
CS268: Geometric Algorithms Handout #8
Design and Analysis Original Handout #24
Stanford University Thursday, 12 March 1992

Original Lecture #15: February 27, 1992
Topics: Point Location Methods
Scribe: Eric Veach ∗

1 Point Location in Two Dimensions

Given a polygonal subdivision of the plane and some query point, we would like to
know which region (or edge or vertex) contains it. In one dimension, the problem
reduces to locating a query point in a subdivision of the line into intervals, and is
easily solved by binary search. We will look for a method to extend the idea of binary
search into two dimensions.

Given a subdivision with m edges, we would like a method which will use O(m)
preprocessing time and achieve O(log m) query time using O(m) space. The algorithm
we will discuss below employs two nested binary searches and is based on monotone
polygonal lines called separators. For more details on this algorithm, see [1].

1.1 Monotone Subdivisions

A region of the plane is y-monotone, or simply monotone, if its intersection with any line
parallel to the y axis is a single interval (possibly empty). A planar subdivision is said
to be monotone if all of its regions are monotone and it has no vertical edges (this last
condition is not strictly necessary, but helps simplify our proofs). See Figure 1 for an
example of a monotone subdivision.

The process of adding edges to make a subdivision y-monotone is called regular-
ization. There is a simple algorithm based on a vertical sweep line, due to Lee and
Preparata [2], which can regularize a planar subdivision in worst-case time O(m log m),
where m is the number of edges. It is based on the observation that a subdivision is
monotone if and only if every vertex is incident to at least two edges, one to the left
and one to the right (such a vertex is called regular). Their algorithm adds at most one
extra edge for each vertex which is not regular.

Starting at this point we will assume that the planar subdivision we are dealing
with is y-monotone. This is a weak restriction, since convex polygons (including tri-
angles) are monotone in every direction. Given non-monotone polygons, we can reg-
ularize them as described above or simply triangulate them (for which a worst-case
linear time algorithm is known).

∗A slightly modified version of Karen Daniels’ notes at MIT



2 CS268: 8

R11

R5

R10

R9R4

R3 R2

R1

R7
R8

R6

R0

separator S8

*

Figure 1: A separator for y-monotone subdivision.

1.2 Separators

A separator for a subdivision S is a polygonal line, consisting of edges and vertices of S,
such that it meets every vertical line at exactly one point (see Figure 1). We introduce
the following notation for our discussion of separators:

• The index of a region is denoted: index(R8) = 8.

• The relations above(e) and below(e) denote the regions which lie immediately
above or below an edge e.

• A separator si is above regions R0, R1, . . . , Ri−1, and below regions with index i
or higher. For example, the separator shown in Figure 1 is s8.

• For two subsets A and B of the plane, we can define acyclic relations À and ¿.
We say that A À B (A is above B) if “for every pair of vertically aligned points
(x, ya) of A and (x, yb) of B we have ya > yb, with strict inequality holding at
least once.” [1] Similarly, B ¿ A means that B is below A.

Separators have many subdivision edges in common. For example, the edge marked
with a ‘*’ in Figure 1 is in separators s2, s3, . . . , s8. In general, we have the following
lemma:



CS268: 8 3

v

u

R

Figure 2: A contradiction for R.

Lemma 1. For an edge e, let i = index(below(e)) and j = index(above(e)). Then e is
contained in all separators si+1, . . . , sj.

For a given subdivision containing n regions, many separators exist. The complete
family of separators is of special interest to us. It is a collection of n− 1 distinct separa-
tors, such that: s1 ¿ s2 ¿ s3 ¿ . . . ¿ sn−1. Complete separators have the property
that between each pair of separators there exists one region: R0 ¿ s1 ¿ R1 ¿ s2 ¿
R2 ¿ . . . ¿ sn−1 ¿ Rn−1.

If n− 1 separators exist, they form a complete separator family, in the sense that
they completely separate all regions. Intuitively, we can think of a separator as a rope
conforming to edges of the subdivision. The complete family then corresponds to a
topological sweep from bottom to top in which the rope moves upwards. At each
step, the rope loops over a region.

Theorem 2. Every monotone subdivision admits a complete family of separators.

Proof: The proof is by construction, and is given in [1]. We begin by constructing a
linear (total) ordering of the regions, consistent with theÀ relation, from the transitive
closure of a partial ordering of the regions. This can be done because any acyclic
relation over a finite set can be extended to a linear order [1]. The resulting linear
extension contains some region R0 with nothing below, one region Rn−1 at the top,
and, in between, the regions are ordered so that the region above has a higher number.

Given a total ordering of the regions, it is easy to obtain a complete family of sep-
arators. Consider a vertical line l through the subdivision. It cuts a set of regions
Ri1, Ri2, . . . , Riq, from bottom to top, and also cuts R0 and Rn−1. Since R0 ¿ Ri1 ¿
Ri2, . . . ,¿ Riq ¿ Rn−1, we have 0 6 i1 < i2 . . . < iq 6 n − 1. “Therefore, there is
exactly one point on l that is on the frontier between a region with index > i and a
region with index > i, that is, on si. Furthermore, the intersection of l with si will be
equal to or above that with si−1, and for some such lines (those that meet Ri−1) the
two intersections will be distinct. So, we have s1 ¿ s2 ¿ . . . ¿ sn−1” [1].

The proof is completed by noting that each separator must be monotone, consist of
a sequence of monotone edges, and be connected. It can’t be unconnected, because, if
it were, some vertex v of separator si would have the same x-coordinate as an adjacent



4 CS268: 8

A

B

C

Figure 3: An intervening region C.

8

4

1

2

3 5

6

7 9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 11 12 139 10

Figure 4: A tree of separators.

(but unconnected) vertex u, producing the contradiction that, for some region R, R is
both above and below the same separator (see Figure 2). ¤

The linear extension is not uniquely defined, and some choices exist for compara-
ble cases. Subtleties can occur when ordering the regions. When deciding the above
relation for two regions A and B, it is important to look at the full picture, not just A
and B. For example, it is not true that, for A and B whose projections are disjoint in
x, we have complete freedom in deciding whether A À B or B À A. Intervening
regions can force relations, as in Figure 3. If A and B overlap in both x and y, the or-
dering is clear. If not, it may depend on other factors. In Figure 3, C À A, and B À C,
so we must have B À A.



CS268: 8 5

1.3 Point Location Algorithm

The point location algorithm employs two levels of binary search. The inner loop
locates an x−interval for the query point p by searching, on a separator si, for an edge
e of si whose x−interval contains px. The outer loop locates a y−interval via binary
search on i. This finds for us two separators that bound y from above and below and,
together with e from the inner loop, pinpoint a region containing p. The outer loop
uses an infinite tree T, in which the separators of a complete family are represented as
internal nodes, and regions correspond to leaves (see Figure 4). Our goal is to walk
down to a leaf to find a region containing p.

The algorithm uses the notion of a least (lowest) common ancestor of two leaves
(regions). lca(i, j) is defined as the “root of the smallest subtree of T that contains both
i and j” [1]. The lca of two nodes of T can be calculated in constant time (see section
3.5.2).

1.3.1 Algorithm

i ← 0, j ← n− 1, k ← lca(0, n− 1)

while i < j do

if i < k 6 j then

find the edge e of sk that covers p (contains px)
a ← index(above(e))
b ← index(below(e))
if p ∈ e then set location ← e and terminate
if p is above e, then i ← a; else j ← b

else if k > j then k ← lson(k); else k ← rson(k)

set location ← Ri and exit

At the start of the point location algorithm, i and j represent the bottommost and
topmost regions, respectively, and k is lca(i, j). Throughout the algorithm i and j ap-
proach each other. At each iteration of the while loop, either i increases or j decreases,
and k moves down one level in T. The loop invariant is: si ¿ p ¿ sj+1. When i and j
become equal, Ri is returned as the region containing p.

1.3.2 Example

To see how this algorithm operates, consider p positioned as in Figure 5. At the start
of the algorithm, i = 0, j = 11, and k = lca(0, 11) = 8. The first binary search is
performed on separator s8 to locate edge e1, whose x−interval contains px. The region



6 CS268: 8

R9

R7

R8
R1

R2

R10

s8

p

e1

Figure 5: p above e1

R9

R7

R8
R1

R2

R10

R11

s10

p

e2

Figure 6: p below e2

above e1 is R9, and the region below it is R7, so a ← 9 and b ← 7. p is above e1, so we
raise the lower index i: i ← 9.

Now i = 9 and j = 11. Since k = 8 is outside the interval (9,11), k moves down one
level of the tree: k ← rson(8) = 12. This value of k is still outside (9,11), so k again
moves down, this time to lson(12) = 10. Now we search separator s10 and locate edge
e2 (see Figure 6). The region above e2 is R10, and the region below e2 is R9, so a ← 10
and b ← 9. p is below R10, so j ← 9. Now i = j = 9, so the algorithm terminates by
correctly locating p within R9.

1.4 Analysis

The algorithm of section 3.2.1 requires the enhancements described in sections 3.4 and
3.5 in order to meet the goals of O(m) preprocessing time, O(log m) query time, and
O(m) space.



CS268: 8 7

1.4.1 Space

In its current form, the algorithm assumes that a complete list of edges is stored for
each separator, so space requirements can be as high as O(m2). Section 3.4 shows how
to reduce space requirements by storing each edge with only one separator.

1.4.2 Time

The two nested binary searches yield an overall running time of O(log2 m). The updat-
ing of values of i and j in the outer loop differs from classical binary search. Although
an edge can participate in many separators, i and j reflect the bottommost and top-
most separators (respectively) within a group, making it possible, in some cases, to
reduce the search space by more than 1/2 during each iteration. The significant time
savings, however, stems from two sources: fractional cascading and finding the lca in
constant time. These topics are addressed in section 3.5.

1.5 Reducing Space Requirements

Each subdivision edge e is stored as part of only one separator, although it participates
in many separators. (Recall lemma 1, which specifies the set of separators for e.) The
choice of separator for e follows our philosophy of testing separators in a top-down
fashion. We store e as part of the separator associated with the highest point in T
involving e. That way, e will be available the first time it is needed. The highest point
for e is given by k = lca(i, j), where i and j are the regions below and above e; hence
we store e in sk. For example, using T in Figure 4, and referring back to Figure 5 for
e1, k = lca(7, 9) = 8, and for e2 of Figure 6, k = lca(9, 10) = 10. This strategy results in
O(m) space for separators.

It is important to note that each edge is available the first time it is needed, and it
will not be needed further down the tree. This is because once we have performed a
binary search using e, the adjustments to i and j effectively bypass the other separators
containing e, so that no further tests use e. Hence, we learn a great deal during each
iteration, as pointed out in section 3.3.2. We can envision the new streamlined separa-
tor as a chain which, instead of being merely a sequence of edges, is now a sequence
of edges and gaps. For each gap, the corresponding edge is stored somewhere higher
up in the tree. Clearly no test will ever be made against a gap.

1.6 Reducing Time Requirements

1.6.1 Fractional Cascading

The data structuring technique of fractional cascading is described in section B1 of
handout 2 (“Ruler, Compass, and Computer”). Search time is reduced for a multi-level
structure by propagating some fraction of the information at each level up through the



8 CS268: 8

si+1

si

Figure 7: Propagating every other vertex

higher levels. In the context of the point location tree T, fractional cascading provides
a powerful way of gaining x−interval knowledge during the first binary search of a
separator at the highest level that helps reduce searching at lower levels.

Recall that the algorithm in its basic form requires a full binary search on each
sk to locate an edge covering px. Binary search on sk yields an edge representing an
x−interval, [x1k, x2k], where x1k 6 px 6 x2k. To improve this situation, we can im-
plement fractional cascading by preprocessing T. This involves propagating selected
x−interval endpoints up the tree.

We begin at the lowest tree level, where each leaf “samples” itself by sending up to
its parent a fraction of its data. (For example, in Figure 7, si uses a fraction of 1/2 and
sends every other endpoint up to si+1.) The parent now contains its data plus samples
from its children. The parent in turn samples its new augmented self, and sends to its
parent a fraction of its data. Propagation of samples continues all the way up the tree,
with each node using the same fraction.

Searching the preprocessed tree is now much cheaper, because one binary search
at the top node provides enough information to locate a position within each child
of the top node in constant time. Instead of O(log m) binary searches, each requiring
O(log m) time, we now only pay O(log m) once for the top separator, and perform
O(1) cost searches after that.

Although it seems, on the surface, that this method requires more than O(m)
storage, the storage remains linear because the amount of data propagating upward
through the levels from any particular node decreases according to a geometric se-
ries. For example, for the fraction 1/2, we have 1/2, 1/4, 1/8 . . . and the storage only
doubles. Although cascading can be done with any fraction, there is a space vs. time
trade-off; sparser samples save space but increase search time.

1.6.2 Finding the LCA

In order to achieve O(m) preprocessing time, we must be able to construct T, rep-
resenting a complete family of separators, in O(m) time. This process is described
in [1]. It involves setting up separators in the manner set forth in section 3.4, which
implies that lca(i, j) can be computed in constant time. One way to accomplish this
is to manipulate the binary representations of i and j. lca(i, j) can be viewed as the



CS268: 8 9

“longest common prefix of i and j, followed by 1 and padded with 0’s [1]. It is there-
fore of the form: (prefix10 . . . 0). An efficient way to produce this is based on the
most significant bit function msb(k), which returns the most significant 1 in k, e.g.
msb(21) = msb(101012) = 100002 = 16. If we precompute msb(k) in a linear size
array, then in constant time we can compute lca(i, j) = j∧¬(msb(i⊕ j)− 1), where ∧
is bitwise-and, ⊕ is bitwise-xor, and ¬ is bitwise-negation.

References

[1] Edelsbrunner, Guibas, and Stolfi, “Optimal Point Location in a Monotone Subdi-
vision”, SIAM J. Computing, Vol. 15, No. 2, May 1986.

[2] Lee and Preparata, “Location of a point in a planar subdivision and its applica-
tions”, SIAM J. Computing, Vol. 6, pp. 594-606.


