lexicographically smallest solution.
4.12 Prove that RandomPermutation (A) is correct, that is, prove that every possible permutation of A is equally likely to be the output. Also show that the algorithm is no longer correct (it no longer produces every permutation with equal probability) if we change the k in line 2 to n.
4.13 In the text we gave a linear time algorithm for computing a random permutation. The algorithm needed a random number generator that can produce a random integer between 1 and n in constant time. Now assume we have a restricted random number generator available that can only
generate a random bit (0 or 1) in constant time. How can we generate a random permutation with this restricted random number generator? What

Section 4.9

EXERCISES
4.14 Here is a paranoid algorithm to compute the maximum of a set A of n real numbers:

Algorithm ParanoidMaximum (A)

1. if $\operatorname{card}(A)=1$
2. then return the unique element $x \in A$
3. else Pick a random element x from A.
4. $\quad x^{\prime} \leftarrow$ ParanoidMaximum $(A \backslash\{x\})$
5. if $x \leqslant x^{\prime}$
6. then return x^{\prime}
7. else Now we suspect that x is the maximum, but to be absolutely sure, we compare x with all $\operatorname{card}(A)-1$ other elements of A.
8. return x

What is the worst-case running time of this algorithm? What is the expected running time (with respect to the random choice in line 3)?
4.15 A simple polygon \mathcal{P} is called star-shaped if it contains a point q such that for any point p in \mathcal{P} the line segment $\overline{p q}$ is contained in \mathcal{P}. Give an algorithm whose expected running time is linear to decide whether a simple polygon is star-shaped.
4.16 On n parallel railway tracks n trains are going with constant speeds v_{1}, v_{2}, \ldots, v_{n}. At time $t=0$ the trains are at positions $k_{1}, k_{2}, \ldots, k_{n}$. Give an $O(n \log n)$ algorithm that detects all trains that at some moment in time are leading. To this end, use the algorithm for computing the intersection of half-planes.
4.17* Show how to implement MiniDisc using a single routine MiniDiscWithPoints (P, R) that computes $m d(P, R)$ as defined in Lemma 4.14. Your algorithm should compute only a single random permutation during the whole computation.

