
Designingand implementing a generalpurposehalfedge
data structur e

HervéBrönnimann
�

�
PolytechnicUniversity, Brooklyn NY 11201,USA

hbr@photon.poly.edu

1 Intr oduction

Halfedgedatastructures(HDS)arefundamentalin representingcombinatorialgeomet-
ric structures,usefulfor representingany planarstructuressuchasplanegraphsandpla-
narmaps,polyhedralsurfacesandboundaryrepresentations(BREPs),two-dimensional
viewsof a threedimensionalscene,etc.Many variantshavebeenproposedin thelitera-
ture,startingwith thewinged-edgedatastructureof Baumgart[2],theDCEL of [15,9],
thequad-edgedatastructure[11], thehalfedgedatastructure[18,12,andrefs.therein].
They have beenproposedin variousframeworks(referencestoo many to give here):

– Planestructures:includingplanarmapsfor GIS,2D Booleanmodeling,2D graph-
ics, scientificcomputations,computervision. The requirementson HDS are that
that someedgesmay be infinite (e.g.,Voronoi diagrams),or borderedges(e.g.,
for boundedpolygonaldomains),it mayincludeholesin thefacets(planarmaps),
andthat if so, oneof the connectedboundarycycle is distinguishedas the outer
boundary(theothersareinnerholes).

– Boundaryrepresentationof three-dimensionalsolids: including Brep representa-
tion, solidmodeling,polyhedralsurfaces,3D graphics.Therequirementsherevary
slightly: holesmay still be allowed, but thereis no needto distinguishan outer
boundary, infinite edgesarenot alwaysusefulbut borderedgesmight needto be
allowed.

– Planarstructuresencounteredin higher dimensionalstructures:even thoughthe
datastructureitself maybe higherdimensional,we might want to interpretsome
two-dimensionalsubstructureby using a HDS. Examplesinclude the polygonal
facetsof a 3D model,or the local structurein a neighborhoodof a vertex in a 3D
subdivision,or thetwo-dimensionalview of a three-dimensionalscene.

– Specialstructuressuchas triangulationsor simplicial complexes: in thesestruc-
tures,thestorageis facet-based.They areusuallyeasierto extendto higherdimen-
sions,andasystematicpresentationis givenin [4].

All the implementationswe are awareof, including thosesurveyed above, capturea
singlevariantof HDS, with thenotableexceptionof thedesignof halfedgedatastruc-
turein CGAL presentedin [12] which still limits itself to facet-basedvariantsanddoes
notallow holesin facets,for instance,but providessomevariability (forward/backward,
with or without vertices,facets,andtheir correspondinglinks, seebelow). This design

wasdonefor visualizationof 3D polyhedralsurfaces,andcanbereusedin severalsitu-
ations.

Virtually everybodywho hasprogrammeda DCEL or halfedgestructureknows
how difficult it is to debug it andgetright. Often,bugsarisewhenaddingor removing
featuresfor reusein a differentproject.Hence,the problemwe dealwith hereis to
presentadesignwhichcanexpressasmany aspossibleof thevariantsof HDSthathave
beenproposedin theliterature,in orderto designasinglesetof genericalgorithmsthat
canoperateonanyof them.Thegoalsfor ourhalfedgedatastructuredesignaresimilar
to thosepresentedin [12] :

– genericity:our specificationsneedto adaptto many existing structures,regardless
of theirinternalrepresentation.Thismakesit possibleto expressgenericalgorithms
onthem.Ourgoalis to captureall thefeaturesmentionedabove.genericityimplies
that if featuresarenot required,but usednevertheless(perhapsbecausethey are
requiredby anotheralgorithmto be appliedsubsequently),the algorithmshould
adaptgracefullyandmaintainthosefeaturesaswell.

– power of expression:thevariousrestrictionson HDS modelsin theCGAL project
led to the existenceof threedistinct datastructures,one for polyhedralsurfaces
[12], onefor planarmaps[10], andanotheronefor triangulations[3]. By contrast,
we wantto expressall thesestructuresusingasingleframework, andhave asingle
setof algorithmsto dealwith thesestructures.

– efficiency: we do not want to sacrificeefficiency for flexibility . This entailsnot
maintainingor interactingwith unusedfeaturesof a HDS, andputting minimum
requirementsfor thealgorithmsmanipulatinganHDS. Efficiency canbeachieved
by usingC++ templates(staticbinding)andcompileroptimization.Also, attention
needsto bepaidto issuesof locality of referenceandmemorylayout.

– ease-of-use:attachinginformationto thevertices,edges,or facetsshouldbeeasy,
as well as reuseof the existing component.Also the interfaceneedsto be uni-
form andeasilylearnable(somewhatstandard).WereuseandextendtheC++ STL
framework of conceptsandmodels,alsoknow asgenericprogramming[1], to the
caseof thispointer-baseddatastructure.SeealsotheBoostGraphLibrary [13] for
similar treatmentof graphalgorithms.

This paperextendstheexcellentstudypresentedin [12] for the CGAL library, by pro-
viding agenericandall-purposedesignfor theentirefamily of halfedgedatastructures
andtheir variants.We validatethe approachin a C++ templatelibrary, the HDSTL,
which is describedbelow.

Thepaperis organizedasfollows.In thenext section,wepresenttheunifiedframe-
work for working with and describingvariantsof HDS. Then we describea set of
genericalgorithmsthat apply to thesestructures.We introducethe HDSTL, a small
templatelibrary (lessthan5000linesof code)which providesa wide rangeof models,
whichwe evaluatebothindividually andusedin a practicalalgorithm.We concludeby
evaluatinghow thisdesignmeetsthegoalsexpressedabove.

2 Concepts

Halfedgedatastructureshave a high degree of variability. We follow the common-
ality/variability analysisframework of Coplien [8]. Briefly speaking,they may allow
several representations(vertices,facet,or no none),aswell asholesin facets,infinite
edges(incidentto a singlevertex), boundaryedges(incidentto a singlefacet),etc.The
representationitself mayallow variousaccessto the datastructure,suchasclockwise
or counterclockwisetraversalof afacetboundary, of avertex cycle,accessto thesource
or target vertex of a halfedge.Even the type of containerfor the componentsmaybe
an array(linear storage),a list (linked storage),or otherkinds of containers.But the
commonalityis alsoclear:theintentis to model2-manifoldtopology, soevery edgeis
incidentto atmosttwo facets,andin factevery halfedgeis incidentto atmostonefacet
andhasanoppositehalfedge.Halfedgesareorderedcircularly alonga facetboundary.
Also every edgeis incidentto two vertices,andin fact every halfedgeis incidentto a
uniquesourcevertex.

In this description,a halfedgedatastructureis simply a structuredsetof pointers
whichsatisfysomerequirements.Thenamesof thosepointersandtherequirementsare
groupedby concepts.This letsuseasilydescribewhatkind of a HDSis expectedby an
algorithm.Thepurposeof expressingconceptsis to describeeasilyandsystematically
to whatkind of aHDSagenericalgorithmshouldapply. In theprocessof designingour
concepts,we try andexpressinvariants,andtheir consequenceson thevalidity of the
HDS.(Thereaderis referredfor instanceto [6] andmorerecentpapersby theseauthors
for a formalapproachguaranteeingconsistency.) We formulateour invariantssuchthat
validity canbecheckedin constanttimeperhalfedge,vertex or facet.

2.1 HalfedgeData Structure (HDS)

The simplestconceptrequiresonly halfedges.The HDS givesaccessto the halfedge
type, the halfedgehandletype,andthe halfedgecontainer. The only operationsguar-
anteedto be supportedis to createa pair of oppositehalfedges,to take the opposite
of a halfedge,andto accessthe halfedges(via the interfacegiven by the conceptof
Containerin theC++ STL). We saythata pointeris valid if it pointsto a halfedgethat
belongsto theHDS halfedgecontainer. Theonly requirementis that theoppositeof a
halfedge

�
is avalid halfedge� , andthatopposite(�) is

�
itself.This is ourfirst invariant

I1.
I1. All theoppositepointersarevalid,opposite(

�
) �� � ,andopposite(opposite(

�
))=

�
,

for any halfedge
�
.

In thisandin thesequel,thevariable
�

denotesahalfedgehandle, or descriptor, not
theactualhalfedgeelementwhich couldbea muchbiggertype.In thesequel,

�
and �

denotehalfedgehandles,� a vertex handle,and � a facethandle.
In orderto guaranteeInvariantI1, halfedgesarecreatedin oppositepairs.Thereis

thusno new_halfedge()function,but new_edge()createstwo halfedges.

Remark. It usuallyrequiredin the literaturethat thehandleis a pointer, which canbe
moregenerallycapturedby theC++ STL conceptof Trivial Iterator, meaningthe fol-
lowing expressionsarevalid: *h, *h=x (assignment,for mutablehandlesonly), default

h

opposite(h)

prev_at_target(h)

next_at_source(h)

next_in_facet(h)

next_at_target(h)

prev_at_source(h)
prev_in_facet(h)

facet(h)

source(h)

target(h)

Fig. 1. Thebasicpointersin a HDS.

constructor, andh->m (equivalentto (*h).m). Becausewe wantto attainthemaximum
generality, we wouldalsolike to allow handlesto besimpledescriptors,like anindices
in a table.This precludestheuseof notationlike h->opposite()asusedin e.g.CGAL.
We thereforeassumethat the accessto pointersis given by the HDS itself, or using
C++ notation,by hds.opposite(h). Thecostof generalitycomesat somewhat clumsier
notation.

2.2 Forward/Backward/Bidir ectionalHDS

In orderto encodetheorderof thehalfedgeson theboundaryof a facet,we musthave
accessto the halfedgeimmediatelyprecedingor succeedingeachhalfedgeh on the
facetcycle. In orderto encodetheorderof thehalfedgesincidentto a vertex, we must
have accessto the halfedgeimmediatelyprecedingor succeedingeachhalfedgeh on
eitherthe sourceor the target vertex cycle. We have now describedthe pointersthat
areinvolvedin our halfedgedatastructure:in additionto thealreadydescribedoppo-
site(), the pointersthat link halfedgestogetherarenext_at_source(), next_at_target(),
next_in_facet(),prev_at_source(), prev_at_target(), prev_in_facet(). They areshownon
Figure1.

Note that all this informationneednot be stored.For instance,next_at_source(h)
is thesameasnext_in_facet(opposite(h)), while next_at_target(h)is thesameasoppo-
site(next_in_facet(h)). In practice,sincewe alwaysrequireaccessto theoppositeof a
halfedge,it sufficestostoreonly oneof next_at_source, next_at_target, or next_in_facet
andonehasaccessto all three!

Wecall adatastructurein whichonehasaccessto all threepointersnext_at_source,
next_at_target, and next_in_facet, and that satisfy the invariant I2 below, a forward
HDS.

I2. If aHDSis forwardandsatisfiesinvariantI1, thenall thepointersnext_at_source,
next_at_target,andnext_in_facetarevalid,andfor any halfedgeh, wehavenext_at_source(h)
= next_in_facet(opposite(h)), andnext_at_target(h)= opposite(next_in_facet(h)).

Similarly, if oneof thepointersprev_at_source, prev_at_target, or prev_in_facetis
available,thenall threeare,andif they satisfytheinvariantI3 below, theHDS is called
abackwardHDS.

I3. If aHDSis forwardandsatisfiesinvariantI1, thenall thepointersprev_at_source,
prev_at_target, andprev_in_facetarevalid,andfor any halfedgeh, wehaveprev_at_source(h)
= opposite(prev_in_facet(h)), andprev_at_target(h)= prev_in_facet(opposite(h)).

A datastructurewhich is both forward andbackwardis calledbidirectional. We
requirethat any HDS must providesaccessto either forward or backwardpointers.1

For a bidirectionalHDS,we requiretheinvariant:
I4. If aHDSisbidirectional,thenprev_at_source(next_at_source(h))=h,prev_at_target(

next_at_target(h))=h, andprev_in_facet(next_in_facet(h))=h, for any halfedgeh.

2.3 Vertex-supporting and Facet-supportingHDS

Thebasicpointersat a halfedgegive an axiomaticdefinition of verticesandfacets.A
sourcecycleisanon-emptyrangeof halfedges

�	��
�

�
������
suchthat

����� � � hds.next_at_source(
���

)
for any halfedge

���
in this rangeand

��� � hds.next_at_source(
� �) if the HDS is for-

ward,or suchthat
��� � hds.prev_at_source(

����� �) for any halfedge
���

in this rangeand� � � hds.prev_at_source(
� �

) if the HDS is backward.Likewise, a target cycle is de-
fined similarly by usingthe next_at_targetandprev_at_target pointersinstead,anda
(facet)boundarycycle by usingnext_in_facetandprev_in_facet. Two abstractvertices
areadjacentif they containat leasta pairof oppositehalfedges.

The importantpropertyof HDS is thateachhalfedgeis incidentto only onefacet
andhasonly twoendpoints.Sincethehalfedgeis oriented,thetwoverticesaretherefore
distinguishedasthesourceandthetargetof thehalfedge.WesaythatanHDSsupports
verticesif it providesthevertex type,thevertex handletype,accessto thevertex con-
tainer, aswell astwo pointerssource(h)and target(h) for any halfedgeh. Moreover,
thesepointersmustsatisfythefollowing invariants.

I5. If a HDS satisfiesinvariant I1 andsupportsvertices,thensource(g)=target(h)
andtarget(g)=source(h), for any pair of oppositehalfedgesh andg.

I6. If a HDS satisfies invariant I1 and supports vertices, then
source(next_in_facet(h))=target(h)for any halfedgeh.

InvariantI5 expressesthatoppositehalfedgeshave thesameorientation,andInvari-
ant I6 expressesthat thehalfedgeson a boundarycycle areorientedconsistently. Note
thatbecauseof invariantI5, we needonly storea pointerto thesourceor to the target
of a halfedge.We may tradestoragefor runtimeby storingboth,but sucha decision
shouldbemadecarefully. Morestoragemeanstheupdatesto theHDS takemoretime,
thereforeoneneedsto carefullyevaluatewhethertheincreasedperformancein follow-
ing links is actuallynot offset by the lossof performancein settingandupdatingthe
pointers.

Weexpressnew invariantsif verticesor facetsaresupported.Notethattheseinvari-
antsarecheckablein lineartime,andwithoutany extra storage.

I7. If aHDSsupportsvertices,andsatisfiesinvariantsI1–I4, thensource(h)=source(g)
for any halfedgesh, g thatbelongto thesamesourcecycle,andtarget(h)=target(g)for
any halfedgesh, g thatbelongto thesametargetcycle

1 Notethatwithout this requirement,our datastructurewould consistof unrelatedpairsof op-
positeedges.This is uselessif verticesarenotsupported.If they are,it mightbeusefulto treat
sucha structurelike a graph,without any orderon thehalfedgesadjacentto a given vertex.
Still, it would be necessaryfor efficient processingto have someaccessto all thehalfedges
whosesource(or target) is a given vertex. This accesswould enumeratethe halfedgesin a
certainorder. Soit appearsthattherequirementis fulfilled afterall.

Fig. 2. An illustrationof (a) facetswith holes,(b) outerboundary, and(c) singularvertices.

I8. If a HDS supportsfacets,andsatisfiesinvariantsI1–I4, thenfacet(h)=facet(g)
for any halfedgesh, g thatbelongto thesameboundarycycle.

2.4 Vertex and FacetLinks

Even thoughour HDS may supportverticesor facets,we may or may not want to
allocatestoragefrom eachvertex of facetto rememberone(perhapsall) the incidents
halfedges.Wesaythatavertex-supportingHDSis source-linked if it providesapointer
source_cycle(v)to a halfedgewhosesourceis thevertex v, andthat it is target-linked
if it providesa pointer target_cycle(v)to a halfedgewhosesourceis the vertex v. A
facet-supportingHDS is facet-linked if it provides a pointer boundary_cycle(f)to a
halfedgeon the boundaryof any facet(in which caseit mustalsoprovide the reverse
accessfacet(h)to the facetwhich is incident to a given halfedgeh). It is possibleto
envisionuseof bothvertex- andfacet-linkedHDS,andnon-linkedHDS.Thefollowing
invariantsguaranteethevalidity of theHDS.

I9. If a HDS supportsvertices,is source-linked,andsatisfiesInvariantsI1–I7, then
source(source_cycle(v))=vfor every vertex v.

I10. If a HDSsupportsvertices,is target-linked,andsatisfiesInvariantsI1–I7, then
target(target_cycle(v))=vfor every vertex v.

I11. If a HDS supportsfacets,is facet-linked,andsatisfiesInvariantsI1–I6 andI8,
thenfacet(boundary_cycle(f))=ffor every facetf.

2.5 HDS with Holesin Facetsand Singular Vertices

An HDS may or may not allow facetsto have holes. Not having holesmeansthat
eachfacet boundaryconsistsof a single cycle; it also meansthat thereis a one-to-
onecorrespondencebetweenfacetsandabstractfacets.In a HDS supportingholesin
facets,eachfacetis requiredto give accessto a holecontainer.2 This containermaybe
globalto theHDS,or containedin thefacetitself. Eachelementof thatcontainerneed
only point to a singlehalfedge.

In a facetwith holes,oneof thecyclesmay be distinguishedandcalledthe outer
boundary; theotherholesarethe inner holes. This is only meaningfulfor planestruc-
ture (seeFigure 2(b)), where the outer boundaryis distinguishedby its orientation

2 Thecontainerconceptis definedin theC++ STL.

whichdiffersfrom thatof theinnerholes.In Figure2(a),for instance,theouterbound-
ary is definedif we know that the facet is embeddedin a plane,but thereis no non-
geometricway to definetheouterboundaryof thegrayedfacet:a topologicalinversion
maybring the insideboundarycycle outside.(Note thatwhenthe incidentfacetis by
conventionto theleft of thehalfedge,theouterboundaryis orientedcounterclockwise,
while theinnerholeboundariesareorientedclockwise.)

In a connectedHDS without holes,it is possibleto reconstructthe facetswithout
the facet links. In general,for an HDS with holesbut which is not facet linked, it is
impossibleto reconstructthefacetsastheinformationconcerningwhich cyclesbelong
to the samefacetis lost, let alonewhich is theouterboundary. Therefore,if theHDS
supportsfacetswith holes,werequirethatit befacet-linked,andthatit alsoprovidethe
outerboundaryandaniteratorover theholesof any facet.

An HDS mayalsoallow singularvertices.A vertex is singular if its corresponding
setof adjacenthalfedgesconsistsof severalcycles;it is theexactdualnotionof holein
facetandhasthesamerequirementsconcerningcycle container.

In a singularvertex, oneof the cyclesmay be distinguishedandcalled the outer
cycle, andthe othercyclesarecalled inner cycles. They aredepictedin Figure2(c).
Unlike the outer facet boundary, the possibility of inner cycles seemsto only make
sensefor dual structures(seesectionon duality below) andmaynot be really useful,
althoughit perhapsmaybeusefulin triangulating3D polyhedra(e.g.thealgorithmof
ChazelleandPalios keepsan outerboundaryandmayhave inner vertex cycleswhen
removing a dome).As with holes,if anHDSsupportssingularvertices,we requirethat
it bevertex-linkedandthatit providetheoutercycleandaniteratorovertheinnercycles
of any vertex.

2.6 Hole Links, Vertex CycleLinks, Infinite and Border Edges,Duality

By analogywith vertex andfacetlinks, we call theHDS source-cycle-linked if it pro-
videsa pointersource_cycle(h)for eachhalfedgeh, target-cycle-linked if it provides
a pointer target_cycle(h)for eachhalfedgeh, andhole-linked if it providesa pointer
boundary_cycle(h)for eachhalfedgeh.

An edgewhosefacetpointerhasa singularvalueis calleda borderhalfedge.Like-
wise,ahalfedgewhosesourceor targetpointerhasasingularvalueis calledan infinite
halfedge.

For lack of space,we cannotelaborateon thesenotions.Suffice it to notethatwith
all thesedefinitions,our setof conceptsis closedunderduality transformationswhich
transformverticesinto facetsandvice-versa.

2.7 Memory Layout

In additionto the previousvariabilitieswhich have to do with the functionality of the
datastructure,andthemodelit represents,we offer somesupportfor memorylayouts.
The only requirementwe have madeso far on the layout concernsthe availability of
halfedge,vertex and facet containers,as well as vertex cycle and hole containersif
thosearesupported.

A mutablestructureallowsmodificationof its internalpointers,via functionssuch
asset_opposite(h,g), etc. Thesefunctionsneedonly be supportedif the correspond-
ing pointeris accessed:a forwardHDSis only requiredto provide set_next_in_facet(),
set_next_at_source(),andset_next_at_target(). The reasonwe requireseparatefunc-
tions for reador write access,is thata pointermaybeaccessedeven thoughit cannot
beset(if this pointeris non-relocatable,seenext section).

Thereis considerablefreedomin theimplementationof anHDS. For instance,be-
causeof invariantsI2 andI3, it is desirableto have pairsof oppositehalfedgesclose
in memory, soa possibleway to do this assuggestedby Kettner[12] is to storethem
contiguously. In this casethe oppositepointer may be implicit and its storagemay
be reclaimed.The sametrick could be usedfor any of the other pointers(suchas
next_in_facet, etc.).

Anotherexampleis the CGAL triangulation,which canbe capturedin our frame-
work asa HDS which is normalizedby facetsthussaving the storagefor all bidirec-
tionalpointers. Wecall this layouta triangulatedHDS. Therearethussix pointersonly
pertriangularfacet(threeoppositeandthreesourcevertex pointers),whichmatchesthe
CGAL triangulationdatastructure[3]. A restrictedsetof algorithmsneedsto beapplied
(new_edgereplacedby new_triangle). This is unavoidablesincea triangulatedHDS
cannotexpressall the possiblestatesof a HDS. Note that sometriangulationalgo-
rithmscanmaintainandwork with a triangulatedHDS(iterativeandsweepalgorithms)
but otherscannotbecauseof their needof generalHDS asintermediaterepresentation
(e.g.,divide-and-conquer, seebelow).

Becauseof thisfreedom,weneedto introduceonemoreconcept:anHDSishalfedge-
relocatablewith respectto a given pointer if any two halfedgelocationscan be ex-
changedin thecontainer, andthepointersto thesehalfedgesupdated,withoutaffecting
the validity of the HDS. An HDS which actually storesall its pointersis halfedge-
relocatable,while the HDS given as example above, which storepairs of opposite
halfedgescontiguously, is not. Similar definitionscanbe madefor vertex- and facet-
relocatableHDS.Theseconceptsareimportantin discussingnormalizationalgorithms
(seeSection3.3).

A halfedge-relocatableHDS providesa functionhalfedge_relocate(h,g)to relocate
a halfedgepointedto by h to a positionpointedto by g (whatever wasat thatposition
is thenlost). It alsoprovidesa memberfunctionhalfedge_swap(h,g) for swappingtwo
halfedgesin thecontainerswithoutmodifying thepointersin theHDS.

3 GenericAlgorithms

The purposeof enunciatinga collectionof conceptsis to describepreciselyhow the
algorithmsinteractwith a datastructure.In the C++ STL, this interactionis achieved
very elegantly throughiterators:containersprovide iterators,whosesemanticscanbe
modifiedby adapters,andalgorithmsoperateon a rangeof iterators.In the HDSTL,
the interactiontakesplacethrougha setof functors(suchasopposite,next_in_facet,
etc.),andwhoseargumentsandreturntypesarehandles.Usingthis framework, wecan
expressoperatorsandalgorithmsonaHDSthatspecifyexactlywhatthe(compile-time)
requirementsare,andwhatthesemanticsof thealgorithmare.

g1
g2

h1
h2

g1
g2

h1
h2

(a) split_facet(left-to-right) and
join_facets(right-to-left). For in-
stance,��������� are successorsin
facet

g1

g2

h1

h2

g1
g2

h1
h2

k1
k2

(b) split_vertex (left-to-right)and
join_vertices (right-to-left). For
instance,���� "!$# aresuccessorsin
facet.

Fig. 3. themeaningof theargumentsh1,h2,g1,g2for theEuleroperators.

3.1 Elementary Algorithms

In order to write genericalgorithms,we needelementarymanipulationsof pointers.
Thesearecomplicatedby the fact that thesepointersmay or may not be supported,
eventhecorrespondingtypesmaynotexist. Soweneed“smart” functionswhicheither
provide the pointeror a default-constructedvalueif the pointer is not supported.The
elementaryfunctionscomein severalsets:theget_..., set_..., copy_...,compare_...,cre-
ate/destroy_...functions.3 In addition,in a valid HDS, thenext_...andprev_... pointers
maybecomputedby areversetraversalof a(vertex or boundary)cycle,stoppingbefore
thecycle repeats.Thesearethefind_...functions.For convenience,weprovidestitch_...
functionswhich setpairsof reversepointers.

In [12], thesefunctionsexist and are encapsulatedin a so-calleddecorator. We
chooseto provide them in the global scopesincethey are the primary accessto the
HDS.Their first argumentis alwaysanobjectof typeHDS.

3.2 Euler and Other Combinatorial Operators

In additionto theelementaryfunctions,mostalgorithmsusethesamesetof high-level
operations,calledEuleroperationssincethey preservetheEulernumberof thestructure
(%'&)(+*-,.&)/�&)0�1324*)5�6 , where% , (, , , / , 2 , arethenumbersof vertices,edges,facets,
inner holes,and connectedcomponents,and 5 is the genusof the map). The basic
operationusedby theseoperatorsis splicewhich breaksa vertex cycle by insertinga
rangeof edges.Usingsplice, weprovideanimplementationof dualoperatorjoin_facets
andjoin_vertices(deleteapairof oppositehalfedgesandmergebothadjacentboundary
or vertex cycles),andof their reversesplit_facetandsplit_vertices. By usingtheget_...,
set_...andstitch_...functionswe canwrite operatorsthatwork seamlesslyon any kind
of HDS (forward,backward,bidirectional,etc.).

As mentionedabove, thisvariability doesnotcomewithoutconsequences.For one,
theEuleroperatorsmustbepassedafew moreparameters.Most operatorstakeat least

3 Thecompare_...functionsareespeciallyusefulto write pre-andpost-conditionsfor thehigh-
level operations.

fourarguments,suchassplit_facet(h1,h2,g1,g2)or join_facets(k1,k2,h1,h2,g1,g2)with
the meaningdepictedin Figure3. For convenience,thereare also functionssuchas
split_facet_after (h1,g1) if the HDS is forward (the parametersh2 andg2 canbe de-
duced),or join_facets(k1)if theHDS is bidirectional.

Somepreconditionsareanintegralpartof thespecifications:for instance,join_facets
hasthepreconditionthateitherfacetlinks arenot supported,or that theboundarycy-
clesdiffer for bothhalfedges.For HDSwith holes,thisoperationis providedandcalled
split_boundary andits effect is similarto join_facets,exceptthatfor HDSwith holes,it
recordstheportioncontainingg1 asaninnerholeof thecommonadjacentfacet.(This
partis still underintegrationin theHDSTL.)

3.3 Memory Layout Reorganization

An importantpartof designinga datastructureis thememorylayout.Most implemen-
tationsimposetheir layout, but our designgoal flexibility implies that we give some
control to the useras well. We differentiatewith the static design(fixed at compile
time,Section2.7)andthedynamicmemorylayoutreorganizationwhich is thetopicof
thisparagraph.

We saythata HDS is normalizedby facetsif the halfedgebelongingto boundary
cyclesarestoredcontiguously, in their orderalongthe boundary. This meansthat the
halfedgeiteratorprovidedby the HDS will enumerateeachfacetboundaryin turn. In
casefacetsaresupported,moreover, facetnormalizationmeansthatthecorresponding
facetsarealsostoredin thesameorder. A HDSis normalizedby(sourceor target)ver-
ticesif a similar conditionis satisfiedfor (sourceor target) vertex cycles,with similar
definitionof vertex normalization,andnormalizedby oppositeif halfedgesarestored
next to their opposite.Thesealgorithmscanonly beprovided if theHDS is halfedge-
relocatable.Notethatin general,thesenormalizationsaremutuallyexclusive.Further-
more,they do not get rid of the storagefor thepointers(exceptin thecasewherethe
lengthof thecycle is fixed,suchasfor oppositepointers,or in triangulations,in which
casesomeimplicit schemecansavestorage,asexplainedin Section2.7).Normalization
algorithmscanbeimplementedin lineartime.

4 Experimental Evaluation

4.1 Comparisonof Various Models

Herewe comparevariousmodelsof HDS provided in the HDSTL. The modelscan
be compact(normalizedby opposite,henceno storagefor oppositepointer), indices
(handlesareintegersinsteadof pointers;dereferencingis morecostly, but copyingdoes
not necessitatepointertranslation),or pointer-basedby default.The functionality can
beminimal (no verticesor facets),graphic_fw(vertices,no facets,andforward-only),
graphic (verticesbut no facets),default (vertices,facets,but forward-only),andmax-
imal (vertices,facets,bidirectional).Moreover, we have the possibility of storingthe
halfedgeincidencesat source(next_at_source) or at target (next_at_target) insteadof
in facet(next_in_facet), aswell aschoosingbetweenstoringthesourceor targetvertex.

We do this in orderto measurethedifferencesin run time. We measureno difference
with storingincidencesatsourceor at target.

Thelastthreelinesillustrateaswell otherHDS for which we couldwrite adaptors.
Wehavenotmentionedruntimeratios,becauseit is notclearhow to provideafair com-
parison.TheLEDA graph[14] storesvertices,edges,andhalfedgesin a doublylinked
list, andstoresfour edgepointerspernodeandperedge,aswell asdegreepernodeand
otherextra information.It is thereforeaverypowerful, but alsovery fat structure,andit
offersno flexibility . TheCGAL modelsof HDS [7] however, arecomparablein storage
andfunctionality, althoughlessflexible. They requirefor instancefacet-basedpointer
storage(next andprev_in_facet). We can reasonablyestimatethat their performance
wouldmatchthecorrespondingmodelsin theHDSTL.

The resultsare shown in Table1. We measurethe running time ratiosby effect-
ing a million pairssplit_facet/join_facetsin a small (tetrahedron)HDS.Measurements
with million pairssplit_vertices/join_verticesareslightly slower, but in similar ratio.
Thereis thereforeno effect dueto the (cacheandmain) memoryhierarchy. The run-
ningtimescanvarybetweenarelative0.6(facet-basedminimalusingvectorstorage)to
2.2(source-basedmaximalusinglist storage).Theindex-basedstructureis alsoslower,
but not by much,and it hasthe doubleadvantagethat copyingcanbe donedirectly
withouthandletranslation,andthattext-modedebuggingis facilitatedbecausehandles
aremorereadable.

In conclusion,themodelof HDScanaffect theperformanceof aroutineby afactor
of morethan4. In particular, providing lessfunctionalityis fasterbecausefewerpointers
have to besetup. Of course,if thosepointersareusedheavily in the latercourseof a
program,it mightbebetterto storethemthanrecomputethem.We alsonoticethatthe
runtimecostof morefunctionality is not prohibitive,but carehasto be takenthat the
storagedoesnotexceedthemainstorageavailable,otherwisediskswappingcanoccur.
Whendealingwith largedata,it is bestto handpick theleastmemory-hungrymodelof
HDS thatfits therequirementsof theprogram.Also, for high-performancecomputing
applications,its mightbea goodstrategy to “downgrade”theHDS (allow bidirectional
storagebut declaretheHDSasforward-only)andin a laterpasssettheextra pointers.

4.2 DelaunayTriangulation

We programmedthedivide-and-conquerDelaunaytriangulation[16,5], with Dwyer’s
trick for efficiency (first partitionin verticalslabsof 7 8:9<;$=>8 pointseach,recursively
processtheseslabsby splitting with horizontallines, thenmerge theseslabstwo by
two). Theredoesnot seemto be a way to do with only forwardHDS: whenmerging
two triangulations,we needa clockwisetraversalfor oneanda counter-clockwisefor
theother;moreover, simply storingthe convex hull in a bidirectionallist will not do,
aswe mayneedto remove thoseedgesandaccesstheedgesinsideduringthemerging
process.Weneedvertices(to containapoint)andbidirectionalaccessto theHDS.This
algorithmonly usesorientationandin-circle geometrictests.We useda customvery
smallgeometrykernelwith simpletypes(arrayof two floatingpointdoublefor points).

For this reason,we only tried thedivide-and-conqueralgorithmwith threevariants
of HDS: thegraphicHDS(verticesandedges,bidirectional,with vertex links) thecom-
pactgraphicHDS (graphicwithout vertex links, with oppositehalfedgesstoredcon-

HDS features pointers runtimeratio

default V+L,FWif,F+L v+4h+f 0.95
id., FWas v+4h+f 1.0

id., list storage3v+6h+3f 2.0
indices default+indices v+4h+f 1.25

id., FWas v+h+f 1.25
compact_fw FW,compact h 0.6

compact BI,compact 2h 0.65
minimal FWif 2h 0.6

id. but FWas 2h 0.65
graphic_fw V+L,FWif v+3h 0.7

id., FWas v+3h 0.75
graphic V+L,BIif v+4h 0.7

id., BIas v+4h 0.75
maximal V+L, BIif, F+L 2v+5h+2f 1

id., BIas 2v+5h+2f 1.1

id., list storage4v+7h+4f 2.15

LEDA_graph V+L, BIas ? 4(v+h) N/A

CGAL_minimal FWif 2h N/A

CGAL_maximalV+L, BIif, F+L 2v+5h+2f N/A
Table 1. A synoptic view of the different models of HDS : (a) name, (b) features
[V=vertex,F=facet,L=link,FW=forward,BI=bidirectional,if=in_facet,as=at_source],(c) number
of pointersrequiredby thestructure,(d) runtimeratiosfor pair split_facet/join_facets.

tiguously),andthemaximalHDS(graphicwith facetsandfacetlinks aswell). Usedby
thealgorithmarethe vertex information,oppositeandbidirectionalpointersin facets
andat vertices.The algorithmdoesnot usebut otherwisecorrectlysetsall the other
pointersof theHDS.

Theresultsof ourexperimentsareshown in Table2.Wearenotprimarily interested
in the speedof our implementation,althoughwe note that on a PentiumIII 500Mhz
with sufficientmemory(256MB),triangulatinga million pointstakesabout11seconds
for thebasetime,which is very competitive. More interestingly, however, we compare
againthe relative speedof the algorithmswith our differentmodelsof HDS, andwe
recordboth the running time and the memoryrequirements.The resultsin Table 2
suggestthat themodelof theHDS hasan incidenceon thebehavior of thealgorithm,
althoughmorein the memoryrequirementthanin the running time (thereis at most
15%of variationin therunningtime).Noticehow thecompactdatastructureusesless
memoryandalsoprovokesfewer pagefaults (measuredby theUnix time command).
Also interestingis thedifferencebetweenthecompactandnon-compactversionsof the
graphicHDSwith andwithoutDwyer’sstrategy (10%vs.only 2%).Theseexperiments
seemto encouragetheuseof compactdatastructures(whenappropriate).

Theseexperimentsalsoshow how thefunctionalrequirementsof analgorithmlimit
the choicesof HDS that canbe usedin them.We could not test the graphic-forward

HDS time ratio memorypagefaults

graphic_cp6.635 1.11 22.3MB 24464
graphic 5.95 1 27.9MB 29928
maximal 6.9 1.15 35.6MB 36180

graphic_cp 3.22 1.03 22.3MB 24464
graphic 3.125 1 27.9MB 29928
maximal 3.57 1.14535.6MB 36180

Table 2. A comparisonof differentHDS usedwith divide-and-conquerDelaunaytriangulation
without (first threelines)or with (last threelines)Dwyer’s trick (and ��@A��B�C points):(a) running
timesand(b) ratios,(c) memoryrequirements,(d) pagingbehavior.

HDS with this algorithm.Whenprovided,however, the comparisonis fundamentally
fair sinceit is thesamealgorithmwhich is usedwith all thedifferentstructures.

5 Conclusion

We have provided a framework for expressingseveral (indeed,many) variantsof the
halfedgedatastructure(HDS), including geometricgraph,winged-edge,Facet/Edge
anddualVertex/Edgestructures.Our approachis to specifya setof requirements(re-
fining eachother)in orderto expressthe functionalpower of a certainHDS. This ap-
proachis a hallmarkof genericprogramming,alreadyusedin the C++ STL, but also
notablyin the BoostGraphLibrary andin CGAL[12]. Regardingthe latter reference,
wehave enrichedthepaletteof modelsthatcanbeexpressedin theframework. For in-
stance,wecanexpressholesin facetsor non-manifoldvertices.Also we do not require
any geometry, thusallowing the possibility to usethe HDSTL in representingpurely
combinatorialinformation(for instance,in representinghierarchicalmapsin GIS).

As a proof of concept,we offer an implementationin the form of a C++ template
library, the HDSTL (halfedgedatastructuretemplatelibrary), which consistsof only
4,500linesof (admittedlydense)code,but canexpressa wide rangeof structuressum-
marizedon Table1. We provide a setof genericalgorithms(includingelementaryma-
nipulations,Euleroperators,andmemorylayoutreorganization)to supportthosestruc-
tures.

Regardingourgoals,flexibility is morethanachieved,tradingstoragecostfor func-
tionality: We have provideda rich varietyof modelsin our framework, eachwhich its
own strengthandfunctionality. We alsohave shown that it is possibleto provide a set
of genericalgorithmswhichcanoperateon everysingleoneof them.Thisflexibility is
importantwhentheHDSis expressedasaview from within anotherstructure(e.g.solid
boundary, lower-dimensionalsectionor projection,dual view) for which we may not
controltherepresentation.It is of coursealwayspossibleto setupaHDSby duplicating
thestorage,but problemsarisefrom maintainingconsistency. Instead,ourflexibility al-
lows to accessa view in a coherentmannerby reusingtheHDSTL algorithms,but on
theoriginalstoragevieweddifferently.

Easeof usecomesfrom thehigh-qualitydocumentationprovidedwith theHDSTL,
but thereare issueswith error messageswhentrying to useunsupportedfeatures,or
whendebugging.Thiscanbeimprovedusingrecentwork in conceptchecking[17].

Efficiency is acquiredby usingC++ templates(staticbinding,which allows further
optimizations)insteadof virtual functions(dynamicbinding,asprovidedin Java).The
algorithmswe provide arereasonablyefficient (roughly fifteen secondsfor Delaunay
triangulationof a million pointson a Pentium500Mhzwith sufficientmainmemory).

Acknowledgments.Thanksto Lutz Kettnerfor many discussionsabouthis design,to
JackSnoeyink for his helpinghandin theearlydebuggingprocess,andto thepeoplein
theCGAL project,notablySylvainPionandMoniqueTeillaud,for pastdiscussionsand
inspiration.

References

1. M. H. Austern.GenericProgrammingandtheSTL. Professionalcomputingseries.Addison-
Wesley, 1999.

2. B. G. Baumgart. A polyhedronrepresentationfor computervision. In Proc. AFIPSNatl.
Comput.Conf., volume44,pages589–596.AFIPSPress,Arlington, Va.,1975.

3. J.-D. Boissonnat,O. Devillers, M. Teillaud,andM. Yvinec. Triangulationsin CGAL. In
Proc.16thAnnu.ACM Sympos.Comput.Geom., pages11–18,2000.

4. E.Brisson.Representinggeometricstructuresin D dimensions:Topologyandorder. Discrete
Comput.Geom., 9:387–426,1993.

5. C. Burnikel. Delaunaygraphsby divide andconquer. ResearchReportMPI-I-98-1-027,
Max-Planck-Institutfür Informatik,Saarbrücken,1998.24 pages.

6. D. Cazierand J.-F. Dufourd. Rewriting-basedderivation of efficient algorithmsto build
planarsubdivisions. In WernerPurgathofer, editor, 12th SpringConferenceon Computer
Graphics, pages45–54,1996.

7. TheCGALReferenceManual, 1999.Release2.0.
8. J.O. Coplien.Multi-ParadigmDesignfor C++ . Addison-Wesley, 1999.
9. M. deBerg, M. vanKreveld,M. Overmars,andO. Schwarzkopf.ComputationalGeometry:

AlgorithmsandApplications. Springer-Verlag,Berlin, 1997.
10. E. Flato, D. Halperin,I. Hanniel,andO. Nechushtan.The designand implementationof

planarmapsin CGAL. In Abstracts15thEuropeanWorkshopComput.Geom., pages169–
172.INRIA Sophia-Antipolis,1999.

11. L. J. GuibasandJ. Stolfi. Primitives for the manipulationof generalsubdivisionsandthe
computationof Voronoidiagrams.ACM Trans.Graph., 4(2):74–123,April 1985.

12. L. Kettner. Usinggenericprogrammingfor designingadatastructurefor polyhedralsurfaces.
Comput.Geom.TheoryAppl., 13:65–90,1999.

13. L.-Q. Lee,J.G. Siek,andA. Lumsdaine.Thegenericgraphcomponentlibrary. In Proceed-
ingsOOPSLA’99, 1999.

14. K. MehlhornandS.Näher. LEDA: APlatformfor CombinatorialandGeometricComputing.
CambridgeUniversityPress,Cambridge,UK, 1999.

15. D. E. Muller andF. P. Preparata.Findingtheintersectionof two convex polyhedra.Theoret.
Comput.Sci., 7:217–236,1978.

16. F. P. Preparataand M. I. Shamos. ComputationalGeometry:An Introduction. Springer-
Verlag,3rdedition,October1990.

17. J.SiekandA. Lumsdaine.Conceptchecking:Bindingparametricpolymorphismin C++. In
First Workshopon C++ TemplateProgramming,Erfurt, Germany, October10 2000.

18. K. Weiler. TopologicalStructuresfor GeometricModeling. PhD thesis,RensselaerPoly-
technicInstitute,Troy, NY, August1986.

