
JOURNAL OF ALGORITHMS 6, 430-433 (1985)

NOTE

Partitioning with Two Lines in the Plane*

NIMROD MEGIDDO

Stanford University, Stanford, California 94305, The IBM Almaden Research Center,
San Jose, California 95120, and Tel Aviv University, Israel

Received April 5.1984; revised June 26,1984

An O(n) algorithm is presented for the problem of partitioning a set of n points
in the plane into four equal parts by means of two straight lines. 0 1985 Academic

Press. Inc.

1. INTRODUCTION

The following problem was raised in a paper by Dan Willard [6]: Given n
points (ai, bi) (i = 1,. . . , n), find two straight lines that partition the plane
in such a way that each (closed) quadrant contains at least /n/4] points.
Cole, Sharir, and Yap [l] propose an algorithm which is based on the
scheme for applying parallel algorithms in the design of serial ones that is
presented in [3]. Their algorithm runs in O(n log’n) but the authors argue
that an 0(n log n) algorithm is possible if the guiding routine is a sorting
network of depth n with bounded degree. Here we show that the ideas
presented in [2,4] apply to the two-line partitioning problem as well, so we
obtain here an O(n) algorithm for the latter.

2. PRELIMINARIES
We first argue that a crucial subproblem is a special case of what is called

the “ham sandwich problem.” The special case is the following: Given two
finite sets of points in the plane, whose convex hulls are disjoint, find a

*Supported in part by the National Science Foundation under Grants MCS-8300984,
ECS-8218181, and ECS8121741.

430
0196-6774/85 $3.00
Copyright 0 1985 by Academic Press, Inc.
AI1 rights of reproduction in any form reserved.

PARTITIONING WITH TWO LINES 431

straight line that simultaneously bisects both of the sets. The relation of the
latter to the original partitioning problem is as follows. Given the set of n
points, first find any straight line that bisects it. The problem now reduces
to bisecting the two halves simultaneously by means of a second line.
Obviously, the convex hulls of the two halves are disjoint if the first line
does not contain any of the input points.

Without loss of generality it is sufficient to deal with the following
problem: Given are two sets of points P = {(a,, b,), . . . ,(a,, b,)}, where
bi > 0 (i = 1,. . . , ml, and Q = {(c,, 41,. . . , (cn, d,)}, where di < 0 (i =
1 , . . . , n). We have to find an x such that the median of the set P, = {(a, -
x)/bi:i = l,..., m } equals the median of the set Q, = {(ci - x)/d, : i =
1 ,---, n}. It is thus more convenient (at least to the author’s taste) to
consider the problem in the following equivalent form. Given are two sets of
linear functions. One consists of m increasing linear functions while the
other consists of n decreasing ones. Find the point where the two point-wise
median-functions intersect. Obviously, the first median-function is mono-
tone increasing while the second is monotone decreasing. Thus, we are
searching for a well-defined point in the plane, namely, the unique intersec
tion point of the two median-functions. We will develop a linear-time
algorithm for this search problem.

The linear-time search here resembles the search procedure for the
solution of a three-variable linear programming problem [2,4]. The reader is
strongly advised to refer to [2,4] for more detail and illustrations. A rough
description is as follows. A vital subroutine for the algorithm is a procedure
that determines, for any straight line in the plane, on what side of the line
lies the intersection point of the two median-functions. The problem is then
solved by repeatedly discarding lines from the sets. It turns out that by
testing two special straight lines one can tell the “correct” side of (m’ +
n’)/8 lines, where m’ and n’ are the cardinalities of the current sets of lines.
For the reader who is familiar with the technique in [2,4], all we need to
show is how to implement the line-query and how to select the two lines
during an iteration of the algorithm.

3. THE LINE QUERY

In this section we address the following problem. Given are two sets of
linearfunctionsP,={y=Aix+Bi:i=1,...,m}andQ,={y=Cix+
Di:i = l,..., n} such that all the Ais are positive while ail the C,s are
negative. Also, let k (1 I k s m) and t (1 I; r I n) be given. Denote by
Pk(x) the kth largest value in the set {Aix + B,:i = l,...,m} and by
Q,(x) the tth largest value in the set { C,x + Di: i = 1,. . . , n}. Let (x*, y*)
denote the point at which the two quantile-functions intersect, that is,

432 NIMROD MEGIDDO

y* = Pk(x*) = Q,(x*). Given any line L, determined by an equation
y = ax + /3, we need to decide whether y * < ax* + /3, y * = ax* + j? or
y* > ax* + /?. F or a vertical line of the form x = x’, recognizing whether
x* -c x’,x* = x’ or x* > x’ is easy so we omit the details. Similarly, the
case of a horizontal line (a = 0) is easy.

We discuss here only the case where a > 0. The case of a < 0 is
analogous. The first step is to find the intersection of the line L with Q,(x).
Our assumptions imply that there is a unique intersection point whose x
value, x’, is precisely the r th largest of the x values of the intersection
points of lines in Q, with L. Thus, x’ can be found in linear time. Let
y’ = ax’ + /3. Next, we compute y ’ = P,Jx') in linear time. Obviously, if
yp cy’ then x* > x’. However, since Q,(x) is decreasing and L is
increasing, it follows that y* < ax* + 8. Analogously, if y ’ > y’ then
y * > ax * + /3 and if y ’ = y ’ then y * = ax * + /3. We conclude that the
position of (x*, y*) relative to any straight line can be determined in linear
time.

4. THE SEARCH ALGORITHM

An iteration of the search algorithm is organized as follows. Consider the
set of lines which are active at the beginning of the iteration. A line is active
if we have not determined on which side of the line the point (x*, y*) lies.
At the start of the algorithm all the lines are active and each iteration
deactivates + of the active lines. Let N denote the number of active lines at
the beginning of the current iteration. The first step is to partition the active
lines according to their slopes into two sets, namely, those with slope larger
than and smaller than the median slope s. This is accomplished in linear
time. Second, the active lines are paired so that each pair has a member with
a larger (than s) slope and a member with a smaller slope. Now, the x
values of the intersection points of paired lines are computed and the
median x, of these values is found. Next, the line x = x, is tested in the
sense of Section 3. Suppose, for example, we found that x* -z x,. We now
consider only those pairs whose intersection points have x values greater
than or equal to x,. There are at least IN/41 such pairs. The second line
that we query is one that has a slope of s and such that it divides the
intersection points under consideration into two equal sets. Thus, the
intercept of this line equals the median of the set (y - sx}, where (x, u)
runs over the intersection points still under consideration. By testing this
line we identify a quadrant Q in which (x*, y*) lies; the [N/8] pairs of
lines associated with the “opposite” quadrant have the property that each
pair has one member that does not cross through Q. Each such member is a
line for which we know on which side (x*, y *) lies. Hence, such a line can

PARTITIONING WITH TWO LINES 433

be deactivated at this point and the problem is reduced to a similar one

(with different values for the ranks k and r) on no more than 7N/8 lines.
This implies that the whole algorithm runs in linear time.

REFERENCES

1. R. COLE, M. SHARIR, AND C. YAP, On k-hulls and related problems, in “Proceedings of the
16th Annual ACM Symposium on Theory of Computing,” Assoc. Comput. Mach., pp.
154-66, New York, 1984.

2. M. E. DYER, Linear time algorithms for two- and three-variable linear programs, SIAM J.
Comput. 13 (1984), 31-45.

3. N. MEGIDDO, Applying parallel computation algorithms in the design of serial algorithms,
J. Assoc. Comput. Mach. 30 (1983), 852-865.

4. N. MEGIDDO, Linear time algorithms for linear programming in R’ and related problems,
SIAM J. Comput. I2 (1983) 159-176.

5. N. MEGIDDO, Linear progr amming in linear time when the dimension is fixed, J. Assoc.
Comput. Mach. 31 (1984), 114-127.

6. D. E. WILLARD, Polygon retrieval, SIAM J. Comput. 11 (1982), 149-165.
7. F. F. YAO, A 3-space partition and its applications,.in “Proceedings of the 15th Annual ACM

Symposium on Theory of Computing, Assoc. Comput. Mach., pp. 258-263, New York, 1983.

