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In geometric range searching, algorithmic problems of the following type are considered.

Given an n-point set P in the plane, build a data structure so that, given a query

triangle R, the number of points of P lying in R can be determined quickly. Similar

questions can be asked for point sets in higher dimensions, with triangles replaced by

simplices or by more complicated shapes. Algorithms of this type are of crucial

Importance m computational geometry, as they can be used as subroutines m solutions

to many seemingly unrelated problems, which are often motivated by practical

applications, for instance in computer graphics (ray tracing, hidden-surface removal
etc.), We present a survey of theoretical results and the mam techmques m geometric

range searching.
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1. INTRODUCTION

This survey considers an algorithmic
problem called range searching. We de-
scribe the problem and outline current
theoretical knowledge about it, including
the main ideas of several proofs and con-
structions.

Together with the main material, we
also include various extensions, histori-
cal notes, and so on. Many of them are
somewhat subjective. Several notions and
results of computational geometry ap-
pearing in our discussion but not directly
related to range searching are explained

in separate boxes. Table 1 summarizes
the current best-known complexity
bounds for simplex and halfspace range
searching.

Computational Geometry —
General Remarks

The problems being considered belong to
the area of computational geometry. In
the rest of this section we briefly intro-
duce this field and mention some fea-
tures and conventions which seem partic-
ular to it; readers familiar with computa-
tional geometry may want to skip the
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rest of Section 1. Older comtmtational
geometry monographs of a wid~ scope are
Preparata and Shames [1985], Edels-
brunner [1987] and Mehlhorn [1984]; a
recent one is Mulmuley [1993]. Useful
survey papers can be found in Path [ 1993]
and Goodman et al. [1991].

The subject of computational geometry
is the design and analysis of efficient
algorithms for computing various proper-
ties and parameters of finite configura-
tions of geometric objects. The last
sentence may sound rather cryptic, and
the reader can get a better picture from
several examples of simple problems
studied in computational geometry:

(PI)

(P2)

(P3)

1This

Given an n-point set P in the plane

(or in a Euclidean space of dimen-
sion d),l find a pair of points of P
with smallest distance.

Given n segments in the plane,
compute the number of their inter-
sections.

Given a convex polytope P in d-

dimensional space specified as an
intersection of n halfspaces, deter-
mine a point of P minimizing a
given linear function.

is probably the most frequent preamble to a
problem in computational geom-etry. -
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(P4) Given a polygon P in the plane, not
necessarily convex, and two points

a, b in its interior, find a shortest
path from a to b inside P, or
(another version) a path from a to b
consisting of a minimum possible
number of segments.

And so on. In computational geometry
it is deceptively easy to formulate prob-
lems. Many problems have practical or
theoretical motivations, and for almost
any problem one can make up an accept-
able-looking application ex post. In the
pioneer era, say around the year 1980
and the following few years, it was not
too difficult to find an unsolved elemen-
tary and interesting problem. Today,
more complicated and more powerful
methods are known, and finding a really
remarkable new problem is becoming
quite hard.

The subject of computational geometry
is similar to the areas of interest in other
fields, such as geometric aspects of com-
binatorial optimization. For instance, a
careful reader might have recognized
Problem P3 as a linear programming
problem. The approach of computational
geometry is usually distinguished by two
typical features: the problems are consid-
ered in fixed dimension, and an infinite
precision model of computation is used.

Dimension and Hidden Constants

The original problems in computational
geometry were formulated in the plane
or in three-dimensional space. While gen-
eralizations to arbitrary dimension are
also studied, we almost always assume
that the dimension is quite small, say at
most 10, wh~le the number of objects
(points, segments, etc.) in the problem is
large.

Formally the dimension is usually con-
sidered as a constant. The efficiency of
typical computational geometry algo-
rithms decreases with the dimension
quite rapidly; for example, the multi-
plicative constants in the asymptotic
bounds for the complexity of the algo-
rithms are usually exponential in the



-- ...

ACM Computmg Surveys, Vol. 26, No. 4, December 1994



m

ACM Computmg Surveys, Vol. 26, No. 4, December 1994



Geometric Range Searching “ 425

Box 1: Point Location

The point location problem is the following: given a subdivision of Rd into convex cells, construct a data

structure that can quickly determine the cell of the subdivision containing a query point.

Let m denote the combinatorial complexity of the subdivision (the total number of cells of all
dimensions). In the plane, several optimal data structures are known, with O(m) space and preprocessing
time and with O(log m) query time, e.g., see Seidel [1991a] for a modern randomized method, or the

references to older works in Edelsbrunner [ 1987]. For dimension 3, a method with a polylogarithmic query

time and nearly linear space was described in Preparata and Tamassia [1992], but for dimension 4 and

higher, no data structure with a comparable efficiency has been found for general subdivisions.

An arrangement of n hyperplanes in R d is a very special subdivision, and here efficient point location
methods are known in an arbitrary dimension. The first such algorithm, due to Clarkson [ 1987], requires

o(nd+’) space and preprocessing time, and it performs the location in O(log n) time. By various technical
improvements of the same basic idea, Chazelle and Friedman [1994] obtained an algorithm with the same

query time and with optimal O(nd) space. A conceptually much simpler method was discovered by

Chazelle [1993a], with the same space and query time and also with 0( nd) preprocessing. The algorithms
from these three papers are based on hierarchies of progressively refined cuttings, similar to the algorithm
described in Section 5.

dimension (this is also the case for range
searching). This fixed-dimension as-
sumption contrasts, for example, with the
theory of linear programming algo-
rithms, where the dimension is compara-
ble to the number of constraints. Let us
remark that some recent work (Clarkson
[1994] and Clarkson et al. [1993] and
others), often motivated by direct practi-
cal applications, puts much more empha-
sis on a good dependence of the running
time on the dimension, and may indicate
a change in the above-mentioned tradi-
tional computational geometry philoso-
~hv,. .

In theoretical research, the efficiency
of algorithms is measured, almost exclu-
sively, by the asymptotic order of growth
in their complexity (as a function of the
input size). One can raise various objec-
tions against this criterion. mainlv from
the pra~tical point of view, ‘but no”better
theoretical criterion seems to be
available.

For simpler algorithms, mainly older
ones, effectiveness expressed in this way
am-ees with the intuitive notion of “how
f&t the algorithm computes,” and even
with the speed of actual implementations
for real-life problems. For more compli-
cated algorithms, this touch with reality
is often lost. Sometimes it is even appar-
ent that an asymptotic improvement has
nothing to do with the speed of computa-

tion for any physically feasible inputs.
Attempts to improve an algorithm with
O(n log log n) complexity to an
O(rz log* n) algorithm might look like a
peculiar kind of game.

\
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.

/

.

\ /
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In defense of such activities one can

say that the actual goal is, or at least
should be, a better understanding of the
problem being studied, A discovery of a
complicated and quite impractical algo-
rithm with a good asymptotic complexity
indicates the possibility of an improve-
ment, and often a simpler and easily
implementable algorithm of a similar
complexity is found afterward. A good
example is the point location problem in
the plane (see “Point Location”). It is
instructive to compare the first asymp-
totically optimal solution in Lipton and
Tarjan [1980] to, say, Seidel [1991a]. The
ideas from such research can have unex-
pected application in other areas also.
For instance, methods developed for an
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asymptotically optimal simplex range-
searching algorithm in MatouEek [ 1993c]
(which seems to be a canonical example
of a practically useless algorithm in its
present form) helped to answer long-
standing questions in discrepancy theory

(discrepancy of point sets with respect to

halfspaces [MatouSek 1994] and the dis-

crepancy of arithmetic progressions

[Matou;ek and Spencer 1994]).

Model of Computation: Rounding Problems

Algorithms in computational geometry
are designed for an ideal computer (model
of computation) called Real RAM. This is
an analog of the usual RAM, i.e., an ab-
straction of an actual computer pro-
grammed in machine code. However, a
Real RAM can store an arbitrary real
number in one register and perform
arithmetic operations with real numbers
in unit time, while the usual RAM works
with integers whose size is bounded by a
polynomial in the input size. In the se-
quel we will also use the Real RAM model
of computation,

The infinite-precision computation in
the Real RAM model is very convenient
theoretically, but it often behaves quite
differently than an actual computation
with limited precision. Not only that,
the result of a calculation will be
imprecise—a carelessly programmed al-
gorithm may give completely wrong re-
sults with a limited precision, as the
combinatorial information derived from
comparisons of imprecise numbers may
be erroneous or inconsistent. Difficulties
with rounding errors are a very serious
potential obstacle (perhaps the most seri-
ous one) to successful implementation of
geometric algorithms.

Several promising attempts at develop-
ing program packages for a sufficiently
precise and relatively quick arithmetic
have appeared (e.g., Fortune and Van
Wyk [1993]). However, we probably have
to expect that if a more complicated geo-
metric algorithm is implemented reliably

(i.e., in such a way that it cannot give an
erroneous result because of rounding er-
rors), it will cause a significant slowdown

compared to a straightforward imple-
mentation that ignores these aspects,

General Position Assumption

In many computational geometry algo-
rithms, one has to deal separately with
configurations of input objects that are
degenerate in some sense; for instance,
when three input points lie on a common
line. Such exceptions complicate both the
description and implementation of algo-
rithms. Luckily for theoreticians, it is
known how to systematically avoid such
degenerate cases, although at the cost of
a slowdown by a constant factor (at least
in versions published so far). Conceptu-
ally, one perturbs the input objects by
infinitesimal amounts to bring them into

a general position. Such methods are
called simulation of simplicity. The idea
of infinitesimal perturbations can be re-
alized in various ways; see Edelsbrunner
and Mucke [1990], Emiris and Canny
[ 1991; 1992], and Seidel [1994], and the

best method is still being sought. An-
other recent work in this area is by
Burnikel et al. [1994].

Simulation of simplicity has theoreti-
cal drawbacks also. Since we are in effect
replacing a given input problem by a dif-
ferent problem (although an infinitesi-
mally close one), an algorithm run on
this different problem may sometimes
yield a different answer than the correct
one for the orlgmal problem, and it may
actually be quite complicated to recover a
correct answer to the original problem,
Also, the infinitesimal perturbation can
increase the output size considerably
(when com uting a convex hull of n

fpoints in R , the actual convex hull may
have a linear complexity only, while a
perturbation can make this complexity
as high as Q(n[d/21)).

Of course, we may say that the input
numbers for a “real-world” problem are
inaccurate anyway, and so the answer
for the perturbed problem is equally as

appropriate as the one for the original
problem. However, this is not suitable for
many applications, where degeneracies
in the input are not mere “coincidences ,“
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but are important for the problem struc-
ture.

Deterministic and Randomized Algorithms

The complexity of computational geome-
try algorithms is most often estimated in
the worst case, which means that the
estimate must hold for each admissible
input of a given size (one may imagine
that the input is given by an adversary
who knows the algorithm and tries to
make it as slow as possible).

Many fewer results concern the aver-
age case, where the input is considered
as a random variable, and the expected
complexity of the algorithm for such an
input is estimated (e.g., for input points
selected independently of the uniform
distribution in the unit square). The most
problematic point of the average-case
analysis is the choice of the probability
distribution on the inputs. Often various
natural possibilities exist which give sig-
nificantly different expected behavior for
the algorithm. For geometric problems it
is usually much easier to give an algo-
rithm with a good average-case complex-
ity than an algorithm with a comparable
worst-case complexity. This is the case
for geometric range searching also, which
is almost trivial for points uniformly dis-
tributed in the unit square.

Older algorithms are, with few excep-

tions, deterministic, which means that
their computation is uniquely deter-
mined by the input. So-called random-
ized algorithms appeared only recently in
computational geometry. These algo-
rithms randomly choose one from several

possible continuations at some stage of
their computation,z For a fixed input, the

2In actual implementations, we do not have true
randomness at our disposal, and random decisions

are simulated using pseudorandom numbers. Then
the randomness in the algorithm is restricted to the
initial setting of the random number generator,
which represents only few random bits. Empirical
evidence indicates that even this weak randomness
is suffkient for most of the algorithms, and recent

work has already confirmed this for some classes of
algorithms; see Mulmuley [1992].

complexity of such an algorithm is a ran-
dom variable. One estimates its expecta-
tion, or further parameters (such as the

probability of large deviations from the
expectation, tail estimates), and then
considers the worst case over all inputs

(thus the input is chosen by the adver-
sary, but he cannot influence the random
decisions of the algorithm).

Sometimes so-called Monte Carlo algo-
rithms are also studied. These may some-
times give a wrong result, but with only
a very small probability (again, such a
bound holds for every input).

In a seminal paper [Rabin 1976] on
randomized algorithms, a typical compu-
tational geometry problem was given as
one of two examples; at that time compu-
tational geometry did not yet exist as a
field. The paper by Chew [1985] with a
very elegant application of randomness,
as well as earlier work by Clarkson also
went almost unnoticed. In the last few
years, however, randomized algorithms
became dominant in computational ge-
ometry, promoted by the work of Clark-
son [1987; 1988a; 1988b], Haussler and
Welzl [1987], Sharir, Chazelle, Edels-
brunner, Guibas (e.g., Clarkson et al.
[1990]), Mulmuley [1989; 1991a; 1991b],
Seidel [ 1991a; 1991b], and others. In most
cases, randomized algorithms are sim-
pler, more effective, and easier to imple-
ment than deterministic ones. For most
cases, problem-deterministic algorithms
with a similar or only slightly worse
asymptotic complexity were found (e.g.,
Chazelle and Friedman [1990], Matou;ek
[1990; 1991a], Chazelle [1993a; 1993b],
Chazelle and MatouEek [1993]), but for
practical purposes the randomized algo-
rithms are still winning because of their
simplicity and smaller hidden constants.

2. GEOMETRIC RANGE SEARCHING

Let J% be a system of subsets of the
d-dimensional Euclidean space Rd. The
sets of ~ are called ranges. The follow-
ing are typical cases:

= axis-parallel boxes, i.e., all
se%”%? the form H?. ~[a,, b,], al,
bl,..., a~, b~~R.
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‘halfsp = the set of all (closed)
halfspaces in Rd.

Wh, mplex = the set of all (closed) sim-
plices m R‘.

g~~ll = the set of all (closed’) balls in
Rd.

Further, let P be a given n-point set in
R ~. One of the geometric range-searching
problems is the following:

Design an efficient algorithm, which,
for a given range R c=, finds the
number of points of P lying in R.

If the set P and the range R were given
together, and the problem finished by
determining the number ]P n Rl, it would
be simplest to go through all points of P
one by one and count those lying in R. In
fact, in such a situation we can hardly do
anything better, In our problem, how-
ever, the point set P is given in advance,
and we can prepare some auxiliary infor-
mation about it and store it in a suitable
data structure. Then we will repeatedly
be given various ranges of J%?as queries.
Each such query is to be answered as
soon as it appears (on-line) and as effi-
cie~tly as possible. Assuming that the
number of queries will be large, we see
that it will be advantageous to invest
some computing time into building the
data structure (this phase is called pre-
processing ), if this makes answering the
query faster.

Example 2.1. Let us look at the situa-
tion in dimension d = 1, with intervals
as ranges. Without any preprocessing,
query answering (counting the number of
points in a given interval) requires time
proportional to n. However, having stored
our points in a linear increasingly sorted
array, we can answer queries in O(log n)
time, as follows. We locate the position of
the endpoints of the query interval among
the points of P by binary search, and
then we find the required number by a
subtraction of indices. Preprocessing, in
our case sorting the points of P, can be
performed in O(n log n) time, and O(n)
memory is sufficient for storing the data
structure.

Counting points in a given range (a
range-counting query) is only one of pos-
sible range-searching problems. Another
natural problem is to compute a list of all
points of P lying in a query range (we
speak of a range-reporting query), or we
may only want to ask if the query range
contains any point of P at all (range
emptiness query). Also, each point of P
can be assigned some weight (e.g., a real
number), and we may be interested in
the sum of weights of points in a given
range, or in the maximum weight.

All these problems are quite convinc-
ingly motivated by direct practical appli-
cations, most often in various database
systems. A rather banal example: the
points of P might correspond to employ-

ees of some company, with the coordi-

nates representing age, salary, time of

employment, etc. Then, in order to find

an employee with age between 30 and 35,

with at least 8 years of experience, and

salary below 4000 dollars per month,3

one might use a query with an axis-

parallel box from ~O,~AOg. A CirCUlar
range query might, for example, serve to
locate airports where a defective airplane
may still succeed in landing. Perhaps
more important than such direct applica-
tions are applications of geometric range
searching as subroutines in the design of
algorithms for more complicated geomet-
ric problems.

In more recent papers, a unifying gen-
eralization of various range-searching
problems is usually investigated. We as-
sume that every point p = P is assigned
a weight w(p) ● S, where (S, +) is some
commutative semigroup (common to all
the points). The objective of a query is to
find the sum of weights of all points of P
lying in a given range,

For example, for range-counting queries,

(S, + ) will be the natural numbers with

3The reader may supply a currency umt according
to his or her own preference.
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addition, and all weights will be equal to
1. For queries on maximum weight, the
appropriate semigroup will be the real
numbers with the operation of taking a
maximum of two n-umbers. For em~ti-.
ness queries, we may choose the boolean
values {false, true} for S, with the opera-
tion of logical disjunction (OR); all the
point weights will be “true.”

Concerning computational aspects, we
usually assume that the weights can be
stored in a single computer word, and
that the semigroup operation can be exe-
cuted in constant time.

The range-reporting queries have a
somewhat special position. We could also
include them in the semi~oup model

(discussed above)—the semigroup (S, +)
would be the set of all subsets of P; the
operation would be the union; and the
weight of each point p = P would be the
one-point set {p}. However, in reasonable
models of computation, a subset cannot
be represented in a constant amount of
memory, and the union operation re-
quires a nonconstant time. From the
algorithmic point of view, a further spe-
cialty of range reporting is the following.

If the answer consists of k points, then
we need time of order k only to output
the answer. Thus, we may spend further
0(k) time for auxiliarv com~utations,
without decreasing the” overah asymp~
totic complexity. If we know that the an-
swer is going to be large, we can afford to
compute it slowly. This was observed and
cleverly applied in Chazelle [1986];
Chazelle calls this the filtering search.
The query complexity of range-reporting
algorithms is usually expressed in the

form 0( f(n) + h), where k is the num-
ber of points in the answer, and f(n) is
some function of the total number of
points in P, called the ouerhead.

Let us return to the data structure
from Example 2.1, which was a simple
sorted array. We can use it to answer
interval-reporting queries in O(log n +
k) time—and it is easy to generalize it

for queries seeking the sum of real

weights in a given interval. In this case,
as well as for the interval-counting
queries, we make use of the possibility to

subtract the weights (that is, the semi-
group (S, + ) can be embedded into a
group). If this is not possible (in cases
such as finding the maximum weight),
we need a different (and more compli-
cated) data structure.

Here is a simple and well-known ex-
ample of such a data structure:

Example 2.2. Consider the points of

P C RI in sorted order, and build a bal-
anced binary tree T with the points of P
as leaves. With every node u of T, store
the total weight of points in the leaves of
the subtree rooted at v (note that these
points form an interval in P; such inter-
vals are called the canonical intervals).

Given a query interval (a, b), we search
the position of a and b among the leaves
of T, and the search paths give us a
decomposition of the set of points of P
lying between a and b into a disjoint
union of O(log n) canonical intervals. In-
deed, let rr. and rr~ denote the search
paths for a and b, respectively, and let x
be the node where they branch. Then for
every node u ● rr~ lying below x and

such that the next node of m-~ is the left
son of u, we take the right subtree of u,
and it will define one of the canonical
intervals. We proceed symmetrically for
the portion of n-~ below x, obtaining the
desired decomposition. Thus, to answer
the query, it remains to sum the precom-
puted weights of the canonical intervals
in the decomposition. Note that this does
not use the weight subtraction, so that
we can find, e.g., the point of maximum
weight in a given interval.

An analogous situation appears for

more complicated geometric range-
searching problems also. Reporting
queries and queries with weights, which
can be subtracted, sometimes allows a
somewhat simpler and/or more efficient
solution than the general case, whose
prototypes are the queries asking for
maximum weight (e.g., see Matou~ek and
Welzl [1992] for an example of a simple
two-dimensional triangle range-search-
ing algorithm which uses subtraction
crucially). For the case of subtraction, we
can usually express the answers for more
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complicated ranges using the answers for
several simpler ranges. For instance, in
our one-dimensional example, we have
implicitly expressed a query interval as
the difference of two semiinfinite inter-
vals.

For a full specification of a range-
searching problem, we need, in addition
to the already mentioned objects (the set
P, the semigroup (S, +), the weights of
points, and the set of admissible ranges

%), limits on the maximal permissible
storage and preprocessing time for the
data structure.

Such a limitation does not show up in
Example 2.1, where the query time
O(log n) is optimal and, at the same time,
to answer queries at all, we need at least
linear storage. However, for halfspace

and simplex range searching, one cannot
achieve both linear storage and a loga-
rithmic query time, and so we have to
choose the most efficient query-answer-
ing algorithm, depending on the amount
of memory and preprocessing time we
have at our disposal. Memory require-
ments are usually considered more
im~ortant: this has roots in database a~-
pli~ations: where preprocessing needs ~o
be done only once, and we can spend a
relatively long time at it, while the mem-
ory or disk space is allocated perma-
nently and in each copy of the database.
On the other hand, in many applications
the preprocessing time is as critical as

the storage.

In this survey we will consider the sim-

plex and halfspace range-searching prob-

lems. These problems turned out to be

crucial in computational geometry. They

are even universal in some sense, since
many other problems with more general
ranges can be reduced to them (see Agar-
wal and MatouEek [1994], Yao and Yao
[1985] and Section 6.4).

The algorithms for simplex and half-
space range searching problems have
been applied to problems which look
much more complicated. A nice example
is in De Berg et al. [1994], which was
motivated by a computer graphics prob-
lem. The range-searching problem, which
the authors needed to solve as part of

their hidden-surface removal algorithm,
is as follows.

Problem 2.3. Given a set Sl,... , s. of
segments in R 3, we imagine that there is
a semiinfinite curtain C(s, ) hanging from
each segment s, downward; we have

C(S1)={(X, Y, Z)=R3;

(.X, Y,20) = s, for some 20 2.2]

(the curtains may intersect). We want to
design a data structure for answering
queries of the following type. Given a
point o and a direction 0, find the first
curtain hit by the ray sent from o in
direction 0.

Both the original solution of this prob-
lem in De Berg et al. [1994] and a more
efficient method described in Agarwal
and Matou~ek [1993] reduce this prob-
lem to a combination of simplex range
searching and halfspace range searching.

The orthogonal range-searching prob-
lems (the ones with axis-parallel boxes as
ranges) are no less important than sim-
plex range searching, perhaps even more
important for direct applications. In this
survey we will not consider them in de-
tail, but for the reader’s convenience we
briefly summarize the main results con-
cerning orthogonal range searching. The
basic idea of data structures for this
problem, the so-called range tree, was
described by Bentley [1980]. Its straight-
forward use gives query time O(logd n)
with 0( n logd -1 n) storage and prepro-
cessing time in dimension d. Various im-
provements in some parameters, mostly
by logarithmic factors, were achieved by
Willard [ 1985], Willard and Lueker
[ 1985], Gabow et al. [1984], and Chazelle
[1986; 1988]. The exact complexities dif-
fer depending on the type of the problem
(range-counting queries, range-reporting
queries, general semigroup queries, etc.)
and on the model of computation (pointer
machine, RAM, etc.). Lower bounds for
the computational complexity of orthogo-
nal range searching were given by
Chazelle [1990a; 1990b], and they match
the known upper bound almost exactly. A
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variant where the points lie on a grid of a
bounded size was studied in Overmars

[1988]; in this case somewhat better re-
sults were obtained.

3. INTUITION AND LOWER BOUNDS

In this section we begin to consider the
simplex and halfspace range-searching
problems in more detail. Results about
their computational complexity can be
summarized as follows,

Consider a simplex range-searching

problem for an n-point set P c R‘, with
weights from a semigroup (S, +), and
with storage and preprocessing time at
most m, where m lies in the range from n
to approximately nd. Then the query time
is approximately

n

mVd “ (1)

The word “approximately” in the previ-
ous sentence means “up to a multiplica-

tive factor bounded by O(logc n), c a
constant .“

In particular, for an approximately lin-
ear storage the query time is approxi-
mately n I – 1/d, and in order to achieve a

polylogarithmic query time, one needs
space and preprocessing approximately
nd. The complexity of halfspace range
queries is believed to be very similar,
except for a few special cases. The most
significant such case is halfspace range
reporting, which is considerably faster.
For instance, one can achieve O(log n +
k) query time with approximately linear
storage in dimensions 2 and 3 (k denotes
the number of points reported; see Sec-
tion 6.1).

In this section we formulate known
lower bounds, which show that under
certain restrictions on the algorithm and
the model of computation the query time

(1) is approximately optimal. It is possi-
ble (although currently it does not seem
very likely) that one could circumvent
these lower bounds somewhat using algo-
rithms that do not satisfy the corre-
sponding assumptions. It would not be
the first such case in theoretical
computer science.

First we will try to give the reader
some intuitive explanation as to where
Eq. (1) comes from. The explanation is
quite far from a proof, and in reality the
lower and upper bounds work in a more
complicated manner; it is just meant for
basic orientation. We consider the two
extreme cases, polylogarithmic query
time and roughly linear space.

Logarithmic Query Time

First we consider halfspace queries. It is
not difficult to see that for an n-point set
P in a general position there are (il(n~)
different subsets of the form P f’ R,
where R is a halfspace. (This is best seen
in the dual setting, where distinct sub-
sets correspond to distinct cells in an
arrangement of hyperplanes. (See boxes
2 and 3.) Storage of the order nd thus
means that we can store the answers for
all essentially different halfspaces that
can ever appear. Actual algorithms are
indeed based on this principle, A naive
attempt on extending this idea to sim-
plex range searchin results in a much

$larger space than n . A suitable method
preserving storage close to nd is more
complicated and was discovered only re-
cently [Chazelle et al. 1992].

Approximately Linear Storage

Here we assume that the set P is chosen
randomly, by n independent random
draws from the uniform distribution in
the unit square. (We consider the planar

case first.) We say t = [6], and we cover
the unit square by a t x t square grid,
each grid square having side l\t (see
Figure 1). With high probability, almost
every grid square then contains only a
small number of points of P (bounded by
a constant).

Let R be a given halfplane. We note
that the boundary line h of R intersects
at most 2 t squares of the grid. (If its
slope is at most 1, then it intersects at
most 2 squares in every column, and for
slope > 1, we apply a similar argument
with rows.)

For the squares intersected by h we go
through all the points of P lying in them,
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Box 2: Geometric Duahty

In the plane, duahty M a mappmg asslgnmg points to hnes and hnes to points, There are various
versions of duahty considered m the hterature; for most apphcatlons, the differences among them are

unessential. For defimteness, we work with the duahty L? defined as follows: a point p = (a, b) has a dual
hne Q(p) = / = ((x, y); y = 2 ax – b}, and conversely the image QXZ ) of such a line ~’ is the point

P = t a, b ). The defines the Image of every point and of every hne, except for vertical ones (vertical lines
correspond to points m the mfimty of the pro]ectwe plane).

It 1s easy to check that for any point g and a nonvertical hne h, q hes on h ff the point ~(h) lies on the
hne Y(q). Moreover, q hes above h lff ~(h) hes above 9(q). These properties of geometric duality often
allow a much more mtmtwe formulation of geometric problems by passing to dual objects.

Duahty m slmllarly defined between the points and hyperplanes in d-dimensional space. The duality @
maps the point p = (CL1, CL 2,..., ad) to the hyperplane Q(p) = {(x1, .X2, ..., - d ,T ). Xd = 2alxl + 2azlz

+ + 2a~_ ~.rd ~ – ad} and conversely. An analog of the above-mentioned properties for the planar case
holds (duahty preserves mcldences and above/below relations). For example, if we want to count points
lying below a hyperplane, the dual problem is counting the number of hyperplanes above a given point

Further reformation about geometric duality can be found in Edelsbrunner [ 1987]

Box 3: Hyperplane Arrangements

Let us consider a flmte set H of lines in the plane. These hnes diwde the plane mto convex sets (called
cells: sometimes the word faces m also used) of various dlmenslon: see the figure. The cells of dimensions
O, or O-cells, for short, are the mtersectlons of the hnes of H, and we call them wrtzces. If we remove all
vertices lying on a hne h = H, the hne h M spht mto two open semnnfinite rays and a fimte number of

open segments. These segments and rays form the l-cells or edges. Finally, by removing all the hnes of H

the plane M partitioned mto open convex polygons (also into unbounded ones), which are the 2-cells.
Slmdarly, a timte set H of hyperplanes m R ~ defines a decomposition of R d into cells of dimensions

0,1,..., ci.

This decomposition m a cell complex m the sense of algebraic topology, and it is called the arrangement

of H. For a fixed d. the total number of cells of all dimensions is bounded by O(IH Id ) This bound is best
possible for H m a general position; in this case it is not too dit%cult to ob~ain an exact formula for the
number of cells of each dimension. Hyperplane arrangements are one of tb e basic objects of study in
computational geometry, e g , see Edelsbrunner [1987] for more information

Figure 1. A simple halfspace range-searching
method for uniformly distributed point sets

and for each such point we test its mem-
bership in R. The uniform distribution
implies that the number of points pro-

cessed in this phase is O(t) = O(F).
(Such points are marked as full circles in
Figure 1.)

It remains to account for the weight of
points in grid squares that are com-
pletely contained in R. This can be done
row by row, using the fact that such
squares form a contiguous interval in ev-
ery row. The total weights of points in
each such segment of each row are com-
puted in advance; thus we only need a
constant time per row for query answer-
ing. The total memory requirement is
O(n).

For a higher dimension d we can pro-
ceed quite similarly, dividing the unit
cube into a grid of cubes with sides n – 1/d.
The bounding hyperplane of any given
halfspace R intersects only O(nl - lid)
grid cubes. The cubes completely con-
tained in the query halfspace can be
processed by columns parallel to one
(arbitrarily chosen) coordinate axis. In
this way we get a data structure with
0(n) storage and O(nl - l/d) query time
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for uniformly distributed point sets in

the unit cube, as required by Eq. (1).

This time also the generalization to
simplex range searching is straightfor-
ward. We associate a suitable one-dimen-
sional data structure for range searching
in intervals with every column of the
m-id: we leave the details to the reader.

It ‘is quite conceivable that this simple
data structure is the most practical op-
tion for simplex range searching with lin-
ear space, at least for roughly ‘uniformly
distributed sets. (This method resembles
the quadtrees; see Preparata and Shames
[1985].) For point sets that are not uni-
formly distributed, this simple approach
fails, and all known methods with query
time close to TZ1-l/d are considerably
more complicated,

Lower Bounds

Lower bounds are due to Chazelle and
his students; previous weaker results
were obtained by Fredman [1981]. The
basic work [Chazelle 1989] bounds from
below the computational complexity of
simplex range searching with weights
from a suitable semigroup. In order to
formulate this result, we have to define
an appropriate model of computation, the
so-called arithmetic model, originally in-
troduced by Yao and Fredman as a means
for lower-bound proofs.

Roughly speaking, we can say that the
arithmetic model considers only the
number of semigroup operations needed
to compute the answer to a query. Cer-
tain partial sums of the point weights
are precomputed and stored in memory;
such partial sums are called generators.
Their number cannot exceed the pre-
scribed storage, m, The arithmetic model
does not consider at all various auxiliary
operations of the algorithm needed in
query answering, such as finding out
which generators are to be added to yield
the result, This is a strength of lower
bounds in the arithmetic model. On the
other hand, this model puts various
restrictions on the query-answering al-
gorithm. One of the most significant
restrictions is the impossibility of sub-

tracting the weights, even if the weights
happen to belong to a group. Let us now
pass to exact definitions.

A commutative semigroup (S, +) is
called faithful if the following holds. For
any n >0, any two distinct subsets A, B
G {1,2,..., n} and natural numbers a, >

0 (i ~ A), @l >0 (.j = B), there exist ele-
ments 51, ..., s. = S so that

In other words, two linear forms over
variables ranging over S are never iden-
tically equal unless they have the same
set of variables. Faithfulness is a quite
weak condition. An example of a semi-
group that is not faithful is Z/2Z, i.e.,
{O, 1} with addition modulo 2, where the
identity 2 x = 2 y holds. On the other
hand, real numbers, both with the opera-
tion of addition and the operation of a
pairwise maximum, do form faithful
semigroups.

In the sequel, let (S, +) be a fixed
faithful semigroup. Any linear form

g(sl, .,. , s~) = Z?. 1als~, where St are
variables ranging over S and a, are non-
negative integers, is called a generator.

It turns out to be advantageous to con-
sider geometric range-searching prob-
lems in a more abstract form, To each
problem with point set P = { p ~,

Pz, . . . , P~) C ~d and with a set g? of ad-
missible ranges, we assign a set system

(P, ~), where ~ is the system of all
subsets of P definable by ranges from 92,
that is,

Then we work with this set system only,
thus restricting the geometric contents of
the problem to a minimum, This more
abstract approach turned out to be fruit-
ful for geometric range searching (but
not only for geometric range searching);
see Haussler and Welzl [1987] and Ma-
tou~ek [1991a].

Asetr={gl,..., gm} of generators is
called a scheme for the set system (P, 9),
if for every set Q =9’ there exist nonneg-
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ative integer coefficients DI, . . . , Dm such
that for any choice of weights
W(pl), ..., W(pa) ● S, we have

x W(P)= f PLgL(w(P,),..., w(pn)).
p=Q 1=1

(3)

It is thus required that in using the gen-
erators of the scheme one express the
weight of any set Q G ~, and this expres-
sion must be of the same form for any
choice of weights of the points of P.

A scheme r for (P, 9) is called a
(t, m)-scheme if m = Irl and for every
Q =@ the coe!dicients in (3) can be cho-

sen in such a way that at most t of the
numbers &,, ... & are nonzero. Then it
is natural to define that the geometric
range-searching problem with the point
set P, set of ranges ~, and with weights
from (S, +) has query complexity at least
t in the arithmetic model for storage m if
there is no (t – 1, m) scheme for (P, 9),
where Y is as in (2).

Simple Example. Let us pause for a
moment to see what the generators might
look like in an actual algorithm. Consid-
ering Example 2.2, we have one genera-
tor for every canonical interval, namely
the sum of point weights in that interval.
Hence each generator is just the sum of
weights over some subset of P, and the
answer to a query is computed by ex-
pressing the point set in the query range
as a disjoint union of canonical subsets.
Therefore all coefficients in (3) are either
O or 1. Other range-searching algorithms
for semigroup weights also use this more
special form of generators and answer
computation. In fact we are not aware of
any single instance where the more gen-
eral form allowed by the arithmetic model
would be used.

Lower bounds in the arithmetic model
hold only for algorithms computing the
answer (the total weight of points in a
query range) using a scheme in the sense
just defined. There might thus exist, in
principle, a better algorithm using the
specific weights in a given range-search-

ing problem (while an algorithm covered
by the arithmetic model must work “uni-
formly” for any choice of weights). Lower
bounds do not apply to algorithms using
weight subtraction either (if (S, + ) is a
group). Proving lower bounds valid for
this group case is one of the main chal-
lenges in this area; another is a proof of
lower bounds for emptiness queries with
halfspaces or simplices. Let us remark
that an orthogonal range- searching-type
problem is known where the complexity
in the group model is provably better
than in the semigroup model (see
Chazelle and Rosenberg [ 1991]).

Now that we have clarified all these
definitions, we can state the main result
[Chazelle 1989].

THEOREM 3.1 (CHAZELLE). Let (S, +)
be a faithful semigroup. Then for any
fixed dimension d and parameters n, m
there exists an n-point set P c R d such
that the simplex range-searching problem
with point set P, weights from S, and
storage at most m has query complexity
at least

(for d > 3), resp., at least

(4)

(5)

for d = 2 in the arithmetic model.

In fact, the proof of this theorem gives
somewhat stronger results. First of all, P
is not an artificially constructed patho-
logical set. Rather it is sufficient to choose
it randomly from the uniform distriution
in the unit cube; we obtain a “hard” set
with high probability. Also the hard query
simplex need not be chosen in any spe-
cial way. The proof uses, instead of sim-
plices, so-called slabs, which are the
parts of space bounded by two parallel
hyperplanes. The proof shows that for a
randomly chosen slab of a suitable width
(among the slabs intersecting the unit
cube) the query complexity is at least
that shown by the lower bound formulas.
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In this sense, (4) and (5) bind not only
the worst case, but also the average case.

It is quite likely that Eq. (4) holds
without the logarithmic factor in the de-
nominator as well (as in dimension 2).
Such an improvement has an interesting
relation to a generalization of a famous
problem of combinatorial geometry, the
so-called Heilbronn problem. The Heil-
bronn problem itself can be formulated
as follows:

Problem 3.2. For a set P c K!z, let
cd P) denote the area of a smallest trian-
gle with vertices in P. What is the
asymptotic behavior of the function a(n)
—— sup{a(P); P C [0, 1]2, IPI = n}?

This is a very nice problem and has
been worked on by many excellent math-
ematicians, Its complete solution still
seems to be quite far off (see, e.g., Kom16s
et al. [1982] and Roth [1976] for a survey
of results and references), The following
is a generalization related to Chazelle’s
lower-bound proof method:

Problem 3.3. For a set P c Rd, de-
note by ad(P, k ) the smallest volume of
the convex hull of a k-tuple of points of
P. What is the asymptotic behavior of the
function a&z, k“) Q sup{a,JP, k,); P c
[0, l]d, IPI = n}?

Chazelle has shown that for a suitably
chosen set P in the unit cube, the vol-
ume of the convex hull of each k-tuple is
at least proportional to k/n for any k >
c log n, with a sufficiently large constant
c. In other words,

ad(n, k) = fl(k/n) (6)

for k z c log n. This is essentially a re-
sult about uniform distribution of the set
P, stating that no k-tuple is too clustered

(in the sense of volume). If (6) could also
be proved for smaller k, an improvement
of (4) would follow immediately.

Such an improvement may not be easy,
Known results for the Heilbronn problem
imply that (6) is false for d = 2, k = 3
(which may contradict intuition some-
what). However, it is not known that (6)
would not hold for larger but constant k.
On the other hand, this connection shows

that by finding an algorithm for simplex
range searching with O(n/mlf d) query
complexity in the arithmetic model, one
would also get a nontrivial result for the
difficult combinatorial problem men-
tioned above.

At this point the reader might ask
“where does the better bound (5) in the
plane come from when the generalized
Heilbronn problem is open for dimension
2 as well as for higher dimensions?” The
main reason is that, in dimension 1, it is
easy to construct a point set satisfying

(6) for every k >2. One particular con-
struction, although not the most
straightforward one, is to take a random
uniformly distributed set and throw out
a suitably selected half of the points. In
Chazelle’s proof, subsets of P defined by
slabs are considered, and what matters
is the one-dimensional distribution of the
orthogonal projection of each such subset
onto the axis of the corresponding slab.
To obtain (5) it suffices to show that, for
most of the slabs, one can select half of

the points from the projection with a good
one-dimensional distribution in the sense
of (6).

In spite of Theorem 3.1, one might hope
for better algorithms in some particular
cases, such as for halfspace range search-
ing, or for simplex emptiness queries. A
better algorithm is known for only one
special case, namely for halfspace empti-
ness queries, or for halfspace range-
reporting queries (see Section 6.1). On
the other hand, it seems that both sim-
plex emptiness queries and halfspace
range counting should be approximately
equally difficult as the general simplex
range-searching problem. This was par-
tially substantiated in 13ronnimann et al.
[1993] and Chazelle and Rosenberg
[1992], Briinnimann et al, [19931 showed
that under similar assumptions, as in
Theorem 3.1, the halfspace range-search-
ing problem for an n-point set with stor-
age at most m has query complexity at
least

(( )
l–(d–1)/d(d+l)

Q:
log n /)

mVd
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in the arithmetic model. This bound
might still be lower than actual com-
plexity, but at least it shows that the
halfspace range-searching problem with
arbitrary weights is more difficult
than the halfspace emptiness problem,
where a query time of approximately
n/mlj ~~’21 can be achieved.

Chazelle and Rosenberg [1992] con-
sider the simplex range-reporting
problem. Their model of computation is
different than in the rwevious results;
they use the so-called pointer machine.
They prove that, for any data structure
occupying space at most m, there exists
a halfspace for which the reporting query
requires time at least Q(nl - ‘/ml’d + k),
where k denotes the number of points in
that halfspace.

The papers of Chazelle et al. on lower
bounds may please the reader as a nice
piece of mathematics, but the conclusions
for the simplex range-searching problem
are quite pessimistic. For instance, if we
want to improve the query complexity
K-times, compared to the trivial algo-
rithm (consisting of inspection of every
point of f’) in dimension 10, storage costs
are of the order K 10. Since we pass from
a trivial algorithm to a more complicated
one, we may expect that the hidden con-
stants of proportionality will work
against us. Nontrivial algorithms can
thus be practically useful only for a
really small dimension. This is, however,
a frequent feature of computational ge-
ometry algorithms, as we have already
mentioned in the Introduction.

4. ALGORITHMS WITH APPROXIMATELY
LINEAR SPACE

We divide our discussion of simplex
range-searching algorithms into two
parts. First we consider algorithms using
linear or nearly linear storage, then algo-
rithms attaining a short—polylogarith-
mic—query time. As was explained
above, the latter algorithms require a
large space, of the order nd. These two
groups of algorithms have been investi-

gated separately in the literature, and
more attention has been paid to linear
space algorithms. which are usually more
complicated and more interesting. Algo-
rithms with memory requirements in be-
tween these two extremes can often be
obtained by a more or less straightfor-
ward combination of algorithms of the
two types.

Most nontrivial algorithms with linear
space (nontrivial meaning with substan-
tially sublinear query time) are based on
the idea of partztion trees, due to Willard
[1982]. We will explain the idea in a
simple form for halfplane range search-
ing.

Let P be an n-point set in the plane.
For simplicity we assume that n is of the
form 4h and that P is in general position.
Let /’0 be an arbitrarily chosen line
halving P ( n /’2 points lie below /0 and
n/2 points above / ~). The classical
ham-sandwich cut theorem (see Edels-
brunner [1987]) guarantees the existence
of another line 11 such that each of the
four regions Al, A2, As, A4 into which
/’0, KI partitions the plane contains ex-
actly n/4 points of P; see Figure 2(a).
Consider an arbitrary halfplane R with
the bounding line h. It is easy to see that
h cannot intersect all four regions
Al, A2, As, Ai, and hence one of them,
A,, lies completely outside R or com-
pletely inside R.

If we precompute the total weight of
points in each Aj, we can process all
points of the region A, missed by h in a
single step, thus saving 25% of the work
on query answering, compared to the
trivial method. This is not significant for
asymptotic complexity, but a similar sav-
ing can be repeated recursively in each of
the remaining three regions. Continuing
in a similar manner but in greater depth,
the complexity decreases significantly.

A data structure based on this idea, a
partition tree, has a root containing the
coordinates of the partitioning lines
/0, /l as well as the total weights of
points in the four regions. The root has
four sons, corresponding to the four re-
gions Al, ..., AA, and the ith son is the
root of a partition tree constructed simi-
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Figure 2. (a) Ham-sandwich cut theorem, (b) two levels of the recursive construction. For the halfplace R,
the regions bounded by thick lines are processed as wholes.

larly for the set P CI A,. This recursive
construction terminates after reaching
small-enough sets, say one-point ones.

To answer a query with a halfplane R,
we start in the root of the partition tree.
We find the region missed by the bound-
ary of R, and we process it immediately
(ignoring it if it lies outside R, otherwise
storing its weight to a global variable for
accumulating the total weight). For the
remaining three regions, we proceed sim-
ilarly in the corresponding three sons of
the root. When we reach a leaf of the
partition tree with a trivially small set,

we process the point stored there
directly.

If l“(n) denotes the query time for an
n-point set, we get the recurrence

7’(4k) < c + 3T(4~-1),

with an initial condition T(l) < C, where
C denotes a suitable constant. This gives
a bound T(4~ ) = 0(3k ), Both the con-

struction and the analysis can be ex-
tended to an arbitrary value of n, and
we obtain T’(n) = O(rz1°g13) = 0(n0792)—
a significantly sublinear function indeed.
It is easy to verify that the data struc-
ture described occupies 0(n) space only.

The partition tree defined above can
also be used for answering triangular
range queries. The query-answering al-
gorithm is very similar. In a current node
of the partition tree, we process the re-
gions missed by the boundary of the query
triangle m directly (since they lie com-
pletely inside a or completely outside
u), and for regions intersected by the
boundary of w we proceed recursively in
the appropriate sons of the current node.

We cannot argue here that in every
node the recursion visits at most three of
its sons. But we note that o is an inter-
section of three halfplanes, and it is not
difficult to see that any node of the parti-
tion tree visited by the query-answering
algorithm for the triangle a will also be
visited when answering the query with
at least one of the three halfplanes, Thus
the query time for triangles is of the
same order as the query time for half-
planes.

Easy Improvements and Generalizations
of Partition Trees

The idea of a partition tree is simple but
by no means obvious. Improving the con-
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struction described above and generaliz-
ing it to higher dimensions were not easy
either (its history somewhat resembles
athletic records). Willard himself found a
better construction than the one we have
described, with query time of O(n”) with
a = 0.774.

Edelsbrunner and Welzl [1986] im-
proved the method above by a better
application of the ham-sandwich cut
theorem. Instead of dividing each of
the regions Al, . . . . Ai independently,
they bisect both Al and Al simultane-
ously by a single line, and similarly for
A2 and As. Proceeding recursively in
this way, they obtain the recurrence
T(n) < C + Z’(n/2) + !7’(n/4), leading to
the bound a = 0.695. The preprocessing
time for the partition tree construction is
O(n log n), and it relies on a sophisti-
cated linear time algorithm for the
ham-sandwich cut theorem for linearly
separated point sets due to Megiddo.

A first generalization for dimension 3,
with a = 0.98, was obtained by Yao

[1983], who showed the possibility of par-
titioning a point set in R 3 into 8 parts of
relative size at most 1/24 by 3 planes.
This was improved by Dobkin and Edels-
brunner [1984] (a = 0.916), Edelsbrun-
ner and Huber [1984] ( a = 0.909), and
Yao et al. [1989] (a = 0.8988). The last
authors rediscovered a result of Had-
wiger, namely that any point set in R 3
can be partitioned into 8 equal parts by 3
planes. They organize the recursive con-
struction in a similar way, as Edelsbrun-
ner and Welzl [1986]. Avis [1984] noted
that a partitioning of a point set in R d
into 2 d equal parts by d hyperplanes is
not possible in general for d > 5. For
d = 4, the existence of such a partition is
still open.

Cole [1985] found a construction in di-
mension 4 giving a = 0.977, and shortly
after that Yao and Yao [1985] showed the
existence of a nontrivial simplex range-
searching algorithm with linear space in
any fixed dimension, although their ex-
ponent a = [logz(2d – 1)]/d differs from
1 by a very small amount only. Let us
describe the beautiful construction of Yao
and Yao’s partition scheme.

First, the discrete point set P is re-

placed by a continuous, everywhere posi-
tive mass distribution p: each point p =
P is replaced by a small dense ball of
radius .s and weight 1 – ~ plus a light
nebula of total weight ~ spreading out to
infinity. It is easy to show that if c > 0 is
small enough, a good partition scheme
for p will also be good for the original
point set P. This passage to continuous
setting enables us to apply topological
arguments (and it is used, for example,
in proofs of the ham-sandwich cut
theorem).

The construction of the partition
scheme proceeds by induction on the
space dimension d. Given p, one con-
structs a point C’( p) (the mass center)
and a set H( ~), which consists of a finite
number of pieces of hyperplanes and
whose removal partitions R d into the de-
sired regions. For d = 1, C(~) is the

(unique) point bisecting P and 11(w) =
{C( I-L)}. NOW let d >1, and let S be the
hyperplane perpendicular to the x~-axis
and bisecting N. For any vector v with a
positive x d-coordinate, we define two
(d – 1)-dimensional mass distributions
in S, denoted by ~~ and pi. The mass
distribution p: arises by projecting the
mass from the halfspace above S into S
in direction of – u, and similarly ~;
arises by projecting the mass from the
lower halfspace along + u, The hyper-
plane S can be identified with Rd -1, and
thus the points C( NJ), C( p;) = S are
defined. A key claim Yao and Yao prove
by topological means is that there exists
v such that C( K:) and C( W;) coincide.
For such a U, we set C(~) = C( wJ) and

rI(/J)= su{x+tu; t>o,
~Gm(~;)}u{x—tu;t >0,

x = H( w;)}.

This finishes the definition of the parti-
tion; it turns out that C(p) and 11(~) are
unique. Moreover, the partition defines
2 ~ regions, each containing 2 ‘d fraction
of the total mass, and that each hyper-
plane avoids at least one of the regions.

All the algorithms mentioned above are
based on theorems of a topological flavor,
such as the ham-sandwich cut theorem
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or the Borsuk-Ulam theorem. They al-
ways use some partition scheme, which
is a way of partitioning the space into
several regions (usually bounded by hy-
perplanes), depending on the given point
set. The crucial property of such a parti-
tion is, that for any hyperplane, the
regions intersected by it contain signifi-
cantly fewer points than the whole set.
The quality of a partition scheme is de-
termined by the maximum number of
regions which can be intersected by a
hyperplane and by the maximum num-
ber of points contained in such regions.
From a given partition scheme one then
builds a partition tree in a more or less
standard way. These algorithms usually
have a polynomial, but slow, preprocess-
ing (especially in higher dimensions).

Many researchers tried to find more
efficient partition schemes, but it seems
that simple constructions could not be
improved; and the analysis of more com-
plicated constructions was too involved.

A Randomized Partition Scheme

A significant breakthrough was made by
Haussler and Welzl [1987]. They were
among the first (together with Clarkson
and a few others) to bring to a larger
extent than previously probabilistic
methods into computational geometry,
They introduced an abstractly formu-
lated range-searching problem (specified
as a set system in Eq. (2)), and started to
build a theory of such abstract problems.
The partition scheme used in their algo-
rithm is also of a new type, with a large
and adjustable number of regions.
(Asymptotic query complexity improves
with an increase in the number of re-
gions.) The partitioning scheme can be
described quite simply. (We do it in the
plane.) For a suitable large constant r,
pick a random r-tuple of points of P and

draw all the
()

lines determined by;
these points. These lines partition the
plane into the desired regions. Haussler
and Welzl proved that, with high proba-
bility, the partition tree arising in this
way guarantees query time 0( n” ) with
a = 2/3 + 8, where 6 is a positive con-
stant tending to O with r - OJ.In dimen-

sion d one gets a = 1 – l/[d(d – 1) +
1] + 8. The partition tree can be con-
structed in 0( n log n) expected time by a
randomized algorithm; later a determin-
istic construction of the same asymptotic
complexity was also found [Matou~ek
1990].

Spanning Trees with Low Crossing Numbers

Query time close to 6 in the plane was
first achieved by Welzl [1988]. He aban-
doned the principle of a partition tree
constructed recursively using a partition
scheme with a constant-bounded number
of regions, and replaced it with the idea

of a spanning tree with a low crossing
number. This notion is worth explaining,

Consider a point set P in the plane
and some spanning tree T on P, i.e., a
graph-theoretic tree having P as its ver-
tex set. We say that a halfplane R crosses
an edge {u, v} of T, if IR n {u, u}I = 1.
The crossing number of T with respect to
the halfplane R is the number of edges of
T crossed by R, and the crossing number
of T is the maximum of crossing num-
bers of T with respect to all halfplanes.

Let T be a spanning tree on P with a
(possibly small) crossing number ~. For
simplicity, let us assume moreover that
T is a path. (From known algorithms for

constructing a spanning tree with low
crossing numbers, we can always obtain
a path if we want one.) For any given
halfplane R, there are at most ~ + 1
components of the induced subgraph of T
on the set P n R. Each such component
is an interval along the path T. Thus,
having a suitable one-dimensional inter-
val range-searching data structure for
intervals along T, we can answer the
halfplane query by performing K + 1 in-
terval queries; provided, of course, that
we know the edges of T crossed by the
halfplane R. This explains the signifi-
cance of the spanning trees with a low
crossing number for halfplane range
searching.

The notion of a crossing number of a
spanning tree can immediately be gener-
alized to an arbitrary dimension d (with
halfspaces in place of halfplanes), and it
even makes sense for an arbitrary set
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system (P, 9). (A set Q = @ crosses an
edge {u, u} if I{u, U} n QI = 1, and one

continues as in the previous definition.)
Welzl proves a general existence result
for spanning trees with a low crossing
number in this abstract formulation. The
resulting crossing number is a function
of a certain ~arameter of the considered

(which we have discussed in connection
with the lower bounds). They even ob-
tained a certain characterization of set
systems admitting a sublinear query
complexity in the arithmetic model. How-
ever, their method does not automati-
cally give an efficient algorithm in the
usual sense. We have alreadv mentioned

set system, ‘the so-called dual shatter
function.4

where the difficulty lies: w: know that
the boundary of the query simplex or

We cannot resist giving the definition halfspace crosses only a few edges of the
of this important notion. Let M G 9 be a spanning tree, but it is not clear how to
subsystem of sets from 9. Let us call two find these edges efficiently. In general,
points x, y = P .@-equivalent if x = Q Q this problem seems almost as difficult as
y E Q for every Q G J&’.Then, for an inte- the original simplex range-searching
ger m, we define the value of the dual problem. Chazelle and Welzl managed to
shatter function w.%( m ) as the maximum solve this additional complication in di-
number of .ti-eaivalence classes on P over mensions 2 and 3, thus obtaining the.
all m-element w G W. For example, for
the set system defined by triangles on an
n-point set in the plane, the dual shatter
function satisfies n;(m) = 0( m 2). This
is because drawing the contour of m tri-
angles the plane partitions into 0( mz )
regions. In general, if my(m) < Cmd for
constants C, d, and 1 s m < n, Welzl’s
theorem guarantees the existence of a
spanning tree with crossing number
O(rzl” lid log n) for (P, ~).

Returning to the case of halfspaces in
Rd, we understand that Welzl’s theorem
implies the existence of a spanning tree
with crossing number 0( n 1- l\d log n) for
any n-point set in R‘. Later on, Chazelle
and Welzl [1989] improved the bound on
the crossing number in this geometric
setting to O(nl -1’ d), which is asymptoti-

5 G In this way they provedtally optimal.
an almost optimal upper bound for query
complexity for the simplex range-search-
ing problem in the arithmetic model

first almost optimal algorithms. Before
leaving spanning trees with low crossing
numbers, let us mention that many other
algorithmic applications were found, e.g.,
Agarwal [1990] and Edelsbrunner et al.
[1989], and even purely combinatorial
applications (see MatouSek et al. [1993]
or the contribution of Path in Goodman
et al. [19911).

Further Developments

The paper by Matou=ek and Welzl [1992]
stands somewhat aside from this
“mainstream.” It describes an essentially
different method for answering halfplane
range queries, based on a combinatorial
lemma of Erdos and Szekeres, and yields

O(& log n) query time with O(n log n)
space. This method can also be used for
triangles, but only if the point weights
can be subtracted. There does not seem
to be much hope for generalizing this
method into higher dimensions. On the
other hand. it is an easilv im~lementable

4A primal shatter functzon also exists, but It is not

J.
algorithm with small constants of pro-

significant for spanning trees with a low crossing portionality, which cannot be said about
number
5A recent result of Haussler [1991] implies that the

most of the other algorithms.

bound without log n also holds in Welzl’s abstract Chazelle et al. [1992] discovered a sim-

jheorem. plex range-searching algorithm for an ar-
The problem of a spanning tree with a low cross- bitrary dimension, with n’ +‘ space and

ing number m the plane belongs to the relatively
few m computational geometry where someone

0( nl - 1/d +‘ ) query time, for an arbitrar-

worked on a more exact determination of the con- ily small positive constant e. They thus

stant of proportionality. Welzl [1992] showed that approached the lower bound up to a fac-

the optimal crossing number lies between k and tor of n’. (For this reason they call the

(2.31 + o(ll)fi in the worst case. algorithm quasioptimal.) Their method
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reutrns to recursively constructed parti-
tion trees. For a single point set, how-
ever, they construct not one but several
partition schemes at the same time, in
such a way that for any halfspace R at
least one of these schemes is sufficiently
efficient. The construction then recurses
for the point set in each of the regions of
each partition scheme, which leads to a
larger memory requirement, nl +‘. As in-
dicated above, if one partition scheme is
good for all halfspaces, then it is also
good for simplices, but if we must use
several schemes it may happen that none
of them is good for simplices. For this
reason Chazelle et al. apply so-called
multilevel data structures to handle the
simplex queries (see Section 6.3).

Simplicial Partitions

The paper by MatouEek [ 1992b] returns
to a single partition scheme whose pa-
rameters are asymptotically optimal for
all halfspaces, and thus also for sim-
plices. The partition is constructed by a
suitable generalization of Welzl’s con-
struction of spanning trees with a low
crossing number [Welzl 1988]. Let us de-
scribe these partition schemes. For sim-
plicity, we only formulate the following
definition for a point set in a general
position.

Let P be an n-point set in Rd in a
general position. A simplicial partition
for P is a collection

II = {( Pl, Al),..., (P~, A~)},

where the F’l are disjoint subsets of P

(called the classes) forming a partition of
P, and each A, is a d-dimensional sim-
plex containing the set P,.

Let us remark that the simplices need
not be disjoint, and the simplex A, may
also contain other points of P than those
of P, (see Figure 3). Although it is not
clear why this should make the construc-
tion of a partition scheme any easier, no
partition schemes of a comparable effi-
ciency to Theorem 4.1, but with disjoint
regions, are known.

If h is a hyperplane and A a simplex,
we say that h crosses A if it intersects it.
(For simplices of lower dimension than d

Figure 3. A simphcial partition (points of different
classes are marked by different symbols).

which appear when we deal with sets in
degenerate positions, the definition of
crossing is somewhat more complicated.)
Further, we define the crossing number
of the simplicial partition II with respect
to h as the number of simplices of II
crossed by h, and the crossing number of
II is the maximum of the crossing num-
bers with respect to all hyperplanes. The
main theorem of MatouSek [ 1992h] is as
follows:

THEOREM 4.1. Let P be an n-point set
in Rd (d > 2), r be a parameter, 1 < r s
n/2. Then there exists a simplicial parti-
tion for P satisfying n/r < IP, I <2 n/r
for every class P, (thus with O(r) classes)
and with crossing number K = O(rl - l/d).

The crossing number in this result is
asymptotically optimal. Matousek
[ 1992b] also gives an algorithm for con-
structing such a simplicial partition, with
O(n log r) running time for sufficiently
small r (r < n P for a certain small con-
stant ~ = ~(d) > 0).

Construction of Simplicial Partitions

The construction is based on an applica-
tion of cuttings. (See box 4.)7 The first

7The use of cuttings replaces an argument from the
otherwise similar Welzl [1988] construction of
spanning trees with a low crossing number. The
application of cuttings makes more use of geometric
properties. This is not accidental, as Alon et al.
[1987] showed that for certain set systems there
exists no efficient partition scheme with a
constant-bounded number of regions, although the
dual shatter function is small and a spanning tree
with a low crossing number thus exists.
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Box 4: Cuttings

A cutting IS a fimte set of closed simphces (here a simplex means an intersection of d + 1 halfspaces;

hence unbounded “sirnphces” are also allowed) with disjoint interiors covering R‘. Let H be a set of n
hyperplanes in R d and r a parameter, 1< r s n. A cutting E is called a (llr)-c~fting for H provided that
the mterlor of no simplex of E is intersected by more than n/r hyperplanes of H. Sometimes it is useful to
consider a weighted version also, where a nonnegative weight function w” H + R is given, and the sum of
weights of hyperplanes intersecting any simplex of a (1 /r)-cutting should not exceed I/r of the total
weight of all hyperplanes of H.

The notion of a cutting is a basis of many geometric algorithms of the “divide-and-conquer” type dealing

with hyperplanes. A computational problem concerning a set H of hyperplanes is partitioned into

subproblems defined by the simplices of a (1 /r)-cutting, each involving r X fewer hyperplanes than the

original problem. This dividing strategy was developed in the work of Clarkson, Haussler, and Welzl, and

others. Cuttings are considered explicitly in Chazelle and Friedman [1990] and Matou=ek [1990]; the name
and the current definition were given in MatouSek [ 1991c].

For applications, it is important that the number of simplices in a cutting is as small as possible.

Chazelle and Friedman [1990] showed that for every H and r there exists a (l/r )-cutting consisting of
0(#) simplices. This result is asymptotically optimal, and applies to the weighted vertuon also. Efflclent

computation of cuttings is considered in Chazelle and Friedman [19901, MatouEek [199 la; 199 lcI, and
Chazelle [1993a]

step is the choice of a suitable finite “test
set” H of hyperplanes, such that when-
ever the crossing number of a simplicial
partition II with respect to every h = H
is bounded by some number K, then the
crossing number of II with res ect to

Jany hyperplane is 0( K + r 1 1’ ). The
test set H has size O(r), and it is con-
structed using cuttings in the dual space.

With such a test set H at our disposal,
the relation of cuttings to a small cross-
ing number of a simplicial partition is as
follows: if E is a (l/t)-cutting for H,
then the total number of incidence
among the simplices of E and the hyper-
planes of H is at most lHll Hi/t (since

any simplex of E has at most IH I/t inci-
dence), and hence the average number
of simplices of E crossed by a hyperplane
of H is lE1/t. The total number of sim-
plices in E is r = O(t ~), and hence the
crossing number with respect to an aver-
age hyperplane of H is O(t d- 1) =
O(r 1- l/d). The cutting itself thus gives a
simplicial partition whose crossing num-
ber with respect to an average hyper-
plane of H is asymptotically optimal.
There are two shortcomings, however.

First, the points of P need not be
equally distributed among the simplices
of E, and second, although the average
crossing number is optimal, there might
be some hyperplanes with bad crossing
numbers.
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These are fixed by an incremental con-
struction of II using the so-called
re weighting strategy, imitating WelZ1’S
construction. The simplicial partition II
is constructed step by step, one pair
(Pt, A,) at a time. Suppose that (Pl, Al)
through (Pl, A,) have already been con-
strutted,-with IPI = [n/r], j = 1,. ... i.
The set P, = P\(PI U . . . U P,) of points
not yet covered has n, = n – i( n\rl
points. For a hyperplane h = H, let K,(h)
be the number of simplices among
A,,... , A, crossed by h, and assign a
weight w,(h) = 2 .,[h] to every h E H. We

let ~, be a (l/t )-cutting for H, w,; that
is, the sum of the w, weights of the
hyperplanes intersecting any simplex A
of !3, is at most (l/t) of the total w,
weight of all hyperplanes. We choose t as
large as possible, but in such a way that
the total number of simplices of E, does
not exceed r( n ,/n), and therefore we can
find a simplex of -H, containing at least
n\r points from P,. Such a simplex then
becomes A,. ~, and the set -Pl. ~ is chosen
as some [ n/r 1 points of P, among those
contained in A,+ ~.

This finishes the description of the con-
struction, and we now have to prove that
the resulting simplicial partition has the
required crossing number, One bounds
the increment of the total weight of all
hyperplanes of H caused by adding one
new simplex A,+ ~ to the simplicial parti-



Geometric Range Searching 8 443

tion. This yields an estimate on the total
weight of all hyperplanes after the last
stage, and from this bound it follows that

no hyperplane can give too big a crossing
number; we refer to Matoui5ek [ 1992b]
for a detailed calculation.

By a recursive application of the sim-
plicial partition from Theorem 4.1, a par-
tition tree is created in a standard way.
For a given set P we find a simplicial
partition II (with a suitable choice of the
parameter r), and we store its simplices
as well as the total weights of points in
the classes of H in the root of the parti-
tion tree. Each class of the simplicial

partition corresponds to one subtree of
the root, where the construction is used
recursively for the points in the corre-

sponding classes, When answering a
query with a halfspace R, we process the
simplices lying completely inside R or
completely outside R directly in the cur-
rent node, and for the simplices crossing
the boundary of R we descend recur-
sively into the appropriate subtrees. For
the query time, we thus obtain the recur-
rence

T(n) <f(r) + fcT(2n/r), (7)

where K = O(r 1– lfd) is the crossing
number of the simplicial partitions, and

f(r) is the cost of the auxiliary computa-
tions in one node of the partition tree,
i.e., finding the crossing simplices and
computing the total weight of points in
simplices lying completely inside the
query halfspace R. If we perform a sim-
ple inspection of all the simplices of the
simplicial partition and test their posi-
tion with respect to R, we have f(r) =
O(r).

We must now choose a suitable value
of the parameter r. If we take a large
constant for r (as was done in previous
partition tree constructions), Eq. (7)
yields T(n) = O(nl - l/~+e), where ~
tends to O as r * W. We can. however.

shallower partition tree, and since we
lose a constant factor in query-answering
efficiency at every level of the partition

tree, the shallower the tree the better.
On the other hand, we must not overdo
it, since otherwise the term f(r) in recur-
rence (7) becomes an obstacle. This means
that if the number of simplices of the
simplicial partition were, say, compara-
ble to n, then the auxiliary computations

(finding the crossing simplices, summing
the weights) would take more time than
we can afford. By a suitable compromise,
where r is a sufficiently small ower of

!n, we obtain query time O(nl - 1’ log’ n),
where c is some constant (which we
should not try to estimate). In this situa-
tion the preprocessing time is O(n log n).

In order to use a shallower partition
tree without f(r) getting too large, we
can start building various auxiliary data
structures for the above-mentioned com-
putations in each node of the partition
tree. This method is pursued in MatouSek
[ 1992b], and with much more compli-
cated data structures one gets an asymp-
totically better query time O(nl -l/ ‘(log
log n)’).

Matou5ek [ 1993c] succeeded in reduc-
ing the query complexity for simplex
range searching with linear space to
O(rz - l/d). The method is technically
somewhat complicated and is based on
ideas similar to those mentioned above
plus an application of so-called hierarchi-
cal cuttings from Chazelle [1993a]. This
result is optimal in dimension 2 and most
likely also in higher dimensions; see Sec-
tion 3. However, the preprocessing time

is O(nl+ ‘), while an ideal one would be
O(n log n). Thus, there is still room for
improvement, and there is also the chal-
lenge of finding a simpler optimal algo-
rithm.

5. ALGORITHMS WITH LOGARITHMIC
QUERY TIME

also choose r as some function of n (more
exactlv, of the number of points in the

Halkpace Range Searching

current node of the partitio~ tree), e.g., a A logarithmic query time is essentially
small power of n. We are even interested achieved by precomputing all possible
in making r as large as possible: A larger answers and storing them in a suitable
r means more branching, and thus a data structure. It is more natural to con-
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sider an equivalent dual version of the
problem. (See box 2 for the definition of
duality.)

%oblem 5.1, Let H be a set of n
hyperplanes in R cl equipped with
weights. For a query point q, find the
sum of weights of the hyperplanes lying
above q.g

The answer obviously remains con-
stant for points q lying in the same cell
of the arrangement of H, (See box 3.) We
can thus construct the arrangement,
compute and store the weight for each
cell, and then it suffices to detect the cell
containing a query point and return the
precomputed answer, The preprocessing
can be done in O(n~) time, e.g., see
Edelsbrunner [1987] and Chazelle et al.
[1992]. For dimensions 2 and 3, efficient
methods are known for fast point loca-
tion in an arbitrary subdivision of the
space into convex cells. For higher di-
mensions, special methods have been de-
veloped for point location in hyperplane
arrangements. (See box 4.) This gives a
halfspace range-searching method with
0( nd ) space and preprocessing time and
O(log n) query time. The space and pre-
processing time can even be reduced (ap-
proximately by a factor of log(i n) with
the same query time, as was shown in
MatouEek [ 1993cI.

Here we explain a simple algorithm
formulated directly for Problem 5.1; point
location algorithms for hyperplane ar-
rangements are similar. It is a nice ap-
plication of the notion of cuttings. (See
box l.)

The data structure is, as usual, a tree,
and each node corresponds to some sub-
set of hyperplanes of H The construction

starts in the root, which corresponds to
the whole H. We choose a large constant
r, and we construct a (l/r )-cutting E =

“ Thm reformulation follows from our special choice
of the duahty transform. In general, one can con-
sider the problem of finding the total weight of the
hyperplanes separating a query point from a fixed
point o. Such problems can be converted to each
other by projective transforms.

{Al,..., A ~} for H. By theorems on the
existence of cuttings, we can assume s <
Cr’, where C is an absolute constant
independent of r. For every simplex A, ●

~ let H, be the set of hyperplanes of H
~n!tersecting its interior, and let w, be the
total weight of hyperplanes lying com-
pletely above the interior of A,. The cut-
ting E and the weights w, are stored in
the root, and for every i = 1,2, ..., s, we
build a subtree corresponding to H, by a
recursive application of the same proce-
dure. The recursion terminates as soon
as we reach sets of hyperplanes smaller
than a suitably chosen constant. Then,
instead of a further recursion, we store
the corresponding set of hyperplanes in a
leaf of the constructed tree.

The total weight of hyperplanes above
a query point q is determined as follows.
For the cutting stored in the root, we find

the simplex A, containing q (in constant
time, since r was a constant). This gives
us the total weight w, of the hyperplanes
from H \ H, lying above q, and it re-
mains to determine the total weight of
hyperplanes of H, above q. This is com-
puted by a recursive application of the
same method on the subtree correspond-

ing to 1-1,. In this way we reach a leaf of
the tree after O(log n ) steps, and we pro-
cess the several hyperplanes stored there
directly.

Let us look at the space requirements
of this data structure. The space S(n)
needed for n hyperplanes can be bounded
using the recurrence relation

S(n) S Crd + CrdS(n/r).

The resulting bound is S(n) = O(nd+ ‘),
where E > 0 can be made arbitrarily
small by choosing r large enough.

The hierarchy described above, of pro-
gressively refining cuttings, is somewhat
wasteful, however. On each level we lose
one additional constant factor, which is
reflected in the total space requirement.
This effect can be restricted by making r
larger, but then the search in the cutting
in a single node becomes expensive.
Chazelle [1993a] succeeded in overcom-
ing this. His method produces a hierar-
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chy of progressively refining cuttings,
where the finest cutting on the last level
has a total size of only O(n~), instead of

nd+’. Chazelle’s method is also explained
in Matoui5ek [ 1993b] in a somewhat sim-
plified form.

Simplex Flange Searching

Since about nG subsets of an n-point set
in the plane can be defined by a triangle,
storing all possible answers for the trian-
gle range-searching problem requires at
least about nG space. Such an approach
was used by Edelsbrunner et al. [1982],
and their solution requires space of the
order n7. A significant reduction of the

space requirement, to O(nz + ‘), was
achieved by Cole and Yap [1985]; their
method is based on an idea resembling
multilevel data structures (see Section
6.3). They also give an O(n10 ) space data
structure for three-dimensional simplex
range searching. Another paper, on con-
sidering the planar case, is by Paterson
and Yao [1986]. A general method for
simplex range searching with storage ap-
proximately n~ for arbitrary point
weights and arbitrary dimension was
found relatively recently by Chazelle et
al. [1992] (see Section 6.3). S ace and

Ipreprocessing time are O(n +‘ ) and
query time is O(log~ + 1 n). The space and
preprocessing times were improved in
Matou~ek [ 1993c], using Chazelle’s hier-
archy of cuttings [Chazelle 1993a].

6, EXTENSIONS AND EXAMPLES
OF APPLICATIONS

6.1 Halfspace Range Reporting and Other
Special Situations

The halfspace range-searching problem
with only emptiness queries or reporting
queries turned out to have more efficient
solutions than the general simplex
range-searching problem. It seems that
the actual query complexity for halfspace
range reporting with space at most m

might be approximately

(8)

where k denotes the number of points in
the query halfspace. In particular, in di-
mensions 2 and 3, algorithms exist with
almost linear storage and O(log n + k)
query time; see Chazelle et al. [1985],
Chazelle and Preparata [1986], and
Aggarwal et al. [1990]. For a higher di-
mension, CIarkson [1988a] found an al-
gorithm with space and preprocessing
O(n~d/21+’) and query time also O(log n
+ k). This result was complemented in
Matouiiek [1992a] by an algorithm with
O(n log log n) space, 0( n log n) prepro-
cessingtime and O(rz - li~dizl log’ n + k)
query time. (The method is quite similar
to the one for simplex range searching in
MatouEek [ 1992b], discussed at the end
of Section 4.) 13y combining these two
methods, the complexity given by Eq. (8)
can almost be achieved in the whole
spectrum of memory requirements. Fur-
ther small improvements were described
by Schwarzkopf [ 1992]. No lower bounds
are known.

Very roughly speaking, we can say that
the exponent d in Eq. (1) expressing the
complexity of simplex range searching
originates in the fact that the combinato-
rial complexity of an arrangement of n
hyperplanes in R d is of the order nd.
Similarly, the exponent [d/2] in Eq. (8)
is closely related to the worst-case com-
plexity of a polytope defined as an inter-
section of n halfspaces in I?d, which is of
the order n~d121, e.g., see Edelsbrunner
[ 1987]. When we must quickly decide the
emptiness of a halfspace or—in the dual
form—quickly test whether a given point
lies above all hyperplanes of a given set
H, we deal essentially with a problem of
point location in a convex polytope,
namely in the upper unbounded cell of
the arrangement of H.

In the dual version of halfspace range
reporting, we essentially restrict our at-
tention to a single cell of the arrange-
ment of the given hyperplanes, and as we
saw, this yields a considerable improve-
ment. Another such special situation is
when our point set lies on a fixed lower-
dimensional algebraic variety of bounded
degree, or if all hyperplanes bounding
the query ranges are tangent to such a
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variety, then the range-searching results
can sometimes also be improved. (The
restricted point set case helps the
linear-space case; the restricted ranges
case helps the large space case, e.g., see
Agarwal and MatouEek [1994] for a dis-
cussion.) These improvements use a com-
binatorial result, a zone theorem of
Aronov et al. [1993]. The situation with
points on a surface is by no means rare
—it arises, for example, when dealing
with lines in 3-dimensional space; see
Chazelle et al. [1989].

6.2 Dynamization

Until now we have considered static
range-searching problems, where the
point set is given once and for all. In
many applications we need to insert new
points or delete old ones from time to
time, and it is advantageous if we can
just modify the data structure instead of
rebuilding it from scratch after every
change. This problem is called the dy -
namization of a data structure. For a
dynamic data structure storing n points,
we probably cannot expect a better time
for one modification than I/n fraction of
the time needed for building the whole
(static) structure anew. For the simplex
and halfspace range-searching problems,
dynamic structures with this efficiency

(up to small factors, typically of order n<)
are known; see Argrawal and Matou~ek
[1991], Argrawal and Sharir [ 1993],
MatouEek [ 1992b], and Schipper and
Overmars [1991]. For dynamization in
general, see Bentley and Saxe [1980],
Mehlhorn [1984], and Overmars [ 1983].
It would still be interesting to get rid of
the n’ extra factors for, say, the dynamic
halfspace empty data structures.

Dynamiting the simplex range-search-
ing data structures of Chazelle et al.
[1992] or Matou;ek [ 1992b] is quite
straightforward, and it is equally easy to
dynamize the linear-space halfspace re-
porting data structure of MatouSek
[1992a]; see Agarwal and Matou;ek
[1993]. A dynamic version of Clarkson’s
halfspace reporting data structure is
more complicated. The source of difficul-

ties here is the fact that the maximal
asymptotic complexity of the convex hull
of n points in an odd dimension d and
the preceding even dimension d – 1 are
the same. The change of the convex hull
caused by adding or deleting a single
point is proportional to the complexity of
a certain convex hull in dimension d ~ 1.
For instance, consider the convex hull of
n points in R 3. This is a convex polyhe-
dron with 0(n) vertices, edges, and
facets, and some vertices can have de-
grees close to n. If we keep inserting and
deleting such vertices, it seems impossi-
ble to maintain an explicit representa-
tion of the convex hull (e.g., as a planar
graph) in time substantially smaller than
n for one operation.

For these reasons, among others, sev-
eral authors investigated dynamic data
structures under the assum~tion that the
update sequence is random-in a suitably
defined sense, and obtained very good
update times for this case; see Mulmuley
[ 1991c; 1991d] and Schwarzkopf [1991].
Agarwal and Matou;ek [1991] found a
dvnamic al~orithm. which is also effi-
cient in the worst case, for an arbitrary
update sequence.g This algorithm does
not maintain an explicit representation
of the convex hull; rather it works with
certain implicit representations. Never-
theless, this data structure in connection
with other techniques (see Section 6.5)
supports fast answering of various
queries concerning the convex hull, such
as deciding if a query point lies inside or
outside the current convex hull, comput-
ing a tangent hyperplane to the convex
hull containing a given line, and so on,

6.3 Multilevel Data Structures

First we explain the idea of multilevel
data structures with an example and then
introduce some abstract notions for their
descriptions.

‘In the amortized sense, i e,, an individual update
time can sometimes be large, but the average over
a sequence of n updates is small.
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Let S={sI,..., s~} be a set of seg-
ments in the plane. We want to construct
a data structure that quickly computes
the number of segments of S intersected
by a query line h. We permit roughly
linear space for the data structure. Let
a,, b, be the endpoints of the segment Si.
A denotes the set of all a, and B the set
of all bt. We consider computing the
number of s, such that aJ is above h and
bi below h. The opposite case is solved
symmetrically, and the case of vertical
query lines can be treated separately.

Let us consider some partition tree for
the set A; for certainty, let it be the
partition tree based on simplicial parti-
tions from Theorem 4.1, with r being a
large constant, Using such a partition

tree we can determine, in roughly 6
time, the number of points of A in the
halfplane R above h. This does not solve
our problem yet, but we look more closely
at how the answer is obtained from the
partition tree. The weight of every point
from A n R is accounted for in some of
the visited nodes of the tree. In each such
node we find the simplices of the corre-
sponding simplicial partition lying com-
pletely inside R, and the weights of their
respective classes are accounted for as
wholes.

For each node of the partition tree, let
us call the classes of the simplicial parti-
tion stored there the canonical sets. We
see that the partition tree provides a
partition of the set A n R into roughly

A canonical sets of various sizes. The
total number of canonical sets in the par-
tition tree is O(n), and the sum of their
sizes is easily estimated to be O(n log n).

For our problem with segments, we
augment the partition tree for the set A
as follows. For every canonical set M c A
we create a partition tree for the set

M’ = {b,; at = M}, and we store it with
the corresponding node of the partition
tree for A. (The partition tree for A is
called primary or first-level; the trees
for the sets M‘ are called secondary or
second-level.)

How does one apply the resulting data
structure to the segment-counting prob-
lem? First we express the set A n R as a

disjoint union of certain canonical sub-
sets Ml, ””., Mm, and then for each such
M, we use the appropriate secondary
partition tree to count the points of M;
lying below the line h, Adding these
counts together over all canonical sets
ML, we obtain the desired number of seg-
ments s, with a, above h and b, below h,

On first sight it seems that the de-
scribed two-level data structure should
be much less et%cient than the original
partition trees used for its construction.
By a simple calculation we can convince
ourselves that this is not the case, and
that the required space is O(n log n) only

(this is because of the total size of the
canonical subsets), and the query time

remains still close to 6. This is because
there are only few large canonical sets in
the decomposition of A n R, and the
computation on the second level is fast
for small canonical sets.

The principle used in the above exam-
ple is quite universal. Usually, it is
applicable whenever the query is a
conjunction of several conditions (or,
geometrically, an intersection of several
regions), and for each condition (region)

we already have a suitable efficient data
structure.

The idea of multilevel data structures
appears in Bentley’s data structures for
orthogonal range searching [Bentley
1980]. In the context of partition trees
such a construction was introduced in
Dobkin and Edelsbrunner [1987]. Re-
cently it has been used quite frequently,
e.g., see Overmars et al. [1990], Chazelle
et al. [1992], Matou;ek [ 1992b], and
Agarwal and Sharir [1993], and many
others. The descriptions of such data
structures often look complicated, espe-
cially if there are more levels. Matou~ek
[ 1993c] proposed an abstract framework
for description and analysis of such data
structures.

Let us restate the principle of multi-
level data structures in a somewhat
abstract setting and give two more ex-
amples. First we introduce the notion
of a decomposition scheme. Consider a
range-searching problem in an abstract
form, such as we mentioned in Section 3.

ACM Computing Surveys, Vol. 26, No, 4, December 1994



448 “ Ji?i Matouiek

It is given by a set system (P, 9’),
usually defined as in Eq. (2). From an
abstract point of view, in most
range-searching algorithms one proceeds
as follows. Another system %’(P) of sub-
sets of P, the so-called canonical subsets,
is defined, and a rule is given how to
express each range R ● Y as a disjoint
union of canonical sets from ‘%(P). Let us
call this pair, the set system 27(P) plus
the rule how to decompose sets of 9, a
decomposition scheme for (P, P).

Such a decomposition scheme can be
turned into a range-searching data struc-
ture (provided that the decompositions
can be found efficiently) by simply stor-
ing the total weight of points for each
canonical subset; this is how most of the
range-searching data structures work,
although the canonical subsets are not
mentioned explicitly.

For partition trees as described in Sec-
tion 4, canonical subsets are the point
sets lying in regions of the partition
schemes at the nodes of the partition
tree. For the one-dimensional data struc-
ture for range searching with intervals in
Example 2.2, the canonical subsets are
just canonical intervals, and each inter-
val can be partitioned into O(log n )
canonical intervals. In the data structure
for halfspace range searching with loga-
rithmic query time explained in Section
5, each node of the tree defines canonical
subsets corresponding to simplices of the
cutting stored in it. If the node corre-
sponds to a subset G of hyperplanes, and
A, is one of the simplices in its cutting,
then the corresponding canonical subset
is formed by all the hyperplanes of G
lying completely above A,. Any range,
which is the set of hyperplanes lying
above a query point, can be expressed as
a disjoint union of O(log n) canonical sets.

For our subsequent development it is
necessary that a decomposition scheme
operate not only on the system ( P,.9 )
itself, but also on systems induced by
subsets of P. This means that for a sub-

set P‘ c P, we also have a decomposition
scheme for (P’, {P’ f’ R; R @@}). This is
usually trivially true for geometric prob-
lems, since if we can build a decomposi-

tion scheme for a set, we can also build
one for its subset. Such a decomposition
scheme will be called a hereditary one.

Now let P be a set of basic objects (not
necessarily points; in the initial example
of this section these would be the seg-
ments). Let @l, Yz be two set systems
on P, and suppose that we have a decom-
position scheme ~1 for (P, @’l) and a
hereditary decomposition scheme ~z for
(P, .9Z ). In the example with segments,
@l would be all subsets of the form {s, E
P; al E H] for some halfplane El, and
similarly ~z = {s, = P; b, c H} for some
halfplane H. The decomposition scheme
for (P, @l) is given by building the parti-
tion tree on the set A of the a,-end-
points, and the decomposition scheme for
(P, @z) by a partition tree on the b,-end-
points. (Thus formally we work with sets
of segments, although the partition trees
actually deal with their endpoints.)

Our goal is to derive a decomposition
scheme for a more complicated system
(P, g), where @ consists of all sets of
the form Rl n Rz with RI =@l and Rz
~ 9Z. In the example with segments, the

ranges we are interested in are indeed of
this form, namely the sets of segments
whose a ,-endpoints lie in an upper half-
plane HI and b,-endpoints in a lower
halfplane Hz; in fact, HI and Hz are
complementary halfplanes, but we take
no advantage of this, We define what is
called the composition of the decomposi-
tion schemes ~1 and 27Z, denoted by

S = 4710 @z. To decompose a set R = RI
n Rz ● Y, we first decompose, using SZl,
the set RI G @l into canonical subsets
Cl, C’z, . . . ,Cn ~ %l(P). Then for each C,,
we consider the decomposition scheme
f32 operating on the subsystem of @2
induced by C,, and decompose the
set C, n Rz into canonical sets
C,l, C,z, . . . ,C,h ● %Z(C, ). The union of
these collections for all i = 1,2,. . . , m
gives us a decomposition of R ~ n Rz. The
canonical sets % in the resulting decom-
position scheme ~ will thus be all
canonical sets from ~z(C) for some C G
%l(P).

What we did in the example with seg-
ments can thus be rephrased as first
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composing the two decomposition
schemes and then turning the resulting
decomposition scheme into a range-
searching data structure by precomput-
ing the weights of all canonical sets.
Knowing the parameters of both the de-
composition schemes, it is a routine cal-
culation to derive the parameters of the
composed scheme. The total number of
canonical subsets determines the space
requirements of the data structure, and
the maximal number of canonical sets
appearing in a decomposition of a range
is related to query time.

As one basic example, let us consider
orthogonal range searching. Let P be an

n-point set in Rd. We let Y, be the set
system defined on P by intervals on the
x,-axis. For each (P, @i) we have the de-
composition scheme ~, with canonical
sets being the canonical intervals along
the x,-axis (see Example 2.2). A range of
the form RI nR2 n .o, nRd with R, =
~, corresponds to a subset of P lying in
an axis-parallel box. The d-wise composi-
tion S3=G710C220 s.. Ogd is thus a de.
composition scheme for the set system
defined by axis-parallel boxes. By turn-
ing this decomposition scheme into a
range-searching data structure, we re-
cover an abstract version of the range
trees of Bentley [1980].

Another important example is the ap-
plication of multilvel data structures for
the already-mentioned simplex range
searching with polylogarithmic query
time from Chazelle et al. [1992]. The
halfspace range-searching method de-
scribed in Section 5 yields a decomposi-
tion scheme go which partitions the
point set in a query halfspace into
O(log n) canonical subsets (we stated this
above in the dual form). Since a simplex
is an intersection of d + 1 halfspaces, we
can obtain a simplex decomposition
scheme by a (d + I)-wise composition of

S with itself, and this gives the desired
simplex range-searching data structure.
Easy calculations show that the resulting
data structure has query time
o(log~+l n) and occupies memory

O(nd+’).

Let us conclude with few remarks.
Asymptotically, one usually loses a factor
of n 6 in space and query time with each
level of a multilvel data structure (com-
pared to the efficiency of the data struc-
tures used for the levels). In Matou~ek
[ 1993c], decomposition schemes are
described that allow one to build multi-
level data structures while losing a
polylogarithmic factor per level only. On
the other hand, it seems that a practical
efficiency of a data structure will be lost
quite quickly with an increasing number
of levels. (Again, this is not substantiated
by any implementation experience.) Thus,
it makes a big difference if we use a
simplex decomposition scheme directly or
if we create it by composing halfspace
decomposition schemes d + 1 times.

We should also point out that while
most of the simplex range-searching al-
gorithms provide decomposition schemes
in the sense explained above, the half-
space emptiness and halfspace reporting
algorithms discussed in Section 6.1 do
not provide a halfspace decomposition
scheme. (In some sense, they can only
decompose very “shallow” halfspaces, i.e.,
those that contain a few points of P only.)
Thus, if we want to build a data struc-
ture for testing the emptiness of compli-
cated ranges, where one of the defining
conditions is a halfspace, we may only
use the halfspace emptiness data struc-
ture in the lowest (last) level of a multi-
level data structure.

6.4 Searching with More General Ranges

In the previous sections, we considered
range searching with ranges bounded by
hyperplanes. Many applications lead nat-
urally to searching in ranges with non-
linear, curved boundaries. How should
general query ranges be considered? It
seems that nontrivial results can be ex-
pected mainly for ranges determined by
a small (constant) number of real param-
eters. The most important such case is
subsets of R d defined by a conjunction of
at most h polynomial inequalities of
maximum degree D, where d, k, and D
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are constants. We call such sets
elementary cells, for short, ~”

Range-searching problems with vari-
ous kinds of elementary cells include
many specific problems motivated by ap-
plications. Some of the results mentioned
below can be formulated for still some-
what more general ranges, but writing
out all the necessary assumptions would
become too lengthy.

Perhaps the simplest among nonlinear
ranges are circular disks in the plane
and balls in higher dimensions. The cor-
responding range-searching problem
arises when we are interested in points
lying in at most a given distance from a
given point. Notice that balls do not ap-
pear in this second, “application-ori-
ented,” formulation directly. This is quite
typical, since range-searching problems
with nonlinear ranges are usually ob-
tained by a suitable reformulation of the
original specification of the problem. For
instance, if we are asking for points
whose distance from a given segment
does not exceed a given number, an
equivalent formulation is range search-
ing with ranges of the shape of a race-
course. If we want to detect points that
see a segment s] under a larger angle
than a segment Sz, we get a range-re-
porting query with a rather complicated
range defined by inequalities of degree 6,
and so on.

Ball range searching and related prob-
lems, usually referred to as proximity
problems, have a rich literature, e.g., see
Chazelle et al. [1986], Aggarwal et al.
[1990], Chazelle and Welzl 1989],
Clarkson [1994], and others. Range
searching with other ranges was paid
less attention to. An important earlier
work considering very general geometric
range-searching problems is by Yao and
Yao [1985]; it contains several important
ideas which were further developed and
found many applications later on. A re-
cent work considering the problem of

10In the literature, the term Tarski cells is used for

a similar but somewhat more general notion.

range searching in elementary cells is by
Agarwal and Matouiek [ 1994].

To some extent, methods developed for
simplex and halfspace range searching
can also be applied for searching with
elementary cells. We now outline the re-
sults. We concentrate on ranges defined
by a single polynomial inequality. Ranges
described by a conjunction of several in-
equalities can be handled similarly,
sometimes by applying multilevel data
structures, where each level processes
one of the inequalities.

A disk C = C(al, az, as) c 5?2 with

center (al, az ) and radius a3 is described
by the inequality (xl – al)2 + (X2 – a2)2
< a!. More generally, we consider ranges

of the form

R~(a) = {x E R~; f(x, a) 2 O},

where f is a fixed polynomial in d + p
variables xl, . . ..x~. al, a.. ,a .

!
The poly-

nomial f specifies the type o the consid-
ered ranges (disks, conies, cylinders, . ..).
and a is a p-dimensional parameter vec-
tor determining the particular range of
the given type (a particular disk, etc.).
The set of admissible ranges for such a
problem is 9? = {Rf(a); a e E%p}.

“fOne posslb e way of solving the range-
searching problems with ranges from ~f
is a direct transformation to halfspace
range searching in space of higher di-
mension, the so-called linearization of the
problem. Let us consider the example
with disks, where

~(xl, x,, al, a,, a,)

=a~ – (xl –al)z – (x2 –a2)2

= a; — a! — al + 2a1x1

+ 2a2x2 –x; —x;.

We define a mapping q: R2 - R4 by
2). A key prop-p(xl, X2) = (xl, X2, x;, X2

erty of this mapping is the following.
For every disk C = C(al, az, as) there

exists a halfspace H = H(al, az, a3) in

R4 such that C = p- l(H) or, in other
words, the points of the plane mapped by
~ into the halfspace H are exactly those
of the disk C. It is easy to see that a
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suitable halfspace is H = {(tl, tz, t~, t4)
= iR4; 2a1t1 + 2aztz – t~ – t~ + a: – a?
– al > O}. A mapping q with the above-
described property is called a lineariza-
tion. A linearization allows us to trans-
form the disk range-searching problem in
the plane with a point set P to the half-
space range-searching problem in R 4
with the point set 9(P).

The linearization p was obtained by
introducing one new coordinate t] for
each monomial in the variables x ~, Xz
occurring in the polynomial f. A problem
with an arbitrary polynomial f can be
linearized in the same way—the lin-
earization arising in this way is known
in algebraic geometry as the Veronese
map; see Harris [1992] —and thus we
obtain nontrivial range-searching algo-
rithms for ranges from @ . This impor-

dtant observation was ma e in Yao and
Yao [1985].

The example with disks, which we used
to demonstrate the general method, also
shows that this method is sometimes
wasteful in the dimension of the image
space. It is well known that the disks in
the plane can be linearized in the above
sense in dimension 3. Geometrically, each
disk can be obtained as a vertical projec-
tion of the intersection of a certain half-
space in R 3 with the paraboloid z = x 2
+ y 2 onto the plane z = O. Thus a better
linearization is obtained by mapping the
plane onto the paraboloid by the map-
ping (x, y) ~ (x, y, X2 + yz). This trans-
formation, sometimes called a lifting, has
many important consequences in compu-
tational geometry, e.g., a close relation-
ship between Voronoi diagrams in the
plane and convex polytopes in R 3; see
Edelsbrunner [1987]. A linearization of a
minimum dimension for a given polyno-
mial f can be found effectively by solving
a system of linear equations; see Agarwal
and MatouEek [1994].

An important example of linearization
in this sense is frequently used in prob-
lems dealing with lines in lR3. A line in
R’ is naturally described by four real
parameters (coordinates). Given two lines
H, E’ in R3, the predicate “does # lie
above f“ is nonlinear when expressed

using this four-parameter description of
the lines. However, the predicate be-
comes linear if expressed using the
so-called Plucker coordinates: these co-
ordinates correspond to points in (pro-
jective) 5-dimensional space. Here the
situation is further complicated by the
necessitv of dealing with oriented lines,
which l~ads to inte-resting combinatorial
and algorithmic problems. An initial work
in this direction is by Chazelle et al.
[1989]; further developments are given
by Agarwal [1993] and Pellegrini et al.
(e.g., Pellegrini [1992], Pellegrini and
Shor [1992], and Agarwal [1993]).

For some polynomials, ~, we get the
best known range-searching algorithms
by a direct application of linearization. In
other cases faster algorithms are ob-
tained by generalizing the methods for
halfspaces into the “nonlinear” setting,
For example, for disk range searching in
the plane, the reduction to halfspace
range searching in dimension 3 yields
roughly n2/ 3 query time with linear
space, However, for example, one can im-
itate the algorithm of Matou~ek [ 1992b],
replacing halfplanes by circles and gen-
eralizing the necessary results appropri-
ately, and arrive at a linear space

algorithm with query time close to 6.
We will briefly discuss the complexity

of algorithms constructed in this way for
range-searching problems with ranges in
@f. More information can be found in
Agarwal and Matou~ek [1994]. Roughly
speaking, we can say that the exponent
in the query complexity for a linear space
depends on d, the dimension of the
space containing the point set, while the
space requirement for a logarithmic
query time depends mainly on p, the
number of parameters determining a
range. (Here we talk about bounds for
specific algorithms; the true complexity
might perhaps sometimes be smaller.)
For disk range searching in the plane we
have d = 2, and the query time for linear

space is approximately n l–l/z ~ fi; the

number of parameters is n = 3. and stor-
age close t; 0( n3) guara~tees a logarith-
mic query time. From this the reader
might conclude that for a given d, p we
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obtain bounds close to nl– 1”, resp.,
about n‘. This could (should?) indeed be
the case, but a proof is only known if
d <3, resp., p s 3. For higher dimen-
sions there is an obstacle: the unsolved
problem of an efficient decomposition of
an arrangement of algebraic surfaces.

We explain the required notions on a
very informal level only, since exact defi-
nitions would occupy too much space. Let

fl19...>4zn be algebraic hypersurfaces in
R‘, i.e., subsets described by a single
algebraic equation—the reader may
imagine (hyper)spheres. Analogously to a
hyperplane arrangement, the hypersur-
faces ml, . . . . u. partition R d into cells
(not necessarily convex ones anymore),
each cell being characterized by a partic-
ular sign pattern for the polynomials
defining al,. ... a.. The number of such
cells is 0( n~ ). (The hidden constant de-
pends on d and on the degrees of the
defining polynomials.) For imitating the
techniques for halfspace range searching,
we still need to partition each of the cells
into elementary cells (as defined in the
beginning of the current section). It is not
important how the particular elementary
cells used for the decomposition look. It
is essential that each of them is de-
scribed by a constant number of parame-
ters. For spheres, we could for instance
use intersections of constantly many
balls, spheres, and complements of balls
as the elementary cells.

Ifvl, ,.., a,, are hyperplanes, it is not
difficult to partition all cells of their ar-
rangement into 0( nd ) simplices in total.
It is conjectured that for general alge-
braic hypersurfaces of bounded degree
there also exists a decomposition into ap-
proximately n d elementary cells, but
proving it seems to be hard. The best
known general construction, due to
Chazelle et al. [1991], gives approxi-
mately nz d” 3 elementary cells (for d > 3;
in the planar case it is easy to obtain
0( nz ) elementary cells). This is almost
optimal in dimension 3, but for higher
dimensions there remains a significant
gap between the lower bound of nd and
upper bound of approximately nzd – 3.

The relationship between this decom-
position problem to range-searching algo-

rithms for ranges from %t is as follows.
If we can decompose the arrangement of
any m hypersurfaces in R d of a certain
type (determined by the polynomial f)
into 0( mb ) elementary cells, we obtain,
for an n-point set, query complexity
roughly 0( nl – 1‘ ~, with linear storage.
Similarly, decompositions into O(m~) el-
ementary cells for any m hypersurfaces
in R p (again determined by f) imply
logarithmic query time with space
O(n~+’).

Let us remark that the previously de-
scribed decomposition problem has sev-
eral other motivations besides geometric
range searching. For instance, it is very
important for decision algorithms for the
theory of real closed fields, although other
aspects of the decomposition become im-
portant there (the degrees of polynomial
defining the elementary cells in the de-
composition, etc.).

Even if the problem of decomposition
can be solved satisfactorily, it is not clear
whether the algorithms obtained using
the techniques discussed above are close
to optimal. For instance, consider the
problem of range searching with cones in
R3 of the form z > (x – CZ)2+ (y –
6)2, a, b parameters determining the
cone. (This problem is equivalent to pre-
processing a set of circles in the plane so
that, given a query point, the circles en-
closing it can be found quickly.) Here it is
only known how to get a roughly 0( n2/ 3 )

query time with linear space; in the
arithmetic model, however, query com-

plexity can be made only O(h) with
0(n) generators (see Section 3). Cur-
rently it is unclear if a better algorithm
also exists or if the arithmetic model is
too unrealistic here and a strong lower
bound holds in some other model of com-
putation.

In concluding this section, we men-
tion recent combinatorial results which
may prove very significant for the theory
of geometric searching. Let
ff~, ..., u. c E%d ~eng~aphs of algebraic
functions fl, ..., f.: R~-l ~ R, of a con-
stant-bounded degree. The lower enve-

lope of Cal,... j q is the graph of the
pointwise minimum of fl, . . . . f.. After a
series of previous partial results,
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Halperin and Sharir [1994] and Sharir
[1993] recently proved nearly tight upper
bound on the worst-case combinatorial
complexity of the lower envelope—
O(nd -1+ ‘), for an arbitrarily small

constant e > 0. Some range-searching
problems (typically range-emptiness
problems) can be formulated to detect
whether a query point lies below the
lower envelope of a collection of algebraic
surfaces in a small dimension d. Know-
ing the complexity of the lower envelope,
one might hope to obtain algorithms with,
say, polylogarithmic query time and stor-
age O(n ‘-1 + ‘), or even some form of
space/query time tradeoff. Currently no
general algorithm (essentially point loca-
tion below the lower envelope) taking ad-
vantage of the new combinatorial bound
is known, The obstacle is the decomposi-
tion of the lower envelope into constant
complexity cells (again!). A special case
(with a particular type of surface) was
solved by Mohaban and Sharir [1993].
They considered testing whether a query
line lies above all spheres of a given col-
lection; the analysis of their algorithm
utilizes the new bound (for d = 4).

Related research aims at bounding the
combinatorial complexity of a single cell
in an arrangement of n al ebraic sur-

~faces of bounded degree in R . One might
hope that this complexity is close to nd -1;
see Aronov and Sharir [1992] and
Halperin and Sharir [ 1994].

6.5 Ray Shooting and Linear Optimization

In this section we consider another type
of generalization of geometric range-
searching problems. A good and im-
portant example is the ray-shooting
problem, whose special case was al-
ready mentioned as Problem 2.3. In such
problems we are given some set r of
geometric objects (planes, triangles,
balls), and the goal is to construct a data
structure such that for a given point o
and direction @ we can quickly deter-
mine the object of 17 hit by a ray p sent
from the point o in the direction (3. (More
formally, p is a semiline originating in o,
and the question is which object of r is
the one intersecting p closest to o.)

This problem is very popular in com-
puter graphics, where it arises as an aux-
iliary problem in determining visibility of
objects, hidden-surface elimination, ray
tracing, and in other situations.

The ray-shooting problem has a some-
what different flavor than the range-
searching problems, but it can be solved
efficiently using data structures for suit-
able derived range-searching problems.
We illustrate this relation on a specific
problem, ray shooting in a convex poly-
tope. Here the role of r is played by a set
of H of hyperplanes in R‘. For simplicity
let us assume that none of the hyper-
planes of H is vertical, and let U denote
the upper unbounded cell of the arrange-
ment of H, i.e., the set of points lying
above all the hyperplanes. In our ray-
shooting problem, we only permit rays
originating in U.

This problem is useful in a number of
applications. For instance, the problem of
determining the closest point from a set
P c F?d- 1 to a given point, the so-called
post office problem, can be transformed
into it. In dimensions higher than 3, this
yields the most efficient algorithms for
the post office problem, which can more-
over be dynamized; see MatouEek and
Schwarzkopf [1993].

Let us suppose that the given query
ray p with origin o = U intersects the
first hyperplane from H in a point x’.
Finding this point is our goal (together
with the appropriate hyperplane). Given
any point x = p, we can decide whether
x lies before x* or after x*: it suffices to
test whether the segment ox intersects
at least one hyperplane of H, and by the
assumption o = U this happens iff x @
U. The test whether x lies in U, that is,
whether it lies above all hyperplanes of
H, is the dual version of the halfspace
emptiness problem, and thus the algo-
rithms discussed in Section 6.1 are suit-
able for such tests.

Therefore, although we do not know x+
yet, we can efficiently determine whether
some point x ● p precedes or follows af-
ter x*, and we would like to find x*
using tests of this type. The method of
interval halving suggests itselfi it can
determine the position of x* with some
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Box 5: Parametric Search

Parametric search is a general strategy for algorithm design. Roughly speaking, we can say It produces
algorithms for searching from algorithms for verification, under suitable assumptions.

Let us consider a problem in which the goal is to find a particular real number, t*,which depends on
some input objects. We consider these input objects fixed. Suppose that we have two algorithms at our
disposal First, an algorithm O, which for a given number t decides among the possibilities t< t‘,t= t”,
and t > t* (although it does not explicitly know t*, only the input objects); let us call such an algorithm O
the oracle. Second, an algorithm G (called the generzc algorithm), whose computation depends on the input
objects and on a real parameter t, and for which it is guaranteed that its computation for t = t * differs

from the computation for any other t# t‘.We can also use algorithm O in the role of G, but often it is
possible to employ a simpler algorithm for G. Under certain quite weak assumptions about algorithm G,

the parametric search produces an algorithm for finding t‘.
The mam idea M to simulate the computation of algorithm G for the (yet unknown) parameter value

t = t*.The computation of G of course depends on t,but we assume that all the required information about
t M obtained by testing the signs of polynomials of small (constant bounded) degree in t. The coef%cients in
each such polynomial may depend on the input objects of the algorithm and on the outcomes of the
previous tests, but not directly on t.The sign of a particular polynomial can also be tested in the unknown

t’: we find the roots tl, . . . . tk of the polynomial p; we locate t” among them using the algorithm O, and we
derive the sign of p(t”) from It. In this way we can simulate the computation of the algorithm G at t‘.

If we record all tests involving t made by algorlthm G during its computation, we can then find the

(unique) value t* giving appropriate results m all these tests, thereby solving the search problem.
In this version we need several calls to the oracle for every test performed by algorithm G. The second

idea is to do many tests at once, whenever possible. If algorithm G executes a group of mutually
independent tests with polynomials p I( t),....pm(t)(meaning that the polynomial p, does not depend on

the outcome of the test involving another polynomial pJ), we can answer all of them by O(log n) calls of
the oracle. we compute the roots of all the polynomials pl,. . . . pm, and we locate the position of t* among

them by binary search. Parametric search will thus be particularly efficient for algorithms G Implemented
in parallel, with a small number of parallel steps, since the tests in one parallel step are necessarily

independent in the above-mentioned sense,
Parametric search was formulated by Megiddo [ 1983]; the idea of simulating an algorithm at a generic

value appears in Eisner and Severance [ 1976], Gus field [ 1983], and Megiddo [ 1979]. A technical
Improvement, which sometimes reduces the running time by a logarithmic factor, was suggested by Cole

[1$3871. -4 generalization of parametric search to higher dimension, where the parameter t is a point in Rd
and the oracle can test the position of t*with respect to a given hyperplane, appears in Cole et al, [ 1987],

Cohen and Megiddo [1993], Norton et al. [1992], and MatouEek [1993a]. Currently, parametric search is a
quite popular technique in computational geometry also; from numerous recent efforts, we select more or
less randomly [Cole et al, 1989; Agarwal et al. 1993; 1992; Chazelle et al. 1993].

Algorithms based on parametric search, although theoretically elegant, appear quite complicated for
implementation. In many specific problems, parametric search can be replaced by a randomized algorithm

(see Dillencourt et al. [1992] and Matou3ek [ 1991b]) or by other techniques (e g , Chazelle et al. [1993] and
Katz and Shanr [1993]) with a slmdar efficiency,

required numerical precision. This ap-
proach may not be bad in practice, but in
our infinite-precision computation model
it does not suffice, since an arbitrarily
small interval along p may still contain
many intersections with hyperplanes of

II. Thus we cannot determine the first
intersected hyperplane in a bounded
number of steps. However, we can apply
the method of parametric search (see box
5) which allows us to find X* exactly, and
usually quite efficiently. In connection
with this method, data structures for the
halfspace emptiness problem can be ap-
plied for ray shooting in a convex poly-
tope as well. The space requirement

remains the same (since the data struc-
ture is identical), and the query time
increases by a small power of log n.

The passage described above, from
halfspace emptiness testing to ray shoot-
ing in convex pol ytope, is illustrated in

Figure 4. Figure 4(a) shows a half-space
emptiness query schematically; 4(a’) il-
lustrates the dual version—testing
whether a query point lies above all hy-
perplanes. Figure 4(b’) depicts the ray-
shooting problem; the dual version (b)
means that we translate the bounding
hyperplane of a given halfspace; we are
interested in the first point hit by this
hyperplane. In both the primal and the
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Figure 4. Adding degrees of freedom to the halfspace emptiness query

dual versions, we can interpret the pas-
sage from Figure 4(a) to (b) as adding
one degree of freedom to the query object
(point, halfspace) and looking for an ex-
tremal position within the given freedom.

The approach explained for ray shoot-
ing in convex polytopes is also applicable
for other versions of the ray-shooting
problem. First we formulate the derived
range-searching problem, namely a test
whether some initial segment ox of an
admissible ray intersects at least one ob-
ject from r. For this problem, we build a

data structure using the techniques for
geometric range searching. (We usually
construct a suitable multilevel data
structure.) Then we apply parametric
search and obtain a ray-shooting algo-
rithm. The application of this strategy for
particular ray-shooting problems does not
need to be quite routine, however.

The idea of employing range-searching
data structures for ray shooting is a nat-
ural one, and it appears in several pa-
pers, e.g., see De Berg et al. [1994]. The
systematic approach (described above)
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via parametric search was suggested in

Agarwal and Matou3ek [1993] and
demonstrated in several examples. Some
particular data structures for halfspace
emptiness queries can be adapted di-
rectly for ray shooting in convex poly -
topes, which eliminates parametric
search and speeds up query answering
to some extent; see Matou;ek and
Schwarzkopf [1993].

Let us return to ray shooting in convex
polytopes and its interpretation as mem-
bership queries for the convex polytope
with one added degree of freedom (see
Figure 4). From this point of view it is
natural to add still more degrees of free-
dom to the query object, at most all d
degrees of freedom, and look for some
extremal position. Such a situation is
shown in Figure 4(c ‘): instead of a single
point or an (oriented) ray, we are given a
linear function c (which can be inter-
preted as a direction in d-space, that is,
a generalization of the orientation of the
ray). We then want to find a vertex XO
of the polytope U maximizing the func-
tion c.

The resulting problem is in fact a lin-
ear programming problem, but in a spe-
cial situation, where the constraints are
given in advance, while the optimized
function is a query. 11 MatouEek [1993a]
has shown that algorithms for halfspace
emptiness queries can be transformed to
solve this linear programming problem
also, with query complexity increased by

a polylogarithmic factor only (and with
the same data structure). This result uses
a multidimensional version of parametric
search, and the construction proceeds by
induction on the number of degrees of
freedom of the query object, The result-
ing algorithm is quite complicated, and it
would be useful to find a simpler (maybe
randomized) variant.

‘ 1The dual version is not so intuitive in this case—it
1s the finding of an emtpy halfspace maximizing a
gwen hnear function. Some optimal halfspace is
always determmed by a d-tuple of points from the

given point set, or, m other words, it is supported
by a facet of the convex hull; see Figure 4(c)

With a dynamic halfspace emptiness
data structure as a basis, one may also
insert and delete constraints. Using this
machinery one can answer various
queries concerning the convex hull of the
set P, as we have mentioned at the end
of Section 6.2.

Let us mention an application of this
result to one classical computational ge-
ometry problem: that of finding extremal
points. The input is an n-point set P c
R”, and we want to detect which points
of P are extremal, i.e., are vertices of the
convex hull of P. This problem can be
solved by computing a combinatorial rep-
resentation of the convex hull of P, but

for dimensions d >4 this method is fairly

inefficient, since the convex hull of an
n-point set in Eld can have combinatorial
complexity of the order n[d/21. Testing
whether a point is extremal can be for-
mulated as a linear programming prob-
lem in dimension d with n constraints.

For different points these linear pro-
grams only differ by two constraints, so
we can use linear programming in the

preprocessing/query mode. We build a
data structure for the appropriate con-
straints, and with its help we answer n
queries, thereby determining the ex-
tremal points. 12 By suitably balancing
the preprocessing time and query time,
we obtain, for example, a total time
0(n4/3 +‘) in dimension 4, which is the
most efficient known method.

6.6 More on Applications

The literature on computational geome-
try with applications for range searching
is too extensive to be reviewed here. A
survey paper by Agarwal [1991] contains
many such applications. Let us, however,
stress only one point, namely that most
of the problems where range searching
has been applied are not of the prepro-
cessing/query type. An example is the

Iz It would seem that we must use a dynamic data
structure, but in fact we can use a special treat-
ment for this problem and get away with a static
structure
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computation of extreme points, men-
tioned at the end of the previous section.

Let us give one more (rather artificial)
example to illustrate our point. Suppose
that we want to count the number of
pairwise intersections for a set S of n
segments in the plane. An approach via
range searching is to build a data struc-
ture which, given a query segment q,
counts the number of segments of S in-
tersected by it. Then we query the struc-
ture by each segment of S, sum the
answers, and divide the sum by 2. (We
must somehow deal with the singular
cases of segments intersecting them-
selves, but this can be taken care of.)
With the methods reviewed above, the
required data structure is designed in a
more or less routine manner (using the
multilevel construction and halfplane de-
composition schemes). When the prepro-
cessing and query time are balanced ap-
propriately, we obtain an 0(n4/3 +‘)
algorithm.

The reader might suspect that this is a
very sloppy way of solving the problem,
and that we could do better with some
“global” method, rather than imposing
the preprocessing/query mode not pre-
sent in the original problem. This is only
partially true: there do exist somewhat
better and simpler algorithms (those
based on cuttings, e.g., see Agarwal

[19901), but their complexity is only
slightly better, about 0( n4/ 3 log’ n) for a
small constant c. (We do not give a spe-
cific value, since by using some newer
results on cuttings one can improve the

published algorithms to some extent.)
And it is believed that this might be
roughly the actual complexity of the
problem.13 Thus, the application of
range-searching tools gave us a theoreti-
cally good algorithm very quickly.

This situation does not seem to be an
exception. For many problems, the algo-
rithm based on range searching indicates

13No lower bound larger than n log n is known, and
problems of this type seem much !ess tractable
than the query-type problems as far as lower bounds
are concerned.

the complexity we can expect for other
problem-specific and hopefully simpler
and more practical algorithms also, And
for many problems that are more compli-
cated, no such specific algorithms have
been elaborated, and the range-searching
approach has remained the best pub-
lished solution. Examples are hidden-
surface removal problems (e.g., see De
Berg et al. [1994]), counting circular arc
intersections [Agarwal et al, 1993], prob-
lems concerning lines in space (e.g., Pel-
legrini [1992]), and the above-mentioned
extreme point detection, to quote only
a few.

7, A NCITE IN CONCLUSION

This text was intended as a survey arti-
cle on geometric range searching. Al-
though its extent is much larger than
originally planned, it does not include
everything that it perhaps should in-
clude. The choice of the material neces-
sarily reflects the taste and knowledge of
the author, and in topics mentioned only
briefly (such as the broad area of applica-
tions) we can only refer to the literature.
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