CS268: Geometric Algorithms Handout #12

Design and Analysis Original Handout #12
Stanford University Thursday, 19 May 1994
Original Lecture #12: Thursday, May 19, 1994

Topics: Range Searching with Partition trees

Scribe: Julien Basch *

1 The range query problem

In this lecture, we introduce the range query problem in Euclidian space E¢: given a set P of n
points and a range R (i.e. a simple shape like a ball, a box, a half-space, or a simplex), report
how many points of P lie in R.

For the rest of the discussion, we assume that d is fixed, and look only at the dependence
of our algorithms on n.

If P is allowed to vary between two queries, nothing can be done better than testing each
individual point. Thus, we will now consider that the set P is given once, on which it is possible
to do some preprocessing to create a data structure, in order to answer efficiently subsequent
queries on this set.

The problem thus involves a trade-off between the following quantities:

e S(n) : the amount of storage required for the data structure
e P(n) : the preprocessing time to build the data structure
e O(n) : the individual query time.

For instance, S(n) = 0 implies Q(n) = @(n).

Example (One dimension is easy): A set of n points is given on the real line. A query is an
interval. By sorting the points once and for all, we get the following time and space bounds:

P(n) = O(nlgn)
S(n) = O(n)
O(n) = 0O(lgn)

1.1 Generalization with semi-groups

There are a number of interesting problems which look similar to the one described above,
without being exactly the same, for instance testing for emptiness of a range, or, given a weight
for each point, finding the maximum in a range, or the sum of the weights. We show how all
these problems can be cast in a unifying framework:

*Based on notes by Karen Daniels (1991)

2 CS268: 12

Let (G,+) be a semi-group!. Let (p;,w;); be a family of n weighted points, with position
pi € EY and weight w; € G.

e Counting problem: Given a range R, compute

Y v

Pi€ER

where the X is to be understood as the extension of the + operator of our semi-group for
an arbitrary number of arguments.

e Reporting problem: Given a range R, report the sequence of the weights of the points
in R.

For the reporting problem, we wish to have a query time that is output sensitive. It will
typically be of the form Q(n) + k, where k is the number of points in the answer.
We can now express other problems as specific instances of the weighted counting problem:

e Emptiness problem: Use G = {7, F} and the V (or) operator, and w; = T'.
e Counting problem: Use G = Z, the set of integers, and w; = 1.

We can now see the previous 1-dimensional range searching example as follows: by sorting
the elements, we compute implicitly the answer to a number of specific queries, which are of
the form [—eo, a| for some a. We then use the fact that #[a, b] = #|—oo, b] — #[—o0,a].

This trick works equally well if points have weights composed through the normal addition.
However, it breaks down when we switch to a semi-group, as the subtraction (inverse) is no
more defined (consider for instance the problem of reporting the point of maximum weight in
the query range).

In the 1-dimensional case, with n weighted points, we solve this problem as follows: we
construct a balanced binary tree of height [lgn], storing one point per leaf, ordered by position.
In each internal node, we then compute the bounds and total weight of its subtree. Now, given
a query interval [a,b], we find the first node v that separates a and b, then add together the
weights of all right (resp. left) subtrees found on the path from v to a (resp. b), which is an
O(logn) process, requiring only additions.

The principle used here underpins all approaches to range searching that we are going to
see in this lecture. In more general terms, it recommends the following approach:

Principle: Define a set of canonical ranges, and precompute their weights. Choose these
ranges in such a way that any other range can be expressed as a disjoint union of a small
number of these canonical ranges.

'A semi-group is a set with a stable associative law, a neutral element, but whose elements don’t necessarily
have an inverse.

CS268: 12 3

In the one dimensional case seen above, the balanced tree defined a set of n canonical
intervals. By chosing a balanced tree, we ensured that other intervals could be expressed as the
disjoint union of a small number of them.

The simple solution to the one dimensional problem can be generalized in d dimensions to
the

e Orthogonal range query problem: the range is a box whose sides are aligned with the
axes.

This question has applications in several disciplines related to geometry, but is no more than
a product of one dimensional queries (each new dimension creates a new subtree at each node
of the previous structure). We refer the interested reader to [3]. We get a solution with S(n) =
®(nlog?n), Q(n) = O(log n).

2 Discussion for Half spaces and simplices

Today, we are going to focus on half spaces (oriented in any way) and simplices (the former is
a special case of the latter) in E¢.
There is one main theorem for half space query. Please remember it forever.

Theorem 1. Given a storage space S(n) = ®(m) (between n and n?), the query time for half
spaces can be reduced to

where O hides a polylogarithm factor.

Thus, in one extreme, the query time can therefore be made polylogarithmic, at the expense
of a n? of storage. In the other, more interesting extreme, the query time can be reduced to
n'=1/4 at the cost of a nearly linear amount of storage. Let us examine intuitively why this
makes sense.

2.1 The n¢ solution

In the plane, the interesting lines are those which pass through two points of the data set.
Indeed, any other line can be smoothly translated and rotated until it coincides with one of
these lines without changing the answer. Thus, the number of possible different answers is
@(n?). It is therefore possible to compute all possible answers.

Alternatively, we can dualize the problem: every point becomes a line, and a query line
become a point. The number of points above the query line is exactly the number of dual lines
above the dual point, and this is constant within each cell of the arrangement defined by the
n lines. Thus, one can compute the arrangement of the dual lines by a topological sweep in
O(n?), and store the answer in each cell of the arrangement. To answer a query, simply dualize
the query line into a point, and locate the cell it falls into in logarithmic time.

4 CS268: 12

The reporting problem can be solved the same way, using fractional cascading, to avoid an
extra log factor in the query time.

In general, in E%, the same technique applies, but the arrangement complexity is now
O(n?).

At last, if the query range is a simplex, there are n® possible answers (in the plane), but it is
possible to get back to n? space, or n in general. We omit the details here.

2.2 Linear space solutions

We now focus on the other extreme: (nearly) linear storage.

Let us first examine what happens in the plane with data points uniformly distributed in a
square. While this will not lead to any algorithm, it helps to understand how this n'=1/4 comes
into the picture.

In this square, draw a grid of 1/n by \/n cells, and store with each horizontal segment (there
are n of them) the total number of points above it. Note that under the assumption of uniform
distribution of the data points, there is a constant number of points per cell (expected). Now,
consider a query line: it crosses at most two cells per column (or per row). Counting all points
above the query line can then be done in expected constant time: check one by one the few
points that lie in the one or two cells crossed by the query line, then add the number of points
kept with the first horizontal segment above the line. Thus, the query time for \/n columns is
® (nl -1 /2).

It is easily seen that this idea can be extended to d dimensions, by considering a grid with
nl/d hyperplanes cutting each direction (in order to get a linear number of cells).

3 Partition trees

The problem is now to make things work in the worst case. This was a long quest. The first
success was obtained by Willard (1982), with a partition tree that gave a query time of O(n'7°?).
A competition started to lower the exponent, which was led in 1987 by Edelsbrunner [1] with
his ham-sandwich trees, giving a query time of O(n'%%). Matousek [2] eventually found in
1992 a partition tree algorithm with O(n>) query time, while Chazelle showed an Q(n>) lower
bound in the semi-group model of computation.

3.1 General principles of partition trees
We describe below the methods of Willard and of Edelsbrunner, which both rely on the ham-

sandwich cut theorem, whose proof we omit:

Theorem 2. (Ham-sandwich) Given any two sets of points in the plane, there is a line that
bisects both of them. Moreover, this line can be found in linear time.

CS268: 12 5

Corollary 3. Given a set of points in the plane, it is possible to cut the plane with two line so
that each of the four quadrants contains exactly a fourth of the points.

Proof: Put the first line horizontally so that it bisects the set. Then consider the top half and
the bottom half as two distinct sets, and use the ham sandwich theorem. O

In both methods, the data structure is a partition tree: every node of such a tree corresponds
to some subset of the points where:

1. the root node corresponds to the entire point set P,
2. each leaf contains at most a constant number of points,

3. every non-leaf node v has C children (for some constant C), and the points of v are
partitioned? as evenly as possible among its C children.

Since we partition the points evenly on each level, the tree has depth at most [log-n| =
O(logn). Each level is a partition of the n nodes, so the total space to store this tree naively
is O(n) per level, for O(nlogn) overall. If we are careful to explicitly store points only at the
leaves, then the space for this tree is O(n).

Given a query line ¢, we traverse down the tree from the root; our goal is to save time by
detecting when all the points of some node v are entirely on one side or another of /. Whenever
this happens, we can avoid traversing the tree below node v. If the points of v are all outside
our query, then we may immediately leave v; if the points of v are all inside our query, then we
handle them all together.

3.2 Willard trees

Given a set P of n points in the plane, we construct a quaternary (C = 4) partition tree as follows.
By the median algorithm, find a horizontal line ¢; bisecting P; then apply the linear time
algorithm from the last lecture to find a second line ¢, so that each of the resulting quadrants
contains at most [n/4] points; see figure 1(a) again. The points in these four quadrants are the
point sets given to the four children of the root; now apply the construction recursively. We do
linear work per level, so the total preprocessing time is O(nlogn).

Now the main observations is the following: any query line ¢ can intersect at most three
of the four quadrants, so we are always able to avoid recursion on at least one quadrant (see
figure 2). This leads to the recurrence for Q(n), the number of nodes traversed during a query,
of Q(n) = 3Q(n/4) + O(1), whose solution is O(n'°%3), or approximately O(n-"°?). Willard
trees thus give the following result:

P(n) = O(nlgn)
S(n) = ©(n)
o(n) = ©(n™)

%In higher dimensions we sometimes need to relax this condition, and only require that each child has (say) at
most 1/2 of its parents points. Then the space to store such a tree would go up to O(n!°¢2€). Also note that if we
give up the partition property, then it will no longer be valid to count by just adding up counts from tree nodes.

6 CS268: 12

2
[]
11 ° 1
[]
i °
[}
g
[} ° * d o
1 ° vV I 11 m I
(a) Bisecting lines /] and 12 (b) Tree structure

Figure 1: Balanced partitioning into quadrants

Figure 2: [avoids quadrant II

Note that this algorithm is good also for triangle queries. Consider first a wedge. The
two lines of the wedge may hit all four quadrants, but three of them don’t contain the wedge
anymore. Thus, if the number of nodes traversed for a wedge is U (n), the recurrence becomes
U(n) = 0(1)+3T(n/4)+U(n/4), which also solves to U (n) = O(n""°?). The case of triangles
1s similar.

3.3 Ham-Sandwich Trees

We improve on the previous O(n”7%?) result by a more efficient partitioning scheme. This is
accomplished with the ham-sandwich tree (also known as the conjugacy tree) of Edelsbrunner
[1]. Unlike the quaternary Willard tree, this is a binary tree. An example of such a tree is given
in figure 3.

At each node v in level i of the tree (where the root is level 0), we have a set P, of n/ 21

CS268: 12 7

(1)
/6% (12

&b &b

Figure 3: A ham-sandwich tree for 16 points

(from [2])

points together with a line ¢, bisecting those points; the children of v inherit the point sets on
each side of ¢,. Furthermore, in linear time we compute the line ¢, bisecting the point sets of
both children; ¢, is the line inherited by each child. Note that £, is effectively “clipped” by the
lines of the ancestors of v.

The total preprocessing time is again O(n) per level, or O(nlogn) overall. If we do not
store each P, explicitly except at the leaves, then the total space is again O(n).

Now note that for a query line ¢ at node v, ¢ can intersect at most one child of v together
with one grandchild of v. Thus the recurrence for the query time (the number of tree nodes
visited) is given by: Q(n) = Q(n/2) + Q(n/4) + O(1), which solves to O(n'°%2?), where ¢ is
the golden ratio. We now have:

P(n) = O(nlgn)

O(n)
Q(I’Z) — @(1’1'695)

!
~~

S
N—

Il

3.4 Construction for higher dimensions

In 3 dimensions, the ham sandwich cut theorem (renamed the ham cheese sandwich cut the-
orem) still works: Given three sets of points in E3, it is possible position a hyperplane that
bisects the three sets. Then, given a set of points, this theorem shows that it is possible to
position 3 hyperplanes such that every octant contains 1/8th of the points.

On the other hand, this technique cannot be extended after 4 dimensions. Indeed, we have
d? degrees of freedom to position d hyperplanes, while 2¢ — 1 constraints must be satisfied
(each "quadrant" has to contain 1/ 2d points), which is too much when d > 5.

8 CS268: 12

References

[1] Edelsbrunner, H. Algorithms in Combinatorial Geometry New York: Springer-Verlag,
1987.

[2] J. Matousek. Efficient partition trees. Discrete Comput. Geom., 8:315-334, 1992.

[3] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-
rithms. Prentice Hall, New York, 1993.

