
4 Linear Programming
Manufacturing with Molds

Most objects we see around us today—from car bodies to plastic cups and

cutlery—are made using some form of automated manufacturing. Computers

play an important role in this process, both in the design phase and in the

construction phase; CAD/CAM facilities are a vital part of any modern factory.

The construction process used to manufacture a specific object depends on

factors such as the material the object should be made of, the shape of the object,

and whether the object will be mass produced. In this chapter we study some

geometric aspects of manufacturing with molds, a commonly used process for

plastic or metal objects. For metal objects this process is often referred to as

casting.

Figure 4.1
The casting process

Figure 4.1 illustrates the casting process: liquid metal is poured into a mold, it

solidifies, and then the object is removed from the mold. The last step is not

always as easy as it seems; the object could be stuck in the mold, so that it

cannot be removed without breaking the mold. Sometimes we can get around

this problem by using a different mold. There are also objects, however, for

which no good mold exists; a sphere is an example. This is the problem we

shall study in this chapter: given an object, is there a mold for it from which it

can be removed?

We shall confine ourselves to the following situation. First of all, we assume

that the object to be constructed is polyhedral. Secondly, we only consider 63
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molds of one piece, not molds consisting of two or more pieces. (Using molds

consisting of two pieces, it is possible to manufacture objects such as spheres,

which cannot be manufactured using a mold of a single piece.) Finally, we

only allow the object to be removed from the mold by a single translation. This

means that we will not be able to remove a screw from its mold. Fortunately,

translational motions suffice for many objects.

4.1 The Geometry of Casting

If we want to determine whether an object can be manufactured by casting,

we have to find a suitable mold for it. The shape of the cavity in the mold is

determined by the shape of the object, but different orientations of the object

give rise to different molds. Choosing the orientation can be crucial: some

orientations may give rise to molds from which the object cannot be removed,

while other orientations allow removal of the object. One obvious restriction on

the orientation is that the object must have a horizontal top facet. This facet will

be the only one not in contact with the mold. Hence, there are as many potential

orientations—or, equivalently, possible molds—as the object has facets. We call

an object castable if it can be removed from its mold for at least one of these

orientations. In the following we shall concentrate on determining whether an

object is removable by a translation from a specific given mold. To decide on

the castability of the object we then simply try every potential orientation.

Let P be a 3-dimensional polyhedron—that is, a 3-dimensional solid bounded
top facet

by planar facets—with a designated top facet. (We shall not try to give a precise,

formal definition of a polyhedron. Giving such a definition is tricky and not

necessary in this context.) We assume that the mold is a rectangular block

with a cavity that corresponds exactly to P. When the polyhedron is placed in

the mold, its top facet should be coplanar with the topmost facet of the mold,

which we assume to be parallel to the xy-plane. This means that the mold has

no unnecessary parts sticking out on the top that might prevent P from being

removed.

We call a facet of P that is not the top facet an ordinary facet. Every ordinary

facet f has a corresponding facet in the mold, which we denote by f̂ .

We want to decide whether P can be removed from its mold by a single transla-

tion. In other words, we want to decide whether a direction �d exists such that

P can be translated to infinity in direction �d without intersecting the interior

of the mold during the translation. Note that we allow P to slide along the

mold. Because the facet of P not touching the mold is its top facet, the removal

direction has to be upward, that is, it must have a positive z-component. This is

only a necessary condition on the removal direction; we need more constraints

to be sure that a direction is valid.

Let f be an ordinary facet of P. This facet must move away from, or slide

along, its corresponding facet f̂ of the mold. To make this constraint precise,

we need to define the angle of two vectors in 3-space. We do this as follows.64
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Take the plane spanned by the vectors (we assume both vectors are rooted at

the origin); the angle of the vectors is the smaller of the two angles measured in

this plane. Now f̂ blocks any translation in a direction making an angle of less

than 90◦ with �η( f ), the outward normal of f . So a necessary condition on �d is

that it makes an angle of at least 90◦ with the outward normal of every ordinary

facet of P. The next lemma shows that this condition is also sufficient.

Lemma 4.1 The polyhedron P can be removed from its mold by a translation

in direction �d if and only if �d makes an angle of at least 90◦ with the outward

normal of all ordinary facets of P.

p

P

�η( f̂ )

�d

f

Proof. The “only if” part is easy: if �d made an angle less than 90◦ with some

outward normal �η( f ), then any point q in the interior of f collides with the

mold when translated in direction �d.

To prove the “if” part, suppose that at some moment P collides with the

mold when translated in direction �d. We have to show that there must be an

outward normal making an angle of less than 90◦ with �d. Let p be a point of

P that collides with a facet f̂ of the mold. This means that p is about to move

into the interior of the mold, so �η( f̂ ), the outward normal of f̂ , must make an

angle greater than 90◦ with �d. But then �d makes an angle less than 90◦ with the

outward normal of the ordinary facet f of P that corresponds to f̂ .

Lemma 4.1 has an interesting consequence: if P can be removed by a

sequence of small translations, then it can be removed by a single translation.

So allowing for more than one translation does not help in removing the object

from its mold.

We are left with the task of finding a direction �d that makes an angle of at z

x

y

z = 1

least 90◦ with the outward normal of each ordinary facet of P. A direction in

3-dimensional space can be represented by a vector rooted at the origin. We

already know that we can restrict our attention to directions with a positive

z-component. We can represent all such directions as points in the plane z = 1,

where the point (x,y,1) represents the direction of the vector (x,y,1). This way

every point in the plane z = 1 represents a unique direction, and every direction

with a positive z-value is represented by a unique point in that plane.

Lemma 4.1 gives necessary and sufficient conditions on the removal direc-

tion �d. How do these conditions translate into our plane of directions? Let
�η = (�ηx,�ηy,�ηz) be the outward normal of an ordinary facet. The direction
�d = (dx,dy,1) makes an angle at least 90◦ with �η if and only if the dot product

of �d and �η is non-positive. Hence, an ordinary facet induces a constraint of the

form
�ηxdx +�ηydy +�ηz � 0.

This inequality describes a half-plane on the plane z = 1, that is, the area left or

the area right of a line on the plane. (This last statement is not true for horizontal

facets, which have �ηx =�ηy = 0. In this case the constraint is either impossible

to satisfy or always satisfied, which is easy to test.) Hence, every non-horizontal

facet of P defines a closed half-plane on the plane z = 1, and any point in the 65
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common intersection of these half-planes corresponds to a direction in which P

can be removed. The common intersection of these half-planes may be empty;

in this case P cannot be removed from the given mold.

We have transformed our manufacturing problem to a purely geometric problem

in the plane: given a set of half-planes, find a point in their common intersection

or decide that the common intersection is empty. If the polyhedron to be

manufactured has n facets, then the planar problem has at most n−1 half-planes

(the top facet does not induce a half-plane). In the next sections we will see

that the planar problem just stated can be solved in expected linear time—see

Section 4.4, where also the meaning of “expected” is explained.

Recall that the geometric problem corresponds to testing whether P can be

removed from a given mold. If this is impossible, there can still be other molds,

corresponding to different choices of the top facet, from which P is removable.

In order to test whether P is castable, we try all its facets as top facets. This

leads to the following result.

Theorem 4.2 Let P be a polyhedron with n facets. In O(n2) expected time and

using O(n) storage it can be decided whether P is castable. Moreover, if P is

castable, a mold and a valid direction for removing P from it can be computed

in the same amount of time.

4.2 Half-Plane Intersection

Let H = {h1,h2, . . . ,hn} be a set of linear constraints in two variables, that is,

constraints of the form

aix+biy � ci,

where ai, bi, and ci are constants such that at least one of ai and bi is non-zero.

Geometrically, we can interpret such a constraint as a closed half-plane in R
2,

bounded by the line aix+biy = ci. The problem we consider in this section is to

find the set of all points (x,y) ∈ R
2 that satisfy all n constraints at the same time.

In other words, we want to find all the points lying in the common intersection

of the half-planes in H. (In the previous section we reduced the casting problem

to finding some point in the intersection of a set of half-planes. The problem we

study now is more general.)

The shape of the intersection of a set of half-planes is easy to determine: a

half-plane is convex, and the intersection of convex sets is again a convex

set, so the intersection of a set of half-planes is a convex region in the plane.

Every point on the intersection boundary must lie on the bounding line of some

half-plane. Hence, the boundary of the region consists of edges contained in

these bounding lines. Since the intersection is convex, every bounding line can

contribute at most one edge. It follows that the intersection of n half-planes

is a convex polygonal region bounded by at most n edges. Figure 4.2 shows

a few examples of intersections of half-planes. To which side of its bounding66
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line a half-plane lies is indicated by dark shading in the figure; the common

intersection is shaded lightly. As you can see in Figures 4.2 (ii) and (iii), the

(i) (ii) (iii)

(iv) (v)

Figure 4.2
Examples of the intersection of

half-planes

intersection does not have to be bounded. The intersection can also degenerate

to a line segment or a point, as in (iv), or it can be empty, as in (v).

We give a rather straightforward divide-and-conquer algorithm to compute the

intersection of a set of n half-planes. It is based on a routine INTERSECTCON-

VEXREGIONS to compute the intersection of two convex polygonal regions. We

first give the overall algorithm.

Algorithm INTERSECTHALFPLANES(H)

Input. A set H of n half-planes in the plane.

Output. The convex polygonal region C :=
⋂

h∈H h.

1. if card(H) = 1

2. then C ← the unique half-plane h ∈ H
3. else Split H into sets H1 and H2 of size �n/2� and �n/2
.

4. C1 ←INTERSECTHALFPLANES(H1)

5. C2 ←INTERSECTHALFPLANES(H2)

6. C ←INTERSECTCONVEXREGIONS(C1,C2)

What remains is to describe the procedure INTERSECTCONVEXREGIONS. But

wait—didn’t we see this problem before, in Chapter 2? Indeed, Corollary 2.7

states that we can compute the intersection of two polygons in O(n logn +
k logn) time, where n is the total number of vertices in the two polygons. We

must be a bit careful in applying this result to our problem, because the regions

we have can be unbounded, or degenerate to a segment or a point. Hence,

the regions are not necessarily polygons. But it is not difficult to modify the

algorithm from Chapter 2 so that it still works.

Let’s analyze this approach. Assume we have already computed the two regions

C1 and C2 by recursion. Since they are both defined by at most n/2 + 1 half-

planes, they both have at most n/2 +1 edges. The algorithm from Chapter 2

computes their overlay in time O((n + k) logn), where k is the number of

intersection points between edges of C1 and edges of C2. What is k? Look 67
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at an intersection point v between an edge e1 of C1 and an edge e2 of C2. No

matter how e1 and e2 intersect, v must be a vertex of C1 ∩C2. But C1 ∩C2 is the

intersection of n half-planes, and therefore has at most n edges and vertices. It

follows that k � n, so the computation of the intersection of C1 and C2 takes

O(n logn) time.

v
e1

e2

This gives the following recurrence for the total running time:

T (n) =

{
O(1), if n = 1,

O(n logn)+2T (n/2), if n > 1.

This recurrence solves to T (n) = O(n log2 n).

To obtain this result we used a subroutine for computing the intersection of

two arbitrary polygons. The polygonal regions we deal with in INTERSECT-

HALFPLANES are always convex. Can we use this to develop a more efficient

algorithm? The answer is yes, as we show next. We will assume that the regions

we want to intersect are 2-dimensional; the case where one or both of them is a

segment or a point is easier and left as an exercise.

First, let’s specify more precisely how we represent a convex polygonal region

Lleft(C) = h3,h4,h5

Lright(C) = h2,h1

h1

h2

h3

h4

h5

left boundary

right boundary

C. We will store the left and the right boundary of C separately, as sorted lists

of half-planes. The lists are sorted in the order in which the bounding lines of

the half-planes occur when the (left or right) boundary is traversed from top to

bottom. We denote the left boundary list by Lleft(C), and the right boundary

list by Lright(C). Vertices are not stored explicitly; they can be computed by

intersecting consecutive bounding lines.

To simplify the description of the algorithm, we shall assume that there are

no horizontal edges. (To adapt the algorithm to deal with horizontal edges, one

can define such edges to belong to the left boundary if they bound C from above,

and to the right boundary if they bound C from below. With this convention

only a few adaptations are needed to the algorithm stated below.)

The new algorithm is a plane sweep algorithm, like the one in Chapter 2: we

move a sweep line downward over the plane, and we maintain the edges of C1

and C2 intersecting the sweep line. Since C1 and C2 are convex, there are at most

four such edges. Hence, there is no need to store these edges in a complicated

data structure; instead we simply have pointers left edge C1, right edge C1,

left edge C2, and right edge C2 to them. If the sweep line does not intersect

the right or left boundary of a region, then the corresponding pointer is nil.

Figure 4.3 illustrates the definitions.

How are these pointers initialized? Let y1 be the y-coordinate of the topmost

vertex of C1; if C1 has an unbounded edge extending upward to infinity then

we define y1 = ∞. Define y2 similarly for C2, and let ystart = min(y1,y2). To

compute the intersection of C1 and C2 we can restrict our attention to the part

of the plane with y-coordinate less than or equal to ystart. Hence, we let the

sweep line start at ystart, and we initialize the edges left edge C1, right edge C1,

left edge C2, and right edge C2 as the ones intersecting the line y = ystart.68
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C2
C1

left edge C1

right edge C1 = nil
left edge C2

right edge C2

Figure 4.3
The edges maintained by the sweep line

algorithm

In a plane sweep algorithm one normally also needs a queue to store the events.

In our case the events are the points where edges of C1 or of C2 start or stop to

intersect the sweep line. This implies that the next event point, which determines

the next edge to be handled, is the highest of the lower endpoints of the edges

intersecting the sweep line. (Endpoints with the same y-coordinate are handled

from left to right. If two endpoints coincide then the leftmost edge is treated

first.) Hence, we don’t need an event queue; the next event can be found in

constant time using the pointers left edge C1, right edge C1, left edge C2, and

right edge C2.

At each event point some new edge e appears on the boundary. To handle

the edge e we first check whether e belongs to C1 or to C2, and whether it is on

the left or the right boundary, and then call the appropriate procedure. We shall

only describe the procedure that is called when e is on the left boundary of C1.

The other procedures are similar.

Let p be the upper endpoint of e. The procedure that handles e will discover three

possible edges that C might have: the edge with p as upper endpoint, the edge

with e∩ left edge C2 as upper endpoint, and the edge with e∩ right edge C2
as upper endpoint. It performs the following actions.

First we test whether p lies in between left edge C2 and right edge C2. If

this is the case, then e contributes an edge to C starting at p. We then add

the half-plane whose bounding line contains e to the list Lleft(C).

Next we test whether e intersects right edge C2. If this is the case, then the

intersection point is a vertex of C. Either both edges contribute an edge to

C starting at the intersection point—this happens when p lies to the right

of right edge C2, as in Figure 4.4(i)—or both edges contribute an edge

ending there—this happens when p lies to the left of right edge C2, as in

Figure 4.4(ii). If both edges contribute an edge starting at the intersection

point, then we have to add the half-plane defining e to Lleft(C) and the

half-plane defining right edge C2 to Lright(C). If they contribute an edge

ending at the intersection point we do nothing; these edges have already

been discovered in some other way.

Finally we test whether e intersects left edge C2. If this is the case, then the 69
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Figure 4.4
The two possibilities when e intersects

right edge C2

right edge C2

(i) (ii)

e

e right edge C2

p p

intersection point is a vertex of C. The edge of C starting at that vertex is

e

left edge C2

p

either a part of e or it is a part of left edge C2. We can decide between these

possibilities in constant time: if p lies to the left of left edge C2 then it is a

part of e, otherwise it is a part of left edge C2. After we decided whether e
or left edge C2 contributes the edge to C, we add the appropriate half-plane

to Lleft(C).

Notice that we may add two half-planes to Lleft(C): the half-plane bounding e
and the half-plane bounding left edge C2. In which order should we add them?

We add left edge C2 only if it defines an edge of C starting at the intersection

point of left edge C2 and e. If we also decide to add the half-plane of e, it

must be because e defines an edge of C starting at its upper endpoint or at

its intersection point with right edge C2. In both cases we should add the

half-plane bounding e first, which is guaranteed by the order of the tests given

above.

We conclude that it takes constant time to handle an edge, so the intersection of

two convex polygons can be computed in time O(n). To show that the algorithm

is correct, we have to prove that it adds the half-planes defining the edges of C
in the right order. Consider an edge of C, and let p be its upper endpoint. Then

p is either an upper endpoint of an edge in C1 or C2, or it is the intersection of

two edges e and e′ of C1 and C2, respectively. In the former case we discover the

edge of C when p is reached, and in the latter case when the lower of the upper

endpoints of e and e′ is reached. Hence, all half-planes defining the edges of C
are added. It is not difficult to prove that they are added in the correct order.

We get the following result:

Theorem 4.3 The intersection of two convex polygonal regions in the plane can

be computed in O(n) time.

This theorem shows that we can do the merge step in INTERSECTHALF-

PLANES in linear time. Hence, the recurrence for the running time of the

algorithm becomes

T (n) =

{
O(1), if n = 1,

O(n)+2T (n/2), if n > 1,

leading to the following result:70



Section 4.3
INCREMENTAL LINEAR

PROGRAMMING

Corollary 4.4 The common intersection of a set of n half-planes in the plane

can be computed in O(n logn) time and linear storage.

The problem of computing the intersection of half-planes is intimately

related to the computation of convex hulls, and an alternative algorithm can be

given that is almost identical to algorithm CONVEXHULL from Chapter 1. The

relationship between convex hulls and intersections of half-planes is discussed

in detail in Sections 8.2 and 11.4. Those sections are independent of the rest of

their chapters, so if you are curious you can already have a look.

4.3 Incremental Linear Programming

In the previous section we showed how to compute the intersection of a set of

n half-planes. In other words, we computed all solutions to a set of n linear

constraints. The running time of our algorithm was O(n logn). One can prove

that this is optimal: as for the sorting problem, any algorithm that solves the

half-plane intersection problem must take Ω(n logn) time in the worst case. In

our application to the casting problem, however, we don’t need to know all
solutions to the set of linear constraints; just one solution will do fine. It turns

out that this allows for a faster algorithm.

Finding a solution to a set of linear constraints is closely related to a well-

known problem in operations research, called linear optimization or linear
programming. (This term was coined before “programming” came to mean

“giving instructions to a computer”.) The only difference is that linear program-

ming involves finding one specific solution to the set of constraints, namely the

one that maximizes a given linear function of the variables. More precisely, a

linear optimization problem is described as follows:

Maximize c1x1 + c2x2 + · · ·+ cdxd

Subject to a1,1x1 + · · ·+a1,dxd � b1

a2,1x1 + · · ·+a2,dxd � b2

...

an,1x1 + · · ·+an,dxd � bn

where the ci, and ai, j, and bi are real numbers, which form the input to the

problem. The function to be maximized is called the objective function, and

the set of constraints together with the objective function is a linear program.

The number of variables, d, is the dimension of the linear program. We already

saw that linear constraints can be viewed as half-spaces in R
d . The intersection

of these half-spaces, which is the set of points satisfying all constraints, is

called the feasible region of the linear program. Points (solutions) in this region

are called feasible, points outside are infeasible. Recall from Figure 4.2 that

the feasible region can be unbounded, and that it can be empty. In the latter

case, the linear program is called infeasible. The objective function can be

viewed as a direction in R
d ; maximizing c1x1 +c2x2 + · · ·+cdxd means finding 71
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a point (x1, . . . ,xd) that is extreme in the direction�c = (c1, . . . ,cd). Hence, the

solution to the linear program is a point in the feasible region that is extreme

in direction �c. We let f�c denote the objective function defined by a direction

vector�c.

Many problems in operations research can be described by linear programs,

and a lot of work has been dedicated to linear optimization. This has resulted in

many different linear programming algorithms, several of which—the famous

simplex algorithm for instance—perform well in practice.

feasible region

�c

solution

Let’s go back to our problem. We have n linear constraints in two variables

and we want to find one solution to the set of constraints. We can do this

by taking an arbitrary objective function, and then solving the linear program

defined by the objective function and the linear constraints. For the latter step

we can use the simplex algorithm, or any other linear programming algorithm

developed in operations research. However, this particular linear program is

quite different from the ones usually studied: in operations research both the

number of constraints and the number of variables are large, but in our case the

number of variables is only two. The traditional linear programming methods

are not very efficient in such low-dimensional linear programming problems;

methods developed in computational geometry, like the one described below,

do better.

We denote the set of n linear constraints in our 2-dimensional linear program-

ming problem by H. The vector defining the objective function is�c = (cx,cy);
thus the objective function is f�c(p) = cx px + cy py. Our goal is to find a point

p∈R
2 such that p∈⋂H and f�c(p) is maximized. We denote the linear program

by (H,�c), and we use C to denote its feasible region. We can distinguish four

cases for the solution of a linear program (H,�c). The four cases are illustrated

in Figure 4.5; the vector defining the objective function is vertically downward

in the examples.

Figure 4.5
Different types of solutions to a linear

program.

(i) (ii) (iii) (iv)

v
eρ

(i) The linear program is infeasible, that is, there is no solution to the set of

constraints.

(ii) The feasible region is unbounded in direction�c. In this case there is a ray

ρ completely contained in the feasible region C, such that the function f�c
takes arbitrarily large values along ρ . The solution we require in this case

is the description of such a ray.

(iii) The feasible region has an edge e whose outward normal points in the

direction�c. In this case, there is a solution to the linear program, but it is

not unique: any point on e is a feasible point that maximizes f�c(p).
(iv) If none of the preceding three cases applies, then there is a unique solution,

which is the vertex v of C that is extreme in the direction�c.72
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Our algorithm for 2-dimensional linear programming is incremental. It adds the

constraints one by one, and maintains the optimal solution to the intermediate

linear programs. It requires, however, that the solution to each intermediate

problem is well-defined and unique. In other words, it assumes that each

intermediate feasible region has a unique optimal vertex as in case (iv) above.

To fulfill this requirement, we add to our linear program two additional

constraints that will guarantee that the linear program is bounded. For example,

if cx > 0 and cy > 0 we add the contraints px � M and py � M, for some

large M ∈ R. The idea is that M should be chosen so large that the additional

constraints do not influence the optimal solution, if the original linear program

was bounded.

In many practical applications of linear programming, a bound of this form

is actually a natural restriction. In our application to the casting problem, for

instance, mechanical limitations will not allow us to remove the polyhedron in

a direction that is nearly horizontal. For instance, we may not be able to remove

the polyhedron in a direction whose angle with the xy-plane is less than 1 degree.

This constraint immediately gives a bound on the absolute value of px, py.

We will discuss in Section 4.5 how we can correctly recognize unbounded
linear programs, and how we can solve bounded ones without enforcing artificial

constraints on the solution.

For preciseness, let’s give a name to the two new constraints:

m1 :=
{

px � M if cx > 0

−px � M otherwise

and

m2 :=
{

py � M if cy > 0

−py � M otherwise

Note that m1,m2 are chosen as a function of�c only, they do not depend on the

half-planes H. The feasible region C0 = m1 ∩m2 is an orthogonal wedge.

solution

Another simple convention now allows us to say that case (iii) also has a

unique solution: if there are several optimal points, then we want the lexico-

graphically smallest one. Conceptually, this convention is equivalent to rotating

�c a little, such that it is no longer normal to any half-plane.

We have to be careful when doing this, as even a bounded linear program

may not have a lexicographically smallest solution (see Exercise 4.11). Our

choice of the two constraints m1 and m2 is such that this cannot happen.

With these two conventions, any linear program that is feasible has a unique

solution, which is a vertex of the feasible region. We call this vertex the optimal
vertex.

Let (H,�c) be a linear program. We number the half-planes h1, h2, . . . , hn. Let

Hi be the set of the first i constraints, together with the special constraints m1

and m2, and let Ci be the feasible region defined by these constraints:

Hi := {m1,m2,h1,h2 . . . ,hi},
Ci := m1 ∩m2 ∩h1 ∩h2 ∩·· ·∩hi. 73
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By our choice of C0, each feasible region Ci has a unique optimal vertex, denoted

vi. Clearly, we have

C0 ⊇C1 ⊇C2 · · · ⊇Cn = C.

This implies that if Ci = /0 for some i, then Cj = /0 for all j � i, and the linear

program is infeasible. So our algorithm can stop once the linear program

becomes infeasible.

The next lemma investigates how the optimal vertex changes when we add a

half-plane hi. It is the basis of our algorithm.

Lemma 4.5 Let 1 � i � n, and let Ci and vi be defined as above. Then we have

(i) If vi−1 ∈ hi, then vi = vi−1.

(ii) If vi−1 �∈ hi, then either Ci = /0 or vi ∈ �i, where �i is the line bounding hi.

Proof. (i) Let vi−1 ∈ hi. Because Ci = Ci−1 ∩hi and vi−1 ∈Ci−1 this means that

vi−1 ∈ Ci. Furthermore, the optimal point in Ci cannot be better than the

optimal point in Ci−1, since Ci ⊆Ci−1. Hence, vi−1 is the optimal vertex in

Ci as well.

(ii) Let vi−1 �∈ hi. Suppose for a contradiction that Ci is not empty and that vi
does not lie on �i. Consider the line segment vi−1vi. We have vi−1 ∈ Ci−1

and, since Ci ⊂ Ci−1, also vi ∈ Ci−1. Together with the convexity of Ci−1,

this implies that the segment vi−1vi is contained in Ci−1. Since vi−1 is the

optimal point in Ci−1 and the objective function f�c is linear, it follows that

f�c(p) increases monotonically along vi−1vi as p moves from vi to vi−1. Now

consider the intersection point q of vi−1vi and �i. This intersection point

exists, because vi−1 �∈ hi and vi ∈Ci. Since vi−1vi is contained in Ci−1, the

point q must be in Ci. But the value of the objective function increases along

vi−1vi, so f�c(q) > f�c(vi). This contradicts the definition of vi.

vi

vi−1

q

Ci−1

Figure 4.6 illustrates the two cases that arise when adding a half-plane.

In Figure 4.6(i), the optimal vertex v4 that we have after adding the first four

half-planes is contained in h5, the next half-plane that we add. Therefore the

optimal vertex remains the same. The optimal vertex is not contained in h6,

however, so when we add h6 we must find a new optimal vertex. According

Figure 4.6
Adding a half-plane

(i) (ii)

�c

v4 = v5

h1 h2

h3

h4

h5

v6

v5

h6
h5 h3

h4

h2h1

to Lemma 4.5, this vertex v6 is contained in the line bounding h6, as is shown

in Figure 4.6(ii). But Lemma 4.5 does not tell us how to find the new optimal

vertex. Fortunately, this is not so difficult, as we show next.74
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Assume that the current optimal vertex vi−1 is not contained in the next half-

plane hi. The problem we have to solve can be stated as follows:

Find the point p on �i that maximizes f�c(p), subject to the con-

straints p ∈ h, for h ∈ Hi−1.

To simplify the terminology, we assume that �i is not vertical, and so we can

parameterize it by x-coordinate. We can then define a function f�c : R �→ R

such that f�c(p) = f�c(px) for points p ∈ �i. For a half-plane h, let σ(h, �i) be the

x-coordinate of the intersection point of �i and the bounding line of h. (If there

is no intersection, then either the constraint h is satisfied by any point on �i, or

by no point on �i. In the former case we can ignore the constraint, in the latter

case we can report the linear program infeasible.) Depending on whether �i ∩h
is bounded to the left or to the right, we get a constraint on the x-coordinate of

the solution of the form x � σ(h, �i) or of the form x � σ(h, �i). We can thus

restate our problem as follows:

Maximize f�c(x)

subject to x � σ(h, �i), h ∈ Hi−1 and �i ∩h is bounded to the left

x � σ(h, �i), h ∈ Hi−1 and �i ∩h is bounded to the right

This is a 1-dimensional linear program. Solving it is very easy. Let

xleft = max
h∈Hi−1

{σ(h, �i) : �i ∩h is bounded to the left}

and

�i

h

x ≤ σ(h, �i)

σ(h, �i)

xright = min
h∈Hi−1

{σ(h, �i) : �i ∩h is bounded to the right}.

The interval [xleft : xright] is the feasible region of the 1-dimensional linear

program. Hence, the linear program is infeasible if xleft > xright, and otherwise

the optimal point is the point on �i at either xleft or xright, depending on the

objective function.

Note that the 1-dimensional linear program cannot be unbounded, due to

the constraints m1 and m2.

We get the following lemma:

Lemma 4.6 A 1-dimensional linear program can be solved in linear time. Hence,

if case (ii) of Lemma 4.5 arises, then we can compute the new optimal vertex vi,

or decide that the linear program is infeasible, in O(i) time.

We can now describe the linear programming algorithm in more detail. As

above, we use �i to denote the line that bounds the half-plane hi.

Algorithm 2DBOUNDEDLP(H,�c,m1,m2)

Input. A linear program (H ∪{m1,m2},�c), where H is a set of n half-planes,

�c ∈ R
2, and m1, m2 bound the solution.

Output. If (H ∪{m1,m2},�c) is infeasible, then this fact is reported. Otherwise,

the lexicographically smallest point p that maximizes f�c(p) is reported. 75
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1. Let v0 be the corner of C0.

2. Let h1, . . . ,hn be the half-planes of H.

3. for i ← 1 to n
4. do if vi−1 ∈ hi
5. then vi ← vi−1

6. else vi ←the point p on �i that maximizes f�c(p), subject to the

constraints in Hi−1.

7. if p does not exist

8. then Report that the linear program is infeasible and quit.

9. return vn

We now analyze the performance of our algorithm.

Lemma 4.7 Algorithm 2DBOUNDEDLP computes the solution to a bounded

linear program with n constraints and two variables in O(n2) time and linear

storage.

Proof. To prove that the algorithm correctly finds the solution, we have to show

that after every stage—whenever we have added a new half-plane hi—the point

vi is still the optimum point for Ci. This follows immediately from Lemma 4.5.

If the 1-dimensional linear program on �i is infeasible, then Ci is empty, and

consequently C = Cn ⊆ Ci is empty, which means that the linear program is

infeasible.

It is easy to see that the algorithm requires only linear storage. We add the

half-planes one by one in n stages. The time spent in stage i is dominated by the

time to solve a 1-dimensional linear program in line 6, which is O(i). Hence,

the total time needed is bounded by

n

∑
i=1

O(i) = O(n2).

Although our linear programming algorithm is nice and simple, its running

time is disappointing—the algorithm is much slower than the previous algorithm,

which computed the whole feasible region. Is our analysis too crude? We

bounded the cost of every stage i by O(i). This is not always a tight bound:

Stage i takes Θ(i) time only when vi−1 �∈ hi; when vi−1 ∈ hi then stage i takes

constant time. So if we could bound the number of times the optimal vertex

changes, we might be able to prove a better running time. Unfortunately the

h1

h2

h3

h4

h5

hn

v2

vn

v5
v4

v3

�c

optimum vertex can change n times: there are orders for some configurations

where every new half-plane makes the previous optimum illegal. The figure in

the margin shows such an example. This means that the algorithm will really

spend Θ(n2) time. How can we avoid this nasty situation?

4.4 Randomized Linear Programming

If we have a second look at the example where the optimum changes n times,

we see that the problem is not so much that the set of half-planes is bad. If we76
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had added them in the order hn, hn−1, . . . , h3, then the optimal vertex would not

change anymore after the addition of hn. In this case the running time would be

O(n). Is this a general phenomenon? Is it true that, for any set H of half-planes,

there is a good order to treat them? The answer to this question is “yes,” but

that doesn’t seem to help us much. Even if such a good order exists, there

seems to be no easy way to actually find it. Remember that we have to find the

order at the beginning of the algorithm, when we don’t know anything about

the intersection of the half-planes yet.

We now meet a quite intriguing phenomenon. Although we have no way to

determine an ordering of H that is guaranteed to lead to a good running time,

we have a very simple way out of our problem. We simply pick a random
ordering of H. Of course, we could have bad luck and pick an order that leads

to a quadratic running time. But with some luck, we pick an order that makes it

run much faster. Indeed, we shall prove below that most orders lead to a fast

algorithm. For completeness, we first repeat the algorithm.

Algorithm 2DRANDOMIZEDBOUNDEDLP(H,�c,m1,m2)

Input. A linear program (H ∪{m1,m2},�c), where H is a set of n half-planes,

�c ∈ R
2, and m1, m2 bound the solution.

Output. If (H ∪{m1,m2},�c) is infeasible, then this fact is reported. Otherwise,

the lexicographically smallest point p that maximizes f�c(p) is reported.

1. Let v0 be the corner of C0.

2. Compute a random permutation h1, . . . ,hn of the half-planes by calling

RANDOMPERMUTATION(H[1 · · ·n]).
3. for i ← 1 to n
4. do if vi−1 ∈ hi
5. then vi ← vi−1

6. else vi ←the point p on �i that maximizes f�c(p), subject to the

constraints in Hi−1.

7. if p does not exist

8. then Report that the linear program is infeasible and quit.

9. return vn

The only difference from the previous algorithm is in line 2, where we put the

half-planes in random order before we start adding them one by one. To be able

to do this, we assume that we have a random number generator, RANDOM(k),

which has an integer k as input and generates a random integer between 1 and k
in constant time. Computing a random permutation can then be done with the

following linear time algorithm.

Algorithm RANDOMPERMUTATION(A)

Input. An array A[1 · · ·n].
Output. The array A[1 · · ·n] with the same elements, but rearranged into a

random permutation.

1. for k ← n downto 2

2. do rndindex ←RANDOM(k)

3. Exchange A[k] and A[rndindex]. 77



Chapter 4
LINEAR PROGRAMMING

The new linear programming algorithm is called a randomized algorithm; its

running time depends on certain random choices made by the algorithm. (In

the linear programming algorithm, these random choices were made in the

subroutine RANDOMPERMUTATION.)

What is the running time of this randomized version of our incremental linear

programming algorithm? There is no easy answer to that. It all depends on

the order that is computed in line 2. Consider a fixed set H of n half-planes.

2DRANDOMIZEDBOUNDEDLP treats them depending on the permutation cho-

sen in line 2. Since there are n! possible permutations of n objects, there are

n! possible ways in which the algorithm can proceed, each with its own run-

ning time. Because the permutation is random, each of these running times

is equally likely. So what we do is analyze the expected running time of the

algorithm, which is the average running time over all n! possible permutations.

The lemma below states that the expected running time of our randomized linear

programming algorithm is O(n). It is important to realize that we do not make

any assumptions about the input: the expectancy is with respect to the random

order in which the half-planes are treated and holds for any set of half-planes.

Lemma 4.8 The 2-dimensional linear programming problem with n constraints

can be solved in O(n) randomized expected time using worst-case linear storage.

Proof. As we observed before, the storage needed by the algorithm is linear.

The running time RANDOMPERMUTATION is O(n), so what remains is to

analyze the time needed to add the half-planes h1, . . . ,hn. Adding a half-plane

takes constant time when the optimal vertex does not change. When the optimal

vertex does change we need to solve a 1-dimensional linear program. We now

bound the time needed for all these 1-dimensional linear programs.

Let Xi be a random variable, which is 1 if vi−1 �∈ hi, and 0 otherwise. Recall

that a 1-dimensional linear program on i constraints can be solved in O(i) time.

The total time spent in line 6 over all half-planes h1, . . . ,hn is therefore

n

∑
i=1

O(i) ·Xi.

To bound the expected value of this sum we will use linearity of expectation: the

expected value of a sum of random variables is the sum of the expected values

of the random variables. This holds even if the random variables are dependent.

Hence, the expected time for solving all 1-dimensional linear programs is

E[
n

∑
i=1

O(i) ·Xi] =
n

∑
i=1

O(i) ·E[Xi].

But what is E[Xi]? It is exactly the probability that vi−1 �∈ hi. Let’s analyze this

probability.

We will do this with a technique called backwards analysis: we look at the

algorithm “backwards.” Assume that it has already finished, and that it has

computed the optimum vertex vn. Since vn is a vertex of Cn, it is defined by at

�c

vn

half-planes

defining vn78
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least two of the half-planes. Now we make one step backwards in time, and

look at Cn−1. Note that Cn−1 is obtained from Cn by removing the half-plane hn.

When does the optimum point change? This happens exactly if vn is not a vertex

of Cn−1 that is extreme in the direction�c, which is only possible if hn is one of

the half-planes that define vn. But the half-planes are added in random order, so

hn is a random element of {h1,h2, . . . ,hn}. Hence, the probability that hn is one

of the half-planes defining vn is at most 2/n. Why do we say “at most”? First, it

is possible that the boundaries of more than two half-planes pass through vn. In

that case, removing one of the two half-planes containing the edges incident to

vn may fail to change vn. Furthermore, vn may be defined by m1 or m2, which

are not among the n candidates for the random choice of hn. In both cases the

probability is less than 2/n.

�c

vn
The same argument works in general: to bound E[Xi], we fix the subset

of the first i half-planes. This determines Ci. To analyze what happened in

the last step, when we added hi, we think backwards. The probability that

we had to compute a new optimal vertex when adding hi is the same as the

probability that the optimal vertex changes when we remove a half-plane from

Ci. The latter event only takes place for at most two half-planes of our fixed set

{h1, . . . ,hi}. Since the half-planes are added in random order, the probability

that hi is one of the special half-planes is at most 2/i. We derived this probability

under the condition that the first i half-planes are some fixed subset of H. But

since the derived bound holds for any fixed subset, it holds unconditionally.

Hence, E[Xi] � 2/i. We can now bound the expected total time for solving all

1-dimensional linear programs by

n

∑
i=1

O(i) · 2

i
= O(n).

We already noted that the time spent in the rest of the algorithm is O(n) as

well.

Note again that the expectancy here is solely with respect to the random

choices made by the algorithm. We do not average over possible choices for

the input. For any input set of n half-planes, the expected running time of the

algorithm is O(n); there are no bad inputs.

4.5 Unbounded Linear Programs

In the preceding sections we avoided handling the case of an unbounded linear

program by adding two additional, artificial constraints. This is not always a

suitable solution. Even if the linear program is bounded, we may not know a

large enough bound M. Furthermore, unbounded linear programs do occur in

practice, and we have to solve them correctly.

Let’s first see how we can recognize whether a given linear program (H,�c)
is unbounded. As we saw before, that means that there is a ray ρ completely 79
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contained in the feasible region C, such that the function f�c takes arbitrarily

large values along ρ .

If we denote the ray’s starting point as p, and its direction vector as �d, we

can parameterize ρ as follows:

ρ = {p+λ �d : λ > 0}.

The function f�c takes arbitrarily large values if and only if �d ·�c > 0. On the

other hand, if �η(h) is the normal vector of a half-plane h ∈ H oriented towards

the feasible side of h’s bounding line, we have �d ·�η(h) � 0. The next lemma

shows that these two necessary conditions on �d are sufficient to test whether a

linear program is unbounded.

Lemma 4.9 A linear program (H,�c) is unbounded if and only if there is a vector
�d with �d ·�c > 0 such that �d ·�η(h) � 0 for all h∈H and the linear program (H ′,�c)
is feasible, where H ′ = {h ∈ H :�η(h) · �d = 0} .

Proof. The “only if” direction follows from the argument above, so it remains

to show the “if” direction.

We consider a linear program (H,�c) and a vector �d with the conditions of

the lemma. Since (H ′,�c) is feasible, there is a point p0 ∈⋂h∈H ′ h. Consider now

the ray ρ0 := {p0 + λ �d : λ > 0}. Since �d ·�η(h) = 0 for h ∈ H ′, the ray ρ0 is

completely contained in each h ∈ H ′. Furthermore, since �d ·�c > 0 the objective

function f�c takes arbitrarily large values along ρ0.

For a half-plane h ∈ H \H ′, we have �d ·�η(h) > 0. This implies that there is

a parameter λh such that p0 +λ �d ∈ h for all λ � λh. Let λ ′ := maxh∈H\H ′ λh,

and p := p0 +λ ′�d. It follows that the ray

ρ = {p+λ �d : λ > 0}
is completely contained in each half-plane h ∈ H, and so (H,�c) is unbounded.

We can now test whether a given 2-dimensional linear program (H,�c) is

unbounded by proceeding similarly to Section 4.1, and solving a 1-dimensional

linear program.

Let’s first rotate the coordinate system so that �c is the upward vertical

direction, �c = (0,1). Any direction vector �d = (dx,dy) with �d ·�c > 0 can be

normalized to the form �d = (dx,1), and be represented by the point dx on the

line y = 1. Given a normal vector �η(h) = (ηx,ηy), the inequality

�d ·�η(h) = dxηx +ηy � 0

translates to the inequality dxηx � −ηy. We thus obtain a system of n linear

inequalities, or, in other words, a 1-dimensional linear program H. (This

is actually an abuse of the terminology, since a linear program consists of

constraints and an objective function. But since at this point we are only

interested in feasibility, it is convenient to ignore the objective function.)80
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If H has a feasible solution d∗
x , we identify the set H ′ ⊆ H of half-planes h

for which the solution is tight, that is, where d∗
x ηx + ηy = 0. We still need to

verify that the system H ′ is feasible. Are we again left with a 2-dimensional

linear programming problem? Yes, but a very special one: For each h ∈ H ′
the normal �η(h) is orthogonal to �d = (d∗

x ,1), and that means that the bounding

line of h is parallel to �d. In other words, all half-planes in H ′ are bounded

by parallel lines, and by intersecting them with the x-axis, we have again a

1-dimensional linear program H ′. If H ′ is feasible, then the original linear

program is unbounded, and we can construct a feasible ray ρ in time O(n) as in

the lemma above. If H ′ is infeasible, then so is H ′ and therefore H.

If H does not have a feasible solution, by the lemma above the original

linear program (H,�c) is bounded. Can we extract some more information in this

case? Recall the solution for 1-dimensional linear programs: H is infeasible if

and only if the maximum boundary of a half-line h1 bounded to the left is larger

than the minimum boundary of a half-line h2 bounded to the right. These two

half-lines h1 and h2 have an empty intersection. If h1 and h2 are the original

half-planes that correspond to these two constraints, then this is equivalent to

saying that ({h1,h2},�c) is bounded. We can call h1 and h2 certificates: they

‘prove’ that (H,�c) is really bounded.

How useful certificates are becomes clear with the following observation:

After finding the two certificates h1 and h2, we can use them like m1 and m2 in

2DRANDOMIZEDBOUNDEDLP. That means that we no longer need to make an

artificial restriction on the range in which we allow the solution to lie.

Again, we must be careful. It can happen that the linear program ({h1,h2},�c)
is bounded, but has no lexicographically smallest solution. This is the case

when the 1-dimensional linear program is infeasible due to a single constraint

h1, namely when �η(h1) = −�c = (0,−1). In that case we scan the remaining

list of half-planes for a half-plane h2 with ηx(h2) > 0. If we are successful,

h1 and h2 are certificates that guarantee a unique lexicographically smallest

solution. If no such h2 exists, the linear program is either infeasible, or it

has no lexicographically smallest solution. We can solve it by solving the

1-dimensional linear program formed by all half-planes h with �ηx(h) = 0. If it

is feasible, we can return a ray ρ in direction (−1,0), such that all points on ρ
are feasible optimal solutions.

We can now give a general algorithm for the 2-dimensional linear program-

ming problem:

Algorithm 2DRANDOMIZEDLP(H,�c)

Input. A linear program (H,�c), where H is a set of n half-planes and�c ∈ R
2.

Output. If (H,�c) is unbounded, a ray is reported. If it is infeasible, then two or

three certificate half-planes are reported. Otherwise, the lexicographically

smallest point p that maximizes f�c(p) is reported.

1. Determine whether there is a direction vector �d such that �d ·�c > 0 and
�d ·�η(h) � 0 for all h ∈ H.

2. if �d exists

3. then compute H ′ and determine whether H ′ is feasible.

4. if H ′ is feasible 81
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5. then Report a ray proving that (H,�c) is unbounded and quit.

6. else Report that (H,�c) is infeasible and quit.

7. Let h1,h2 ∈ H be certificates proving that (H,�c) is bounded and has a

unique lexicographically smallest solution.

8. Let v2 be the intersection of �1 and �2.

9. Let h3,h4, . . . ,hn be a random permutation of the remaining half-planes in

H.

10. for i ← 3 to n
11. do if vi−1 ∈ hi
12. then vi ← vi−1

13. else vi ←the point p on �i that maximizes f�c(p), subject to the

constraints in Hi−1.

14. if p does not exist

15. then Let h j,hk (with j,k < i) be the certificates (possibly

h j = hk) with h j ∩hk ∩ �i = /0.

16. Report that the linear program is infeasible, with

hi,h j,hk as certificates, and quit.

17. return vn

We summarize our results so far in the following theorem.

Theorem 4.10 A 2-dimensional linear programming problem with n constraints

can be solved in O(n) randomized expected time using worst-case linear storage.

4.6* Linear Programming in Higher Dimensions

The linear programming algorithm presented in the previous sections can be

generalized to higher dimensions. When the dimension is not too high, then the

resulting algorithm compares favorably with traditional algorithms, such as the

simplex algorithm.

Let H be a set of n closed half-spaces in R
d . Given a vector�c = (c1, . . . ,cd), we

want to find the point p = (p1, . . . , pd) ∈ R
d that maximizes the linear function

f�c(p) := c1 p1 + · · ·+cd pd , subject to the constraint that p lies in h for all h ∈ H.

To make sure that the solution is unique when the linear program is bounded,

we agree to look for the lexicographically smallest point that maximizes f�c(p).
As in the planar version, we maintain the optimal solution while incremen-

tally adding the half-space constraints one by one. For this to work, we again

need to make sure that there is a unique optimal solution at each step. We do

this as in the previous section: We first determine whether the linear program is

unbounded. If not, we obtain a set of d certificates h1,h2, . . . ,hd ∈ H that guar-

antee that the solution is bounded and that there is a unique lexicographically

smallest solution. We’ll look at the details of finding these certificates later, and

concentrate on the main algorithm for the moment.

Let h1,h2, . . . ,hd be the d certificate half-spaces obtained by checking that

the linear program is bounded, and let hd+1, hd+2, . . . , hn be a random permuta-

tion of the remaining half-spaces in H. Furthermore, define Ci to be the feasible82
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region when the first i half-spaces have been added, for d � i � n:

Ci := h1 ∩h2 ∩·· ·∩hi.

Let vi denote the optimal vertex of Ci, that is, the vertex that maximizes f�c.

Lemma 4.5 gave us an easy way to maintain the optimal vertex in the 2-

dimensional case: either the optimal vertex doesn’t change, or the new optimal

vertex is contained in the line that bounds the half-plane hi that we are adding.

The following lemma generalizes this result to higher dimensions; its proof is a

straightforward generalization of the proof of Lemma 4.5.

Lemma 4.11 Let 1 � i � n, and let Ci and vi be defined as above. Then we have

(i) If vi−1 ∈ hi, then vi = vi−1.

(ii) If vi−1 �∈ hi, then either Ci = /0 or vi ∈ gi, where gi is the hyperplane that

bounds hi.

If we denote the hyperplane that bounds the half-space hi by gi, the optimal

vertex vi of Ci can be found by finding the optimal vertex of the intersection

gi ∩Ci−1.

But how do we find the optimal vertex of gi ∩Ci−1? In two dimensions this

was easy to do in linear time, because everything was restricted to a line. Let’s

look at the 3-dimensional case. In three dimensions, gi is a plane, and gi ∩Ci−1

is a 2-dimensional convex polygonal region. What do we have to do to find the

optimum in gi ∩Ci−1? We have to solve a 2-dimensional linear program! The

linear function f�c defined in R
3 induces a linear function in gi, and we need to

find the point in gi∩Ci−1 that maximizes this function. In case�c is orthogonal to

gi, all points on gi are equally good: following our rule, we then need to find the

lexicographically smallest solution. We achieve this by choosing the objective

function correctly—for instance, when gi is not orthogonal to the x1-axis, we

obtain the vector�c by projecting the vector (−1,0,0) onto gi.

So in the 3-dimensional case we find the optimal vertex of gi ∩Ci−1 as

follows: we compute the intersection of all i−1 half-spaces with gi, and project

the vectors

�c,

⎛⎝ −1

0

0

⎞⎠ ,

⎛⎝ 0

−1

0

⎞⎠ ,

⎛⎝ 0

0

−1

⎞⎠
on gi until a projection is non-zero. This results in a linear program in two

dimensions, which we solve using algorithm 2DRANDOMIZEDLP.

By now you can probably guess how we will attack the general, d-dimensional

case. There, gi is a hyperplane, a (d −1)-dimensional subspace, and we have

to find the point in the intersection Ci−1 ∩gi that maximizes f�c. This is a linear

program in d −1 dimensions, and so we will solve it by making a recursive call

to the (d −1)-dimensional version of our algorithm. The recursion bottoms out

when we get to a 1-dimensional linear program, which can be solved directly in

linear time.

We still need to determine whether the linear program is unbounded, and to

find suitable certificates if that is not the case. We first verify that Lemma 4.9 83
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holds in arbitrary dimensions. The lemma and its proof need no change. The

lemma implies that the d-dimensional linear program (H,�c) is bounded if and

only if a certain (d−1)-dimensional linear program is infeasible. We will solve

this (d −1)-dimensional linear program by a recursive call.

If the (d −1)-dimensional linear program is feasible, we obtain a direction

vector �d. The d-dimensional linear program is then either unbounded in di-

rection �d, or infeasible. This can be determined by verifying whether (H ′,�c)
is feasible, where H ′ is as defined in Lemma 4.9. The boundaries of all the

half-spaces in H ′ are parallel to �d, and so this can be decided by solving a

second (d −1)-dimensional program, with a second recursive call.

If the (d−1)-dimensional linear program is infeasible, its solution will give

us k certificate half-spaces h1,h2, . . . ,hk ∈ H, with k < d, that ‘prove’ that (H,�c)
is bounded. If k < d, then the set of optimal solutions to ({h1, . . . ,hk},�c) is

unbounded. In that case, these optimal solutions form a (d − k)-dimensional

subspace. We determine whether the linear program restricted to this subspace

is bounded with respect to the lexicographical order. If not, we can report

the solution, otherwise we can repeat the process until we obtain a set of

d certificates with a unique solution.

The global algorithm now looks as follows. Again we use gi to denote the

hyperplane that bounds the half-space hi.

Algorithm RANDOMIZEDLP(H,�c)

Input. A linear program (H,�c), where H is a set of n half-spaces in R
d and

�c ∈ R
d .

Output. If (H,�c) is unbounded, a ray is reported. If it is infeasible, then at most

d +1 certificate half-planes are reported. Otherwise, the lexicographically

smallest point p that maximizes f�c(p) is reported.

1. Determine whether a direction vector �d exists such that �d ·�c > 0 and
�d ·�η(h) � 0 for all h ∈ H.

2. if �d exists

3. then compute H ′ and determine whether H ′ is feasible.

4. if H ′ is feasible

5. then Report a ray proving that (H,�c) is unbounded and quit.

6. else Report that (H,�c) is infeasible, provide certificates, and

quit.

7. Let h1,h2, . . . ,hd be certificates proving that (H,�c) is bounded.

8. Let vd be the intersection of g1,g2, . . . ,gd .

9. Compute a random permutation hd+1, . . . ,hn of the remaining half-spaces

in H.

10. for i ← d +1 to n
11. do if vi−1 ∈ hi
12. then vi ← vi−1

13. else vi ←the point p on gi that maximizes f�c(p), subject to the

constraints {h1, . . . ,hi−1}
14. if p does not exist

15. then Let H∗ be the at most d certificates for the infeasi-

bility of the (d −1)-dimensional program.84
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16. Report that the linear program is infeasible, with

H∗ ∪hi as certificates, and quit.

17. return vn

The following theorem states the performance of RANDOMIZEDLP. Although

we consider d a constant, which means we can state an O(n) bound on the

running time, it is useful to have a close look at the dependency of the running

time on d—see the end of the proof the following theorem.

Theorem 4.12 For each fixed dimension d, a d-dimensional linear programming

problem with n constraints can be solved in O(n) expected time.

Proof. We must prove that there is a constant Cd such that the algorithm takes

at most Cdn expected time. We proceed by induction on the dimension d. For

two dimensions, the result follows from Theorem 4.10, so let’s assume d > 2.

The induction step is basically identical to the proof of the 2-dimensional cases.

We start by solving at most d linear programs of dimension d −1. By the

induction assumption, this takes time O(dn)+dCd−1n.

The algorithm spends O(d) time to compute vd . Testing whether vi−1 ∈ hi
takes O(d) time. The running time is therefore O(dn) as long as we do not

count the time spent in line 13.

In line 13, we need to project �c on gi, in time O(d), and to intersect i
half-spaces with gi, in time O(di). Furthermore, we make a recursive call with

dimension d −1 and i−1 half-spaces.

Define a random variable Xi, which is 1 if vi−1 �∈ hi, and 0 otherwise. The

total expected time spent by the algorithm is bounded by

O(dn)+dCd−1n+
n

∑
i=d+1

(O(di)+Cd−1(i−1)) ·E[Xi].

To bound E[Xi], we apply backwards analysis. Consider the situation after

adding h1, . . . ,hi. The optimum point is a vertex vi of Ci, so it is defined by d of

the half-spaces. Now we make one step backwards in time. The optimum point

changes only if we remove one of the half-spaces defining vi. Since hd+1, . . . ,hi
is a random permutation, the probability that this happens is at most d/(i−d).

Consequently, we get the following bound for the expected running time of

the algorithm:

O(dn)+dCd−1n+
n

∑
i=d+1

(O(di)+Cd−1(i−1))
d

i−d

This can be bounded by Cdn, with Cd = O(Cd−1d), so Cd = O(cdd!) for a

constant c indpendent on the dimension.

When d is a constant, it is correct to say that the algorithm runs in linear

time. Still, that would be quite misleading. The constant factor Cd grows so fast

as a function of d that this algorithm is useful only for rather small dimensions. 85
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4.7* Smallest Enclosing Discs

The simple randomized technique we used above turns out to be surprisingly

powerful. It can be applied not only to linear programming but to a variety of

other optimization problems as well. In this section we shall look at one such

problem.

Consider a robot arm whose base is fixed to the work floor. The arm has to pick

up items at various points and place them at other points. What would be a good

position for the base of the arm? This would be somewhere “in the middle” of

the points it must be able to reach. More precisely, a good position is at the

center of the smallest disc that encloses all the points. This point minimizes the

maximum distance between the base of the arm and any point it has to reach.

We arrive at the following problem: given a set P of n points in the plane (the

points on the work floor that the arm must be able to reach), find the smallest
enclosing disc for P, that is, the smallest disc that contains all the points of P.

This smallest enclosing disc is unique—see Lemma 4.14(i) below, which is a

generalization of this statement.

As in the previous sections, we will give a randomized incremental algorithm for

the problem: First we generate a random permutation p1, . . . , pn of the points in

P. Let Pi := {p1, . . . , pi}. We add the points one by one while we maintain Di,

the smallest enclosing disc of Pi.

In the case of linear programming, there was a nice fact that helped us to

maintain the optimal vertex: when the current optimal vertex is contained in the

next half-plane then it does not change, and otherwise the new optimal vertex

lies on the boundary of the half-plane. Is a similar statement true for smallest

enclosing discs? The answer is yes:

Lemma 4.13 Let 2 < i < n, and let Pi and Di be defined as above. Then we

havepi+1

pi

Di−1 = Di

Di+1 (i) If pi ∈ Di−1, then Di = Di−1.

(ii) If pi �∈ Di−1, then pi lies on the boundary of Di.

We shall prove this lemma later, after we have seen how we can use it to

design a randomized incremental algorithm that is quite similar to the linear

programming algorithm.

Algorithm MINIDISC(P)

Input. A set P of n points in the plane.

Output. The smallest enclosing disc for P.

1. Compute a random permutation p1, . . . , pn of P.

2. Let D2 be the smallest enclosing disc for {p1, p2}.

3. for i ← 3 to n
4. do if pi ∈ Di−1

5. then Di ← Di−1

6. else Di ← MINIDISCWITHPOINT({p1, . . . , pi−1}, pi)

7. return Dn86
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The critical step occurs when pi �∈ Di−1. We need a subroutine that finds the

smallest disc enclosing Pi, using the knowledge that pi must lie on the boundary

of that disc. How do we implement this routine? Let q := pi. We use the same

framework once more: we add the points of Pi−1 in random order, and maintain

the smallest enclosing disc of Pi−1 ∪{q} under the extra constraint that it should

have q on its boundary. The addition of a point p j will be facilitated by the

following fact: when p j is contained in the currently smallest enclosing disc

then this disc remains the same, and otherwise it must have p j on its boundary.

So in the latter case, the disc has both q and p j and its boundary. We get the

following subroutine.

MINIDISCWITHPOINT(P,q)

Input. A set P of n points in the plane, and a point q such that there exists an

enclosing disc for P with q on its boundary.

Output. The smallest enclosing disc for P with q on its boundary.

1. Compute a random permutation p1, . . . , pn of P.

2. Let D1 be the smallest disc with q and p1 on its boundary.

3. for j ← 2 to n
4. do if p j ∈ D j−1

5. then D j ← D j−1

6. else D j ← MINIDISCWITH2POINTS({p1, . . . , p j−1}, p j,q)

7. return Dn

How do we find the smallest enclosing disc for a set under the restriction that

two given points q1 and q2 are on its boundary? We simply apply the same

approach one more time. Thus we add the points in random order and maintain

the optimal disc; when the point pk we add is inside the current disc we don’t

have to do anything, and when pk is not inside the current disc it must be on

the boundary of the new disc. In the latter case we have three points on the disc

boundary: q1, q2, and pk. This means there is only one disc left: the unique

disc with q1, q2, and pk on its boundary. This following routine describes this

in more detail.

MINIDISCWITH2POINTS(P,q1,q2)

Input. A set P of n points in the plane, and two points q1 and q2 such that there

exists an enclosing disc for P with q1 and q2 on its boundary.

Output. The smallest enclosing disc for P with q1 and q2 on its boundary.

1. Let D0 be the smallest disc with q1 and q2 on its boundary.

2. for k ← 1 to n
3. do if pk ∈ Dk−1

4. then Dk ← Dk−1

5. else Dk ←the disc with q1, q2, and pk on its boundary

6. return Dn

This finally completes the algorithm for computing the smallest enclosing disc

of a set of points. Before we analyze it, we must validate its correctness by

proving some facts that we used in the algorithms. For instance, we used the 87
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fact that when we added a new point and this point was outside the current

optimal disc, then the new optimal disc must have this point on its boundary.

Lemma 4.14 Let P be a set of points in the plane, let R be a possibly empty set

of points with P∩R = /0, and let p ∈ P. Then the following holds:

(i) If there is a disc that encloses P and has all points of R on its boundary,

then the smallest such disc is unique. We denote it by md(P,R).
(ii) If p ∈ md(P\{p},R), then md(P,R) = md(P\{p},R).
(iii) If p �∈ md(P\{p},R), then md(P,R) = md(P\{p},R∪{p}).
Proof. (i) Assume that there are two distinct enclosing discs D0 and D1 with

centers x0 and x1, respectively, and with the same radius. Clearly, all points

of P must lie in the intersection D0 ∩D1. We define a continuous family

z
D0 D1

x(λ )

x0 x1

D(λ )

{D(λ ) | 0 � λ � 1} of discs as follows. Let z be an intersection point of

∂D0 and ∂D1, the boundaries of D0 and D1. The center of D(λ ) is the

point x(λ ) := (1−λ )x0 +λx1, and the radius of D(λ ) is r(λ ) := d(x(λ ),z).
We have D0 ∩D1 ⊂ D(λ ) for all λ with 0 � λ � 1 and, in particular, for

λ = 1/2. Hence, since both D0 and D1 enclose all points of P, so must

D(1/2). Moreover, ∂D(1/2) passes through the intersection points of ∂D0

and ∂D1. Because R ⊂ ∂D0 ∩∂D1, this implies that R ⊂ ∂D(1/2) . In other

words, D(1/2) is an enclosing disc for P with R on its boundary. But the

radius of D(1/2) is strictly less than the radii of D0 and D1. So whenever

there are two distinct enclosing discs of the same radius with R on their

boundary, then there is a smaller enclosing disc with R on its boundary.

Hence, the smallest enclosing disc md(P,R) is unique.

(ii) Let D := md(P \ {p},R). If p ∈ D, then D contains P and has R on its

boundary. There cannot be any smaller disc containing P with R on its

boundary, because such a disc would also be a containing disc for P\{p}
with R on its boundary, contradicting the definition of D. It follows that

D = md(P,R).
(iii) Let D0 := md(P \ {p},R) and let D1 := md(P,R). Consider the family

D(λ ) of discs defined above. Note that D(0) = D0 and D(1) = D1, so the

family defines a continous deformation of D0 to D1. By assumption we

have p �∈ D0. We also have p ∈ D1, so by continuity there must be some

0 < λ ∗ � 1 such that p lies on the boundary of D(λ ∗). As in the proof of

(i), we have P ⊂ D(λ ∗) and R ⊂ ∂D(λ ∗). Since the radius of any D(λ ) with

0 < λ < 1 is strictly less than the radius of D1, and D1 is by definition the

smallest enclosing disc for P, we must have λ ∗ = 1. In other words, D1 has

p on its boundary.

Lemma 4.14 implies that MINIDISC correctly computes the smallest enclos-

ing disc of a set of points. The analysis of the running time is given in the proof

of the following theorem.

Theorem 4.15 The smallest enclosing disc for a set of n points in the plane can

be computed in O(n) expected time using worst-case linear storage.

Proof. MINIDISCWITH2POINTS runs in O(n) time because every iteration of

the loop takes constant time, and it uses linear storage. MINIDISCWITHPOINT88
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and MINIDISC also need linear storage, so what remains is to analyze their

expected running time.

q

Di

points that together with

q define Di

The running time of MINIDISCWITHPOINT is O(n) as long as we don’t

count the time spent in calls to MINIDISCWITH2POINTS. What is the prob-

ability of having to make such a call? Again we use backwards analysis to

bound this probability: Fix a subset {p1, . . . , pi}, and let Di be the smallest disc

enclosing {p1, . . . , pi} and having q on its boundary. Imagine that we remove

one of the points {p1, . . . , pi}. When does the smallest enclosing circle change?

That happens only when we remove one of the three points on the boundary.

One of the points on the boundary is q, so there are at most two points that cause

the smallest enclosing circle to shrink. The probability that pi is one of those

points is 2/i. (When there are more than three points on the boundary, then the

probability that the smallest enclosing circle changes can only get smaller.) So

we can bound the total expected running time of MINIDISCWITHPOINT by

O(n)+
n

∑
i=2

O(i)
2

i
= O(n).

Applying the same argument once more, we find that the expected running time

of MINIDISC is O(n) as well.

Algorithm MINIDISC can be improved in various ways. First of all, it is not

necessary to use a fresh random permutation in every instance of subroutine

MINIDISCWITHPOINT. Instead, one can compute a permutation once, at

the start of MINIDISC, and pass the permutation to MINIDISCWITHPOINT.

Furthermore, instead of writing three different routines, one could write a single

algorithm MINIDISCWITHPOINTS(P,R) that computes md(P,R) as defined in

Lemma 4.14.

4.8 Notes and Comments

In this chapter we have studied an algorithmic problem that arises when one

wants to manufacture an object using casting. Other manufacturing processes

lead to challenging algorithmic problems as well, and a number of such problems

have been studied within computational geometry over the past years—see for

example the book by Dutta et al. [152] or the surveys by Janardan and Woo [220]

and Bose and Toussaint [72].

The computation of the common intersection of half-planes is an old and

well-studied problem. As we will explain in Chapter 11, the problem is dual to

the computation of the convex hull of points in the plane. Both problems have a

long history in the field, and Preparata and Shamos [323] already list a number

of solutions. More information on the computation of 2-dimensional convex

hulls can be found in the notes and comments of Chapter 1.

Computing the common intersection of half-spaces, which can be done

in O(n logn) time in the plane and in 3-dimensional space, becomes a more

computationally demanding problem when the dimension increases. The reason 89
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is that the number of (lower-dimensional) faces of the convex polytope formed

as the common intersection can be as large as Θ(n�d/2
) [158]. So if the only

goal is to find a feasible point, computing the common intersection explicitly

soon becomes an unattractive approach.

Linear programming is one of the basic problems in numerical analysis and

combinatorial optimization. It goes beyond the scope of this chapter to survey

this literature, and we restrict ourselves to mentioning the simplex algorithm

and its variants [139], and the polynomial-time solutions of Khachiyan [234]

and Karmarkar [227]. More information on linear programming can be found

in books by Chvátal [129] and Schrijver [339].

Linear programming as a problem in computational geometry was first

considered by Megiddo [273], who showed that the problem of testing whether

the intersection of half-spaces is empty is strictly simpler than the computa-

tion of the intersection. He gave the first deterministic algorithm for linear

programming whose running time is of the form O(Cdn), where Cd is a factor

depending on the dimension only. His algorithm is linear in n for any fixed

dimension. The factor Cd in his algorithm is 22d
. This was later improved

to 3d2
[130, 153]. More recently, a number of simpler and more practical ran-

domized algorithms have been given [132, 346, 354]. There are a number of

randomized algorithms whose running time is subexponential, but still not poly-

nomial in the dimension [222, 267]. Finding a strongly polynomial algorithm,

that is of combinatorial polynomial complexity, for linear programming is one

of the major open problems in the area.

The simple randomized incremental algorithm for two and higher dimen-

sions given here is due to Seidel [346]. Unlike in our presentation, he deals

with unbounded linear programs by treating the parameter M symbolically. This

is probably more elegant and efficient than the algorithm we present, which

was chosen to demonstrate the relationship between unbounded d-dimensional

linear programs and feasible (d −1)-dimensional ones. In Seidel’s version, the

factor Cd can be shown to be O(d!).
The generalization to the computation of smallest enclosing discs is due to

Welzl [385], who also showed how to find the smallest enclosing ball of a set

of points in higher dimensions, and the smallest enclosing ellipse or ellipsoid.

Sharir and Welzl further generalized the technique and introduced the notion

of LP-type problems, which can be solved efficiently with an algorithm similar

to the ones described here [189, 354]. Generally speaking, the technique is

applicable to optimization problems where the solution either does not change

when a new constraint is added, or the solution is partially defined by the new

constraint so that the dimension of the problem is reduced. It has also been

shown that the special properties of LP-type problems give rise to so-called

Helly-type theorems [16].

Randomization is a technique that often produces algorithms that are simple and

efficient. We will see more examples in the following chapters. The price we

pay is that the running time is only an expected bound and—as we observed—

there is a certain chance that the algorithm takes much longer. Some people

take this as a reason to say that randomized algorithms cannot be trusted and90
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shouldn’t be used (think of a computer in an intensive care station in a hospital,

or in a nuclear power plant).

On the other hand, deterministic algorithms are only perfect in theory. In

practice, any non-trivial algorithm may contain bugs, and even if we neglect

this, there is the risk of hardware malfunction or “soft errors”: single bits in

core memory flipping under the influence of ambient α-radiation. Because

randomized algorithms are often much simpler and have shorter code, the

probability of such a mishap is smaller. Therefore the total probability that a

randomized algorithm fails to produce the correct answer in time need not be

larger than the probability that a deterministic algorithm fails. Moreover, we

can always reduce the probability that the actual running time of a randomized

algorithm exceeds its expected running time by allowing a larger constant in the

expected running time.

4.9 Exercises

4.1 In this chapter we studied the casting problem for molds of one piece. A

sphere cannot be manufactured in this manner, but it can be manufactured

if we use a two-piece mold. Give an example of an object that cannot be

manufactured with a two-piece mold, but that can be manufactured with

a three-piece mold.

4.2 Consider the casting problem in the plane: we are given polygon P and a

2-dimensional mold for it. Describe a linear time algorithm that decides

whether P can be removed from the mold by a single translation.

4.3 Suppose that, in the 3-dimensional casting problem, we do not want the

object to slide along a facet of the mold when we remove it. How does

this affect the geometric problem (computing a point in the intersection

of half-planes) that we derived?

4.4 Let P be a castable simple polyhedron with top facet f . Let �d be a removal

direction for P. Show that any line with direction �d intersects P if and

only if it intersects f . Also show that for any line � with direction �d, the

intersection �∩P is connected.

4.5 Let P be a simple polyhedron with n vertices. If P is castable with some

facet f as top facet, then a necessary condition is that the facets adjacent

to f must lie completely to one side of h f , the plane through f . (The

reverse is not necessarily true, of course: if all adjacent facets lie to one

side of h f then P is not necessarily castable with f as top facet.) Give a

linear time algorithm to compute all facets of P for which this condition

holds.

4.6* Consider the restricted version of the casting problem in which we insist

that the object is removed from its mold using a vertical translation

(perpendicular to the top facet). 91
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a. Prove that in this case there is always only a constant number of

possible top facets.

b. Give a linear time algorithm that determines whether for a given object

a mold exists under this restricted model.

4.7 Instead of removing the object from the mold by a single translation, we

can also try to remove it by a single rotation. For simplicity, let’s consider

the planar variant of this version of the casting problem, and let’s only

look at clockwise rotations.

rotation

center

a. Give an example of a simple polygon P with top facet f that is not

castable when we require that P should be removed from the mold by

a single translation, but that is castable using rotation around a point.

Also give an example of a simple polygon P with top facet f that is

not castable when we require that P should be removed from the mold

by a rotation, but that is castable using a single translation.

b. Show that the problem of finding a center of rotation that allows us

to remove P with a single rotation from its mold can be reduced to

the problem of finding a point in the common intersection of a set of

half-planes.

4.8 The plane z = 1 can be used to represent all directions of vectors in 3-

dimensional space that have a positive z-value. How can we represent

all directions of vectors in 3-dimensional space that have a non-negative

z-value? And how can we represent the directions of all vectors in 3-

dimensional space?

4.9 Suppose we want to find all optimal solutions to a 3-dimensional linear

program with n constraints. Argue that Ω(n logn) is a lower bound for

the worst-case time complexity of any algorithm solving this problem.

4.10 Let H be a set of at least three half-planes with a non-empty intersection

such that not all bounding lines are parallel. We call a half-plane h ∈ H
redundant if it does not contribute an edge to

⋂
H. Prove that for any

redundant half-plane h ∈ H there are two half-planes h′,h′′ ∈ H such that

h′ ∩h′′ ⊂ h. Give an O(n logn) time algorithm to compute all redundant

half-planes.

4.11 Give an example of a 2-dimensional linear program that is bounded, but

where there is no lexicographically smallest solution.

4.12 Prove that RANDOMPERMUTATION(A) is correct, that is, prove that every

possible permutation of A is equally likely to be the output. Also show that

the algorithm is no longer correct (it no longer produces every permutation

with equal probability) if we change the k in line 2 to n.

4.13 In the text we gave a linear time algorithm for computing a random

permutation. The algorithm needed a random number generator that can

produce a random integer between 1 and n in constant time. Now assume

we have a restricted random number generator available that can only92



Section 4.9
EXERCISES

generate a random bit (0 or 1) in constant time. How can we generate a

random permutation with this restricted random number generator? What

is the running time of your procedure?

4.14 Here is a paranoid algorithm to compute the maximum of a set A of n real

numbers:

Algorithm PARANOIDMAXIMUM(A)

1. if card(A) = 1

2. then return the unique element x ∈ A
3. else Pick a random element x from A.

4. x′ ←PARANOIDMAXIMUM(A\{x})

5. if x � x′
6. then return x′
7. else Now we suspect that x is the maximum, but to be

absolutely sure, we compare x with all card(A)− 1

other elements of A.

8. return x

What is the worst-case running time of this algorithm? What is the

expected running time (with respect to the random choice in line 3)?

4.15 A simple polygon P is called star-shaped if it contains a point q such

that for any point p in P the line segment pq is contained in P. Give

an algorithm whose expected running time is linear to decide whether a

simple polygon is star-shaped.

4.16 On n parallel railway tracks n trains are going with constant speeds v1,

v2, . . . , vn. At time t = 0 the trains are at positions k1, k2, . . . , kn. Give an

O(n logn) algorithm that detects all trains that at some moment in time

are leading. To this end, use the algorithm for computing the intersection

of half-planes.

4.17* Show how to implement MINIDISC using a single routine MINIDISC-

WITHPOINTS(P,R) that computes md(P,R) as defined in Lemma 4.14.

Your algorithm should compute only a single random permutation during

the whole computation.
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