CS268: Geometric Algorithms Handout #5

Design and Analysis Original Handout #15
Stanford University Tuesday, 25 February 1992
Original Lecture #6: 28 January 1991

Topics: Triangulating Simple Polygons

Scribe: Michael Goldwasser

Algorithms for triangulating polygons are important tools throughout computa-
tional geometry. Many problems involving polygons are simplified by partitioning the
complex polygon into triangles, and then working with the individual triangles. The
applications of such algorithms are well documented in papers involving visibility,
motion planning, and computer graphics. The following notes give an introduction to
triangulations and many related definitions and basic lemmas. Most of the definitions
are based on a simple polygon, P, containing n edges, and hence n vertices. However,
many of the definitions and results can be extended to a general arrangement of 7 line
segments.

1 Diagonals

Definition 1. Given a simple polygon, P, a diagonal is a line segment between two
non-adjacent vertices that lies entirely within the interior of the polygon.

Lemma 2. Every simple polygon with |P| > 3 contains a diagonal.

Proof: Consider some vertex v. If v has a diagonal, it’s party time. If not then the
only vertices visible from v are its neighbors. Therefore v must see some single edge
beyond its neighbors that entirely spans the sector of visibility, and therefore v must
be a convex vertex. Now consider the two neighbors of v. Since |P| > 3, these cannot
be neighbors of each other, however they must be visible from each other because of
the above situation, and thus the segment connecting them is indeed a diagonal. (See
figure 1) OJ

Figure 1: Existence of diagonal

2 CS5268: 5

Figure 2: Example of a triangulated polygon

2 Triangulations

Now we can use these diagonals to prove the existence of triangulations for any simple
polygon. First, we must formalize the concept of triangulating a polygon.

Definition 3. Given a simple polygon P, a triangulation of P is a partition of the inte-
rior of P into triangles.

An example of such a triangulation is given in Figure 2. Again, a similar definition
can be given for a set of line segments, where a triangulation is a partition of the
plane respecting the line segments. Often a less strict definition of triangulation is
used, requiring the polygon to be partitioned into polygons of some bounded degree.
In fact, later in these notes we will discuss the concept of a trapezoid partition of a
simple polygon.

Lemma 4. Every simple polygon has a triangulation.

Proof: =~ We will show this by induction on the number of sides. If the polygon has
only 3 sides, then it is already triangulated. Otherwise, by Lemma 2, the polygon
has a diagonal. Since the diagonal spans the interior, we can break the polygon into
two pieces, adding the diagonal to each part. The size of each polygon is reduced by
at least one, so by the inductive hypothesis, each part has a triangulation, and thus
combining these gives a triangulation for the original polygon. O

CS5268: 5 3

Figure 3: Example of dual graph

3 Dual Graph

Given a specific triangulation of a polygon, we can talk about the dual graph of the
triangulation.

Definition 5. Given a polygon P and a triangulation T for that polygon, the dual
graph is defined as D(T) = (V,E), where v; € V corresponds to a specific triangle in
T, and (v,,vp) € E if the two corresponding triangles share an edge.

Figure 3 provides an example of a dual graph. Notice that the edges in the graph
are in one-to-one correspondence with the diagonals of the triangulation. Let’s exam-
ine the properties of the dual graph.

Lemma 6. Given a triangulation of a simple polygon, the resulting dual graph is a tree
with maximum degree three.

Proof: To see that the graph is a tree, recall that each edge corresponds to a diagonal
of the triangulation. Since each diagonal breaks the polygon into two disjoint pieces,
deleting an edge from the graph breaks the graph into two connected components.
Thus the graph is a tree.

Since every triangle can have at most three neighbors, any node in the dual graph
can have at most degree three. O

4 CS5268: 5

4 Counting

We consider some basic counting arguments involving various properties of triangula-
tions and dual graphs. First, let T(n) denote the number of triangles in a triangulation
of an n-vertex polygon. Therefore T (1) also denotes the number of nodes in the dual
graph. Since each diagonal breaks the polygon into two smaller polygons who sizes
add to (n +2), we get the recurrence T(n) = T(k) + T(n + 2 — k), with the base case
T(3) = 1. Solving this we get that T(n) = (n — 2).

Let D(n) denote the number of diagonals introduced for this triangulation, and
therefore the number of edges in the dual graph. Counting the individual sides of the
triangles, and noting that any diagonal will be counted twice, we have T'(n) = (n —2)
triangles accounting for (3n — 6) sides. Since only n of those are the original sides,
there must be exactly (n — 3) diagonals. Notice we could also realize that D(n) =
(n — 3) by considering D(n) to be the number of edges in a tree with T(n) nodes.

A more interesting function to consider is how many different triangulations exist
for a given polygon. This quantity is not the same for all n-vertex polygons; the max-
imum value is achieved for convex polygons. Let F(1) denote the number of distinct
triangulations of an n-vertex convex polygon. We show that F(n) = b,,_», the number
of binary trees on n — 2 nodes, by showing that there is a one-to-one correspondence
between triangulations of the polygon and (n — 2)-node binary trees.

We already know that a triangulation defines an (n — 2)-node binary tree, namely
the dual graph. To make this tree unique, we must pick a root for it. Consider the
triangle incident to a given edge of the polygon, say p1p;. Because one of the triangle’s
edges is p1p2, it has at most two triangle neighbors. Therefore, the corresponding node
in the dual tree has degree at most 2, and we can make that node the root of the tree.

To prove the other direction of the correspondence, we must show that for ev-
ery binary tree, there is a triangulation with that tree as its dual graph. We create a
triangulation by a recursive process that triangulates a convex polygon with a distin-
guished top edge. The top edge for P is p;p;. Suppose that the vertices of the current
convex polygon are p1, py, . . ., pm in counterclockwise order, that p1p; is the top edge,
and that the root of the given tree has k nodes in its left subtree. We introduce trian-
gle Apypapk.s, partitioning the polygon into a triangle and two subpolygons of sizes
k +2and m — k — 1. Recursively, we find a triangulation of the polygon py, ..., pki3,
with top edge Py 3p2, corresponding to the left subtree. Similarly, we find a triangula-
tion of the polygon p1, pxya, ..., pm, with top edge p1pii3, corresponding to the right
subtree.

What is the value of b, = F(n + 2)? From Knuth, vol. 1, Sec 2.3.4.4, we get that

1 (2n g 1
=i () = v (00 (0):

the n'" Catalan number, which is also the number of ways to parenthesize a formula.

CS5268: 5 5

/\\

Figure 4: Example of canonical trapezoid partition

5 Ears

Definition 7. Given a simple polygon P, an ear of the polygon is a vertex whose
neighbors are visible from each other.

Lemma 8. Every simple polygon with |P| > 3 has at least two non-adjacent ears.

Proof: From lemma 4, consider a triangulation of P and its dual graph. Since |P| >
3, the dual graph is not a single node, and since the dual graph is a tree, it must have
at least two nodes of degree one. Our claim is that these two nodes correspond to
non-adjacent ears. If a node in the dual has degree one, then two of the edges defining
that triangle must be adjacent edges of the original polygon, and the third edge is the
diagonal closing the triangle. Therefore the common vertex of the two polygon edges
is an ear. Furthermore, since no polygon edge is used in more than one triangle, the
second degree-one node cannot involve either of the polygon edges from the first, and
therefore the ear corresponding to that node cannot be adjacent to the first. O

6 Trapezoid Partitions

In an earlier lecture we discussed the fact that adding vertical threads to an arrange-
ment of lines partitioned the plane into trapezoids. We now review this process for
simple polygons.

6 CS5268: 5

Definition 9. Given a simple polygon, a trapezoid partition of the polygon is a parti-
tion of the interior of the polygon into trapezoids.

Lemma 10. Every simple polygon admits a trapezoid partition.

Proof: We will give a constructive proof. Given a polygon, add in all of the vertical
threads that are in the interior of the polygon. Namely, from each vertex, if that vertex
is below the interior of the polygon, extend a vertical thread up from that vertex until
it reaches the nearest edge. Similarly, if the vertex is above the interior of the polygon,
extend a thread vertically down from the vertex.

Our claim is that the original edges of the polygon with these additional threads
partitions the interior into trapezoids. Each face of our partition has one or two vertical
threads as sides. If there are two threads, then they both must extend upward until
each hits an edge of the original polygon. Our claim is that both sides must hit the
same edge, and therefore the top of the face is a single segment. If the two sides hit
two different edges, then there must be some vertex along the top chain visible, but if
this were the case, there would have been a thread drawn from this vertex. A similar
argument holds if the face was bounded by only one thread. A symmetric argument

shows that each face has a single bottom segment, and therefore the face is a trapezoid.
O

We will refer to the specific trapezoid partition constructed above as the canoni-
cal trapezoid partition. Figure 4 shows the canonical trapezoid partition of a simple
polygon. Notice that every trapezoid is delimited on the left and right by an original
vertex of the polygon since each thread is anchored to an original vertex. However,
these left and right vertices can be on the top, middle, or bottom of the trapezoid. Also
notice that the number of trapezoids is linear in the degree of the polygon since every
polygon vertex has at most two incident threads, and the number of trapezoids is one
greater than the number of threads.

7 Triangulating Unimonotone Polygons

We begin by providing the definitions for monotone chains and polygons, and for
unimonotone polygons.

Definition 11. A polygonal chain is monotone (w.r.t. the x-axis) if any vertical line in-
tersects it in at most one point. A polygon is monotone if it is the union of two mono-
tone chains. A polygon is unimonotone if it is the union of two monotone chains, one
of which consists of a single edge.

Lemma 12. We can triangulate a unimonotone polygon in linear time.

CS5268: 5 7

Figure 5: Triangulated unimonotone polygon

Proof: =~ We give a constructive proof by presenting an algorithm satisfying these
bounds. The algorithm creates an ear decomposition by cutting off ears. Notice that
any convex vertex in the longer monotone chain must be an ear. Our algorithm pro-
cesses the vertices starting with the leftmost and following the longer monotone chain
until the rightmost vertex is reached. The algorithm is similar in design to the Graham-
Yao algorithm for computing the convex hull of a simple polygonal chain. The first
vertex is placed on a stack. If the next vertex is an ear, then the diagonal of that ear is
added to our triangulation and the ear is popped from the stack. Then the algorithm
reconsiders the vertex at the top of the stack and proceeds. To check whether a vertex
is an ear is simply a constant time check of whether the angle at that vertex is convex.
Each vertex is pushed and popped from the stack exactly once, so the algorithm runs
in linear time. Figure 5 shows the resulting triangulation of a unimonotone polygon.
O

8 Trapezoid Partitions and Triangulations

The problems of constructing a triangulation of a simple polygon and constructing the
canonical trapezoid partition are very similar. In fact there is a linear time equivalence
between the two problems. We will only take time to show the more useful half of
this claim, namely that given the canonical trapezoid partition, we can in linear time
compute a triangulation.

Theorem 13. Given the canonical trapezoid partition for a polygon P, we can in linear
time compute a triangulation for P.

Proof: We give a constructive proof by presenting an algorithm creating the trian-
gulation. Given the canonical trapezoid partition, there are two steps.

8 CS5268: 5

Figure 6: Trapezoid partition with “obvious” diagonals

1. Add “obvious” diagonals to P.

2. Triangulate the resulting (unimonotone) polygons.

First we must explain the interpretation of “obvious” diagonals. Second, we will claim
that the polygons that result by adding these diagonals to P are unimonotone, and
thus can be triangulated by the algorithm given in lemma 12.

Recall that each trapezoid in the canonical partition was delimited by exactly two
vertices, one on the left side and one on the right side. For each trapezoid consider
these two vertices. If the vertices do not already share an edge in the original polygon,
then these two vertices define what we call an “obvious” diagonal. Notice that since
the trapezoids are convex, the line segment connecting these vertices remains inside
the trapezoid, and since the trapezoid is contained in the polygon, this is a valid di-
agonal for the original polygon. Also since the trapezoids are disjoint, we can add
all such diagonals without fear of having any of them intersect each other. Figure 6
shows the obvious diagonals of a trapezoid partition. Adding all of these diagonals
clearly takes linear time, since there are linearly many trapezoids, and checking and
adding the diagonal for each one is a constant time operation.

Now consider the components created by breaking up the original polygon with
these “obvious” diagonals. We claim that each such component is in fact a unimono-
tone polygon. The key fact is that the canonical trapezoid partition for the original
polygon, when limited to one of these components, gives us the canonical trapezoid
partition for that component. Our first claim is that each component is x-monotone.
Assume a non-monotone component exists, and therefore has a cusp at some point.

CS5268: 5 9

— "

Figure 7: Proof of unimonotone condition

(See figure 7.) Consider the trapezoid immediately adjacent to that cusp, and its two
defining vertices. One of these vertices will be the cusp vertex, and the other will
be on the opposite side of the trapezoid. However, since the cusp is in the middle
of the side, then no matter where the opposite vertex is, there will be an “obvious”
diagonal between the two. Such a diagonal would have broken this component, and
so there could not have been such a cusp. Therefore we know that each component
is x-monotone. Now, assume that we have such an x-monotone component that is
not unimonotone. Then both the upper and lower chains must have at least one inter-
nal vertex each. Therefore there must exist some trapezoid where one side contained a
vertex from the top chain and the other side contained a vertex from the bottom chain.
This trapezoid would contain an “obvious” diagonal, a contradiction. Therefore, one
of the chains must be a single edge. (See figure 7.) Thus we have proven that every
component created by step (1) is a unimonotone polygon. By lemma 12 we can trian-
gulate each such component in linear time, and since we added only a linear number
of diagonals to the original polygon, the combined size of all of these components is
still linear.

We have shown that both steps of our algorithm run in linear time and produce
the desired triangulation. O

9 Building the Trapezoid Partition

The previous section implies that, given any algorithm to construct the canonical
trapezoid partition, we immediately have a triangulation algorithm with the same
time bound. In this section we present a simple sweepline algorithm that builds the
trapezoid partition in O(nlogn) time. In the following lecture, a randomized, incre-
mental algorithm by Seidel will be presented which creates the trapezoid partition in
O(nlog" n) time.

The following algorithm takes a simple polygon P and creates the canonical trape-
zoid partition of P in O(n log n) time. The algorithm is a standard left-to-right sweepline
method. The events are the vertices of the polygon. We maintain the intersections
with the sweep line and the segments of the polygon. Also with each segment in the
sweepline structure, if the interior of the polygon is immediately below that segment,

10 CS5268: 5

Py
m wl [em |
}:o -}:[>0 E:o -}::>H4

Figure 8: Sweepline operations for trapezoid partition

\ U
/
4
\

|
A

we store the rightmost vertical trapezoid edge directly below it. This pointer stores
the left side of the currently half-open trapezoid with that segment as the top side.
There are six possible event types that occur in the algorithm, and the operations for
each of these cases is demonstrated in figure 8. Although not given formally in these
notes, the implementation details of this algorithm are quite simple.

The proof of correctness is not given in these notes. In general, our invariant claim
is that all trapezoids completely to the left of the sweepline have already been pro-
cessed and reported.

The running time analysis for this algorithm is simple. Since all the events are
known beforehand, the event list can be sorted beforehand in O(nlogn) time. The
sweepline is maintained as a balanced tree, and since the segments are all from the
polygon, there can be at most 1 segments crossing the sweepline at once. Therefore
locating an event in the sweepline can be done in O(logn) time, and the operations
and reporting are all done in constant time for each event. It follows that the n events
can be processed in O(n log n) time, which gives the desired bound on the overall time
of the algorithm.

Notice also that the working storage used is linear. The event queue consists of
the n vertices, and thus is linear. Also the sweepline structure contains at most n
segments, and for each segment, the data stored uses constant space.

