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1 Introduction

Computational geometry is, in its broadest sense, the study of geometric problems from a
computational point of view. At the core of the field is a set of techniques for the design
and analysis of geometric algorithms. These algorithms often operate on, and are guided
by, a set of data structures that are ubiquitous in geometric computing. These include
arrangements, Voronoi diagrams, and Delaunay triangulations. It is the purpose of this paper
to present a tutorial introduction to these basic geometric data structures.

The material for this paper is assembled from lectures that the author has given in
his computational geometry courses at the Massachusetts Institute of Technology and at
Stanford University over the past four years. The lectures were scribed by students and
then revised by the author. A list of the students who contributed their notes appears at
the end of the paper. Additional material on the data structures presented here can be
found in the standard texts Computational Geometry, An Introduction, by F. P. Preparata and
M. I. Shamos (Springer-Verlag, 1985), and Algorithms in Combinatorial Geometry by H. Edels-
brunner (Springer-Verlag, 1987), as well as in the additional references at the end of the
paper.

Let us end this brief introduction by noting that the excitement of computational ge-
ometry is due to a combination of factors: deep connections with classical mathematics
and theoretical computer science on the one hand, and many ties with applications on the
other. Indeed, the origins of the discipline clearly lie in geometric questions that arose
in areas such as computer graphics and solid modeling, computer-aided design, robotics,
computer vision, etc. Not only have these more applied areas been a source of problems
and inspiration for computational geometry but, conversely, several techniques from com-
putational geometry have been found useful in practice as well. The level of mathematical
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sophistication needed for work in the field has risen sharply in the last four to five years.
Nevertheless, many of the new algorithms are simple and practical to implement—it is
only their analysis that requires advanced mathematical tools.

Because of the tutorial nature of this write-up, few references are given in the main
body of the text. The papers on which this exposition is based are listed in the bibliography
section at the end.

2 Arrangements of Lines in the Plane

Computation Model

We need to define the model of computation we will use to analyze our algorithms. Our
computing machine will be assumed to have an unbounded random-access memory (Al-
though it’s unbounded, we will frequently worry about how much space we are actually
using.) that is separated, for convenience, into an Integer Bank I and a Real Bank R. We
can read or write any location by indexing into the memory, denoted I[j] or R[j], where j
is an integer. Note that indirection is allowed, as in R[I[I[j]]]. We will assume we can per-
form all standard arithmetic operations (addition, multiplication, modulo, etc.) in constant
time. Operations on real numbers (and the real number memory) are infinite precision.

At this point, we may start worrying about this model, because the assumptions for
arithmetic operations, infinite precision reals, and possibly huge integers allow all sorts of
strange and completely impractical algorithms. (For example, you could encode a huge
pre-computed table as a large integer or an infinite-precision real.) To address these con-
cerns, we add two caveats to the model, which will prevent any of this weirdness: (1)
integers cannot be too big, i.e. if the input is size n, there must be some polynomial P(n)
that bounds the legal values of integers, and (2) the operations we allow in constant time
must be algebraic, so a square root is fine, for example, but an arctangent isn’t.

While this model of computation is a theoretically reasonable one, there are still some
practical problems. The basic problem is the infinite-precision numbers. On a real com-
puter, the floating-point representation introduces round-off error, so the laws of real arith-
metic don’t quite hold for floating-point numbers. In many applications, this problem is
insignificant. In computational geometry, however, we are blending combinatorics and
numerics, so a small round-off error may throw an algorithm completely off. (For exam-
ple, consider an algorithm that branches on the sign of some value. A small perturbation
that changes a 10−9 to a −10−9 may cause a completely different computation to occur.)
If we try to use integers or rationals instead, we no longer have round-off error, but we
lose the closure property of real numbers; the intersection of a circle and a line defined on
integer coordinates, for example, can be not only non-integral, but non-rational as well.
Dealing with these issues is currently an active area of research.

Duality

We continue with a brief introduction to some geometric dualities between points and
lines. We denote the dual of a point P by D(P) and the dual of a line l by D(l).
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Figure 1: The duality (a, b) 7→ y = ax + b preserves aboveness.

The first duality we consider maps a point (a, b) to the line y = ax + b; and the line
y = λx + µ, to the point (−λ, µ). This duality maintains incidence between points and
lines, i.e. point P is on line l if and only if point D(l) is on line D(P). Let’s check this claim:
Point (a, b) is on line y = λx + µ if and only if b = λa + µ. Thus, b− λa− µ tells us how far
the point is above the line. In the dual case, we check point (−λ, µ) against line y = ax + b
and find that the distance is µ + λa− b, which is exactly the negative of the distance in the
primal. This duality preserves not only incidence, but the relationship (and distance) of
aboveness. (See Figure 1.) Another nice property of this duality is that the x coordinate of
a point corresponds to the slope of the dual line. Unfortunately, this duality doesn’t allow
vertical lines.

Let’s consider a second duality (which does handle vertical lines). Map a point (a, b)
to the line ax + by + 1 = 0, and a line λx + µy + 1 = 0 to the point (λ, µ). This duality
also has a nice geometric interpretation. The point (a, b) maps to a line with x-intercept
−1/a and y-intercept −1/b. (See Figure 2.) Therefore, the line from the origin to (a, b) is
perpendicular to the dual line. Furthermore, since triangle M is similar to triangle N, we
have m

a = 1/a
n , which shows that the distance from a point to the origin is the reciprocal of

the distance from the dual line to the origin.

A little thought shows that, although the second duality can handle vertical lines, it
doesn’t handle lines through the origin, which the first duality could. A natural question
is “Is there a duality that can handle any line?” The answer turns out to be no, unless you
go to a projective plane with a line at infinity. However, there are plenty more dualities
to choose from. (We direct any interested reader to the works of H.S.M. Coxeter.) Why
should we bother with all these dualities? Many times we have problems dealing with a
collection of points (or lines). Sometimes, working in the dual turns out to be much easier
than the original problem. We’ll see an example of this later.

Arrangements

With the background material out of the way, we start on our first topic in computational
geometry: line arrangements on the plane. Intuitively, the problem is, given n straight lines
on the plane, determine how they partition the plane and how the pieces fit together. (See
Figure 3.) Formally, an arrangement consists of cells: 0-dimensional cells called “vertices,”
1-dimensional cells called “edges,” and 2-dimensional cells called “regions” or “faces.”
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Figure 2: The duality (a, b) 7→ ax + by + 1 = 0 inverts distance to the origin.

Many problems in computational geometry can be viewed as arrangement problems.

Suppose we have n lines. How many vertices are there in the arrangement? Well, ev-
ery two lines will intersect to produce a vertex, so the number is just (n

2). At this point, the
reader may object, “What if some lines are parallel or concurrent?” In our discussion, we
will consider things to be in “general position.” In this case, we assume that no 2 lines are
parallel and no 3 lines are concurrent. In some other cases, we will also assume no vertical
or horizontal lines. (In real life, we can perturb the input slightly to put things in gen-
eral position.) General position yields combinatorially larger results than the specialized
degenerate cases, so it makes sense to do our analysis this way.

How many edges are there? Each line gets chopped into n edges by the other n − 1
lines, so there are n2 total edges. How many faces? Each vertex is the bottom vertex of a
face. This gives (n

2) faces. In addition, there are n + 1 faces at the bottom of the arrangement
that don’t have bottom vertices. Therefore, the total number of faces is just (n

2) + n + 1.

Here is a problem to think about. In the above arrangement, vertices and edges are
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Figure 3: An Arrangement of Lines on the Plane

Figure 4: Extending “threads” from each vertex triangulates an arrangement.

nice, simple objects, but the faces can get messy. (You can keep track of a vertex as just a
pair of coordinates and an edge as just a pair of vertices, but you may need up to n edges
to define a face.) In many applications, we want to have faces of bounded complexity. This
modification is called a “triangulated arrangement.” One way to produce a triangulated
arrangement is to take a normal arrangement and extend a “thread” up and down from
each vertex until it hits a line. (See Figure 4.) Now, each face is a trapezoid, which only
needs 4 edges to describe. (One might be tempted to call what we just did “trapezoidal-
ization” as opposed to “triangulation.” In general, we’ll use “triangulation” to refer to any
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Figure 5: The zone of the darker line consists of the marked faces.

scheme to reduce the faces to finite complexity.) The question is, “How many trapezoids
do you get?”

More Counting

The correct solution is 3(n
2) + n + 1. We arrive at this result by noting that each thread

breaks an existing face into two and that each vertex produces two threads, giving 2(n
2) +

(n
2) + n + 1.

Returning to the original (non-triangulated) problem, we note that a face can have as
few as 2 and as many as n edges. How many edges does an average face have? Each edge
counts toward both faces that it touches, so we have twice the number of edges divided by
the number of faces or 2n2/((n

2) + n + 1), which is approximately 4.

Now, suppose we add a new line to the arrangement of n lines. What faces of the
original arrangement do we touch? These faces are called the “zone” or the “horizon” of
the new line. (See Figure 5.) Let’s do some more counting. How many faces are there in a
zone? Since we can intersect each of the original lines exactly once, and each time we do
this, we touch exactly one new face, there are n + 1 faces in the zone of a line.

A harder problem is counting the number of edges (or vertices) in a zone. We can get a
quick upper bound by noting that each face can have at most n edges, and there are n + 1
faces in the zone, yielding an O(n2) upper bound. Since the average number of edges per
face is 4 and the number of faces is n + 1, we might wishfully hope to get a linear bound.
This argument, however, isn’t logically valid since the average we computed was over all
faces, so a given line might just run into the bad ones. A careful argument, though, does
give us a linear bound. This argument is the Zone Theorem.

6



split

split

new

old

old

Figure 6: Introducing the dashed line creates the 3 additional marked edges.

The Zone Theorem

We’re actually only dealing with the Zone Theorem (also known as the Horizon Theorem)
for lines on the plane. The Zone Theorem states:

Theorem 1. The zone of a straight line intersecting an arrangement of n straight lines in
the plane has at most 6n edges. The same bound holds for the number of vertices as well.

Proof: Without loss of generality, we can assume the new line is horizontal. (If not, we
can always rotate our head slightly until it is.) Let’s only count the right edges of the faces
of the zone. (Remember we’re in general position, so every edge of a face is either a right
edge or a left edge.) If we can bound the number of right edges by 3n, we can then stand on
our heads and apply the same argument to get the left edges. Combining the two counts
will give us the desired 6n bound.

Suppose we introduce the n lines of the arrangement one-at-a-time, ordered from right
to left by the intersection point of the line with the zone line. Each time we introduce an
additional line, we can create at most 3 new right edges, since the new line introduces
one new right edge and splits two previous ones. (See Figure 6.) Above and below the
intersection points, the already-added lines shield the new line from having any further
effect on the zone. Thus, we have the 3n bound on right edges. QED

(We mention that applying this argument even more carefully gives a bound of 6n− 2,
and that an even more precise argument gives a slightly lower bound, about 5.5n.)

So, we have the Zone Theorem. Who cares? Well, we can use the Zone Theorem to
create an efficient incremental method of computing arrangements. Suppose we have an
arrangement (like Figure 3) and we want to add an additional line (like the dark one in
Figure 5), we can compute the new arrangement by putting our left hand on the wall of
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Figure 7: Walking around the zone follows the dashed line.

the zone and walking around the zone, marking off faces whenever we cross the new line.
(See Figure 7.) (This is called a “labyrinth” walk, since you can get out of certain kinds of
mazes this way.) By the Zone Theorem, the cost of this walk is linear. Thus, we can add a
line to an arrangement in linear time, yielding an O(n2) incremental algorithm to construct
an arrangement, which is optimal up to a constant factor. This example nicely illustrates
an application of combinatorial geometry (the Zone Theorem) to computational geometry
(the incremental method).

Some Applications

Now let’s look at some applications of arrangements. In vision, we are frequently given
a bunch of points on the plane and asked if there are a bunch on a line. (In robotics, this
same problem arises in three dimensions, because we’ll be looking for solid surfaces based
on sensor input. Also, collinear points screw up certain algorithms, so it’s important to be
able to find them.)

Obviously, we can look at every set of 3 points and check if they’re collinear. This
process requires time (n

3) = O(n3). The only known lower bound for this problem is
Ω(n log n). By taking the dual of the points and looking for three concurrent lines, we can
solve this problem in time O(n2). This result is the best known for the last 15 years and is
an open area for research.

Let’s generalize this problem. Given a bunch of points, what is the smallest area tri-
angle defined by three of them? We claim that again, by duality, we can get an O(n2)
algorithm as opposed to the Θ(n3) obvious one. Fix any two points. The smallest triangle
is given by the closest point to the line determined by those two points. By similar trian-
gles, we can use the distance in the vertical direction, rather than the true distance. Recall
that our first duality preserves vertical distance. So, in the primal we take any two points,
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consider the line they determine, and find the nearest point to that line. In the dual, we
take any two lines, consider the point they determine (the intersection vertex), and find the
nearest line to that point. But the problem in the dual is exactly the problem of finding the
shortest “thread” in a triangulated arrangement! We can dualize the points in linear time.
Constructing the arrangement takes an additional O(n2) time. So we need to be able to
find the shortest thread in O(n2) time as well in order to achieve the desired O(n2) overall
bound.

To find the shortest thread, one possibility is to merge the vertices of the upper and
lower edges of each face, walking along both at the same time, to compute the length of
all the threads through a face. Since the total number of edges is quadratic, this method
clearly gives us the desired bound.

Another possibility is to walk around each face, computing the threads for each one as
we go. At first glance, this method appears to be quartic, since there are O(n2) faces, each
face has O(n) edges, and each step of the walk will require checking the O(n) other edges
of the current face. A more careful analysis, however, shows that the cost is equal to

∑
(faces f )

∑
(edges of f )

∑
(other edges of f )

1 = ∑
lines l

∑ edges of faces incident on l

= ∑
lines l

Zone(l)

= O(n2)

by interchanging the order of summation and applying the trusty Zone Theorem.

Let us note that the O(n2) method we just described require Ω(n2) space. Is there a
more efficient methond space-wise? The answer is yes, by using a new paradigm called
“Line Sweeping,” in which we sweep a vertical line across the arrangement, only keeping
track of the zone of this sweep line. This gives us an algorithm with O(n2 log n) time and
O(n) space directly. Further refinements bring the bounds to O(n2) time and O(n) space,
as we will see.

3 Topological Sweeps for Computing Arrangements

Topological vs. Linear Sweeps

There is a very simple algorithm for computing the arrangement of n lines in the x-y-plane,
based on the “line-sweeping” paradigm. For lack of space, we do not present the details
here. Intuitively, the algorithm takes a “vertical” (perpendicular to the x-axis) line in the
plane and “sweeps” it along the x-axis. As the sweep proceeds, changes in the order in
which the different lines crossed the sweep line are noted, and thus the complete arrange-
ment is determined. Unfortunately, the algorithm implicitly “sorts” the n2 intersection
points according to their x-coordinates, and consequently, its running time wasO(n2 lg n).
In addition, the algorithm makes use of balanced-tree data structures, and consequently is
not easy to implement.

We now consider a variation of the sweep algorithm which replaces the sweep line
with a “topological” wavefront. The algorithm has O(n2) running time, yet still requires
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Figure 8: The cut c0, c1, c2, c3, c4 defines the indicated topological line. The shaded region
indicates the convex polygonal region defined by c3 and c4.

only O(n) working space. The algorithm is also easier to implement, since only array data
structures are needed. Throughout the lecture, we assume that the set of n lines is nonde-
generate, i.e., no three lines cross at a single point, and no lines are vertical (perpendicular
to the x-axis).

Topological Lines

The definition of the desired wavefront makes use of the “above” ordering described in the
previous lecture. Specifically, a topological line is defined by an ordered sequence of edges
c0, c1, . . . , cn−1 such that c0 borders the top (as defined by the “above” ordering) region,
cn−1 borders the bottom region, and each adjacent pair of edges (ci, ci+1) is such that ci and
ci+1 lie on a single convex polygonal region in the plane, and ci is before ci+1 in the “above”
ordering. Figure 8 shows a topological line for a simple set of 5 lines. The shaded region
indicates the convex polygonal region shared by edges c3 and c4. Formally, the sequence
of edged defining a topological line is called a cut.

Observe that each of the n lines in the plane must have exactly one segment in any cut.
If two segments of a single line were in a single cut, then it would be possible to show
that a cycle exists in the “above” ordering. Consequently, a line in the plane can have at
most a single edge in any cut, since it was shown previously that such a cycle cannot exist.
In addition, each line must have at least one segment in every cut, since a cut essentially
defines a path from the top region to the bottom region (crossing over each of the segments
in the cut) and every line separates the top and bottom regions.

A cut C is said to be to the left of another cut C′, if for every line l in the plane, the
segment of l in C is to the left of the segment of l in C′. Using this ordering, it is possible
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Figure 9: An elementary step removes two edges from a cut, and replaces them with two
new edges, as shown.
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Figure 10:

to define a leftmost cut and a rightmost cut.

Topological Sweeps

The topological sweep algorithm essentially computes a sequence of cuts C0, C1, . . . , Ck,
where C0 is the leftmost cut, Ck is the rightmost cut, and each adjacent pair of cuts (Ci, Ci+1)
is such that Ci is to the left of Ci+1. Each Ci+1 is computed from Ci with a simple transfor-
mation. Specifically, if there exists in Ci a pair of adjacent edges that share a right endpoint,
as shown in Figure 9(a), then the cut Ci+1 is obtained by locally replacing the adjacent pair
of edges in Ci with the pair of edges indicated in Figure 9(b). This replacement is called
an elementary step. Observe that applying an elementary step to a cut Ci is guaranteed to
result in a cut Ci+1 which is to the right of Ci.

Computing the sequence of cuts C0, C1, . . . , Ck can clearly be done, as long as it can be
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shown that each cut Ci in the sequence contains at least one point where an elementary
step can be applied. Fortunately, it is possible to show that the leftmost right endpoint
of all the edges in any cut Ci must be such a point. Let the point p be the leftmost right
endpoint of the edges in cut Ci, and assume for the purposes of contradiction, that p is
the right endpoint of only a single edge c in Ci, i.e., an elementary step cannot be applied
to p. The fact that p is an endpoint implies that the line containing c must cross some
other line l at point p. Now, consider the point p′ that is the right endpoint of the segment
c′ of l that appears in Ci (we argued earlier that each line must have a segment in any
cut). If the segment c′ appears after the segment c in the cut Ci, then it possible to show
that p′ must be the left of p, which is clearly a contradiction. In particular, the spatial
relationship between p and p′ must be similar to that shown in Figure 10(a), or else it
can be easily argued that the “above” ordering contains a cycle, which previously was
shown to be impossible. Similarly, if the segment c′ appears before the segment c in the
cut Ci, then the spatial relationship between p and p′ must be similar to that shown in
Figure 10(b), and once again, the contradictory conclusion that p′ is to the left of p can be
drawn. Thus, since c′ must either appear before or after c in Ci, p must be right endpoint of
two segments in Ci, and consequently is a point where an elementary step can be applied.
The preceding argument is not valid for the rightmost cut of the arrangement, but this is
of no consequence, since the rightmost cut is always the last in the sequence C0, C1, . . . , Ck.

Since it is always possible to find a pair of edges that share a right endpoint, and given
the fact that each line in the plane must have exactly one segment in each cut, it becomes
apparent that each cut essentially specifies a permutation of the lines in the plane (the left-
most cut corresponds to the permutation that lists all lines in inverse-slope order), while
each elementary step corresponds to a transposition of two adjacent lines in a particular
permutation. In the algorithm using the “vertical” sweep line, the order of the transposi-
tions was determined by the x-coordinate ordering of all the intersections of the n lines. By
switching to a topological sweep line, it becomes possible to perform the transposition on
any suitable pair of edges, while still obtaining the desired arrangement. By eliminating
the need to compute the x-coordinate ordering, it is possible to reduce the amount of time
needed to compute the arrangement.

Horizon Trees

At this point, the overall structure of the topological sweep algorithm is easily stated. The
algorithm begins with the leftmost cut, and maintains a “bag” of points that elementary
steps can be applied to. The algorithm then proceeds to pull a point from the bag, perform
an elementary step, check for new points that belong in the bag, and add any new points
that are discovered. What remains to be described, are methods for generating the leftmost
cut, and finding new points that belong in the bag. Observe, that the need to identify
new points for the bag is particularly troublesome, since a naive search would result in
a “elementary step” that took O(n) time to perform, and an algorithms that was O(n3)
overall. Fortunately, both these tasks can be performed using a complementary pair of
data structures: the upper and lower horizon trees. By making use of horizon trees, the
amortized time required for each elementary step is constant.

The upper (lower) horizon tree of a cut c0, c1, . . . , cn−1 is constructed by extending the
edges in the cut to the right, and “killing” edges as they intersect. In particular, whenever
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Figure 11: Upper and lower horizon trees for the indicated topological line.

two extended edges intersect, the edge of lower (higher) slope no longer continues to be
extended, while edge of higher (lower) slope continues on to the right. Formally, if the
edges c0, c1, . . . , cn−1 are part of the lines l0, l1, . . . , ln−1, then a point p on line li is part of
the upper horizon tree, if

• p is above all lines lj, where j > i, and

• p is below all lines lk, where k < i and lk is of greater slope than li.

Similarly, a point p on line li is part of the lower horizon tree, if
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Figure 12: The basic update procedure for the upper horizon tree. Performing and elemen-
tary step on the circled point requires extending the darkened line, and searching along the
“bay” to find where the extended line intersects the current tree. The final upper horizon
tree is shown to the right.

• p is below all lines lj, where j < i, and

• p is above all lines lk, where k > i and lk is of lesser slope than li.

Figure 11 shows the upper and lower horizon trees for a simple cut. Observe, that the
upper horizon tree is not a tree, but rather a forest of two trees. This “difficulty” can be
remedied by adding a “vertical” line at +∞, which collects the forest into a single tree.
In addition, observe that (as is true in general) the intersection of the upper and lower
horizon trees for the cut is the cut itself. Consequently, the cut can be extracted from the
upper and lower horizon trees, by simply taking for each line in the plane the shorter of
the two edges that exist for the line in the upper and lower trees.

Intuitively, updating the horizon trees after an elementary step is straightforward. Con-
sider the upper horizon tree shown in Figure 12. The circled point is where the elementary
step is to be performed. Updating the upper horizon tree consists of removing the edges
that approach the point from the left, extending the darkened line to the right until it in-
tersects another “branch” of the current horizon tree, and adding the resulting segment
to the new horizon tree. The most difficult part of the update is the search for the point
where the extended line intersects the current horizon tree. Fortunately, this search can be
accomplished by taking the edge, in the current tree, corresponding to the next edge in the
current cut, and then searching back toward the root of the tree for the edge that intersects
the extended line.

Computing the upper horizon tree for the leftmost cut is accomplished in a similar
fashion. Simply presort the lines in reverse slope order, and incrementally construct the
initial horizon tree by “inserting” the lines, in sorted order, with the update routine just
described. Since newly inserted lines act as “shields” which prevent some parts of the tree
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Figure 13: Basic charging scheme for bay traversals. The circled point indicates the site of
the elementary step being performed, while the broken line indicates the parallel support
line that separates the bay into edges whose slopes are greater/less than the slope of the
line being extended.

from ever being examined during subsequent insertions, the total time to construct the
initial upper horizon tree is O(n) overall. The construction of the initial lower horizon tree
is similar.

All that remains to be shown, is that the search for new intersection points can be
accomplished in amortized constant time. Essentially, what needs to be shown is that the
time to perform all such searches is O(n2) total. This can be accomplished by arguing that
the time to perform all the searches associated with the “extension” of a particular line l
is O(n). Consider the search associated with the update of the upper horizon tree after a
particular elementary step where line l is being extended. The search traverses a sequence
of edges, which defines a “bay” of the current horizon tree. The time required for each
“hop” of the traversal, is charged to individual lines in the following fashion. If the hop is
from a edge c to a edge c′, and the slope of c is greater than the slop of line l, then the time
to perform the hop is charged to the line containing c′. Alternately, if the slope of c is less
than the slope of l, then the time for the hop is charged to the line containing c. Since the
slopes of segments must increase monotonically with the traversal, this charging scheme
is guaranteed to account for all the time needed to perform the traversal, except possibly
for the time needed for the first and last hops. Since, however, this accounts for at most a
constant amount of error per traversal, it will be of no consequence. This charging scheme
is depicted graphically in Figure 13.

The key to the argument, is to show that each line in the plane is charged at most
once during all the traversals that are associated with the elementary steps on points of a
particular line l. Consider a line l′ that has been charged for a hop to it from another line
l′′. If p is the point where l′ and l′′ intersect, then clearly, no segment of l′ that begins to
the left of p can be traversed during any search associated with a previous extension of l.
To see this, simply note that the part of l′′ to the left of p effectively “shields” all points on
l′ to the left of p from any previous searches. This fact is depicted graphically in Figure 14.
In addition, no segment of l′ that begins to the right of p can be traversed during any
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Figure 14: The fact that line l′′ charges line l′ in one bay traversal implies that l′′ shields
the portion of l′ (darkened) to the left of point p from being touched by any previous bay
traversal.
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Figure 15: The fact that some previous traversal of a bay traversed an edge of l′ that began
to the right of point p implies the existence of a line like l′′′. which shields p, and thus,
implies a very different form (darkened) for the current traversal.

search associated with a previous extension of l. If such a segment were traversed in some
previous search, then there would have to exist a line l′′′ that intersected l′ at a point below
l, as shown in Figure 15. Observe, however, that such a line l′′′ would “shield” the point p,
thus contradicting the premise that l′ was charged by l′′. Similar arguments demonstrate
that a line charged for a hop from it can also never have been charged during any previous
search associated with an extension of line l. Consequently, since the above arguments
hold even if the charge to line l′ is the last associated with all the extensions of line l, each
line in the plane can be charged at most once. This in turn implies that the time need to
perform all the searches is O(n2) total, and thus, that computing the arrangement of the n
lines can be done in O(n2) time with a topological sweep.
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Figure 16: An arrangement with n = 6, k = 4, c = 3.

4 Davenport-Scchinzel Sequences

Arrangements of Line Segments

When dealing with arrangements of lines, we needed only a single parameter (the number
of lines) to calculate the exact number of vertices, edges, and faces. This is clearly not good
enough for line segments, since an arrangement of n segments can have anywhere from
n to n2 edges. Sometimes in order to analyze a geometric structure, we will need to add
extra parameters relating to the output. In this case, we are interested in three parameters:

• n, the number of line segments

• k, the number of intersections between segments, where 0 ≤ k ≤ (n
2)

• c, the number of connected components in the arrangement

Using these parameters, we can determine the exact number of vertices, edges, and
faces in the arrangement. As before, we will assume that there are no degeneracies (i.e. no
three segments ever coincide, and segments do not intersect at their endpoints). Under
these conditions there is one vertex for each endpoint, plus one for each intersection. For
edges there are n initially, and each intersection adds two more (one for each of the seg-
ments that it splits). Hence we have

v = 2n + k
e = n + 2k.

To count faces we make use of Euler’s Theorem (one of many) which says that v + f =
e + c + 1 for any planar graph. (The constant at the end depends on the topological
properties of the space the graph is embedded into.) Applying this to arrangements of line
segments, we get

f = k− n + c + 1.

The arrangement of figure 16 has 16 vertices, 14 edges, and 2 faces (one of which is the
outer face).
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Figure 17: The lower envelope of three line segments.

Lower Envelopes

We are interested in calculating upper bounds on the complexity of single faces and zones,
just as we did for arrangements of lines. A useful concept in calculating these bounds is the
lower envelope of an arrangement, which can be defined as the portion of the arrangement
visible from z = −∞ (see figure 17). The complexity of the lower envelope is simply the
number of segment portions which are visible.

Consider looking at the arrangement from below at z = −∞. If no segments intersect,
then the lower envelope can change only when we see an endpoint, giving an O(n) upper
bound on the complexity. Similarly, in the general case an upper bound is the number of
endpoints and intersections that we can see. So far the only upper bound that we have
proven is the trivial bound 2n + k = O(n2). It turns out that we can do much better:

Theorem 2. The lower envelope complexity of an arrangement of n line segments is O(nα(n)).

where α(n) is the extremely slow-growing inverse of the Ackermann function (a constant
for all practical purposes). A separate construction, not described here, actually achieves
this upper bound. Thus the lower envelope complexity of an arrangement of n line seg-
ments is Θ(nα(n)). The same technique we will use below shows that this is also the
worst-case complexity of a single face.

Davenport–Schinzel Sequences

Given an alphabet Σ = {a,b,c,. . . } of n symbols, a sequence ω is a finite string of symbols
from Σ (i.e. ω ∈ Σ∗). A subsequence of ω is a sequence obtained by deleting some symbols
from ω.1 A substring of ω is a sequence obtained by taking a consecutive group (possibly
empty) of symbols from ω.2

A Davenport–Schinzel sequence is a sequence where no two symbols are allowed to
alternate more than a specific number of times. More precisely, for s ≥ 1 we say a sequence
ω is an (n, s) Davenport–Schinzel sequence (hereafter an (n, s)-sequence) iff:

1For example, warm and ten are subsequences of watermelon.
2Like in the ad, usa is a substring of wausau.
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• For every a ∈ Σ, aa is not a substring of ω. In other words, every two adjacent
symbols are distinct.

• For every pair of distinct symbols a, b ∈ Σ, the sequence of s + 2 alternating a’s and
b’s is not a subsequence of ω. Thus aba is forbidden if s = 1, abab is forbidden if
s = 2, ababa is forbidden if s = 3, and so on.

We are interested in estimating λs(n), the maximum length of any (n, s)-sequence. As an
initial exercise, it is easy to check that this function is bounded, i.e. λs(n) < ∞ for all s and
n.

When s = 1 no symbol may appear twice, thus λ1(n) = n. A slightly trickier argument
shows that λ2(n) = 2n − 1, achieved by ω = ab· · ·yzy· · ·ba or abacad· · ·aza. The first
difficult case is s = 3, where λ3(n) = O(nα(n)). We present below a “simple” proof of this
result due to Peter Shor.

How does this relate to lower envelopes? Two line segments can intersect in at most
one place. It is easy to check that while the subsequence abab can occur in the lower
envelope, the subsequence ababa cannot (it requires two intersections). Thus the sequence
of segments in the lower envelope is an (n, 3)-sequence (recall figure 17). The proof of
Theorem 2 reduces to proving the bound on λ3(n) mentioned above.

Lower envelopes and Davenport–Schinzel sequences arise naturally in many geomet-
ric problems. Often we will be dealing with geometric primitives where there is some
small constant bound on the number of intersections between any pair (eg. line seg-
ments, circles, polynomials). The lower envelope of a collection of such primitives will
be a Davenport–Schinzel sequence of some small order. Fortunately, λs(n) is “almost”
linear for every s, ie. it is the product of n and some very slow-growing function. For
example, λ4(n) = Θ(n2α(n)).

The Ackermann Function

Here we review the Ackermann function (which grows faster than any primitive recursive
function). For each k ≥ 1, we define a function Ak on the positive integers:

A1(n) = 2n (1)

Ak+1(n) = A(n)
k (1) (2)

where f (n) denotes the function f iterated n times. For example

A2(n) = 2n,

A3(n) = 22 ··
· 2

}
a tower
of n 2’s,

A4(n) = 22 ··
· 2

}

· · ·
}

22 }
2 }︸ ︷︷ ︸

n towers

1,

and so on (becoming increasingly difficult to typeset). Define the Ackermann function by
diagonalization:

A(n) = An(n). (3)
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x y xy y

Figure 18: A symbol appearing last in three different chains.

Define the inverse functions in the natural way:

αk(n) = min {j ≥ 1 : Ak(j) ≥ n}, (4)
α(n) = min {j ≥ 1 : A(j) ≥ n}. (5)

For example α1(n) = dn/2e, α2(n) = dlg ne (lg denotes the base 2 logarithm), and α3(n) =
lg∗ n (the number of times we need to apply lg to n to get at or below 1). Since A(3) = 16
and A(4) = A3(65536) is much larger than any realistic number, for practical purposes we
can assume α(n) ≤ 4. From the definitions we note the following easy consequences.

Claim 3. For all positive integers n and k:

(i) Ak(n) > n, and Ak(n) is strictly increasing in n;

(ii) Ak(1) = 2, Ak(2) = 4, Ak(3) > k;

(iii) αα(n)(n) ≤ α(n);

(iv) if n ≥ 3, α(n) ≤ αα(n)−1(n) + 1;

(v) αα(n)+1(n) ≤ 4;

(vi) αk+1(n) = min {l ≥ 1 : α
(l)
k (n) = 1}.

An Upper Bound Recurrence

Hereafter we fix s = 3, and our goal is to bound λ3(n). Given a (n, 3)-sequence ω, we
want to partition it up somehow into a sequence of chains, which are substrings of distinct
symbols (hence any chain has length at most n). Let m denote the number of chains in our
partition.

Claim 4. Any (n, 3)-sequence ω has a partition into m ≤ 2n− 1 chains.

Proof: Given ω, we construct our chain partition greedily from left to right, starting a
new chain only when we come to a symbol already in the current chain. We now show
this partition has at most 2n− 1 chains.

Consider the last symbol of each chain. Suppose a symbol y appears last in three dif-
ferent chains. Then the symbol x immediately after the middle y begins a chain. Since we
built the chains greedily, x must also occur in the chain containing the middle y, giving us
the forbidden subsequence yxyxy (figure 18).

Thus every symbol appears at most twice as the last in a chain, so there are at most
2n chains. To improve this to 2n − 1, note that the first chain has at least two symbols.
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x xx x x

first middle last

block block block

Figure 19: First, middle, and last appearances of x.

Consider the second-last symbol of the first chain, and the same argument shows that it
cannot occur last in two other chains. ¤

We have already shown λ3(n) < 2n2. Our refined analysis of λ3(n) will recursively
need to keep track of m, so we define ψ(m, n) to be the maximum length of a (n, 3)-
sequence with a partition into at most m chains. Thus λ3(n) = ψ(2n − 1, n). We note
the trivial bound ψ(m, n) ≤ mn, which we will use as a base case when m = 2.

Theorem 5. Given n, m, and 2 ≤ b < m, there exists a partition n = n1 + · · · + nb + n∗
such that

ψ(m, n) ≤ ψ(b− 2, n∗) +
b

∑
i=1

ψ(dm/be, ni) + 4m + 4n∗.

Proof: Let ω be a maximum length m-chain (n, 3)-sequence. We begin by cutting ω into
b blocks, each consisting of c = dm/be consecutive chains each (the last block may have
less than c chains). We call a symbol internal if it appears in only one block, otherwise we
call it external. Let ni denote the number of internal symbols in the i-th block, and let n∗
denote the number of external symbols; this gives us our partition of n.

Consider the subsequence of internal symbols in the i-th block. This subsequence
would be an (ni, 3)-sequence except that it may have repetitions. Since repetitions may
only occur at chain boundaries, we may delete at most one symbol at each boundary
within the block to remove all repetitions. After these deletions, the remaining symbols are
an (ni, 3)-sequence, and hence there are at most ψ(c, ni) internal symbols left in the block.
Summing over all blocks, at most m internal symbols are deleted, and at most ∑b

i=1 ψ(c, ni)
internal symbols remain in the (ni, 3)-subsequences.

Now we need to count the external symbols. We divide the appearances of the external
symbols into three kinds: middle, first, and last appearances. An occurrence of x is a middle
appearance if x occurs in both an earlier and a later block. An occurrence of x is a first
appearance if x does not appear in any earlier block; since x is external, x must appear in a
later block. Last appearances are defined symmetrically (figure 19).

Consider the subsequence of middle appearances of external symbols. First we need to
fix any repetitions; as before, we need delete at most one symbol per chain boundary, for
at most m deletions. Call the resulting sequence ω∗.

Claim 6. No symbol of ω∗ appears twice in the same block.
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first last

Figure 20: A symbol of ω∗ appearing twice in the same block.

Proof: If x appeared twice in the same block of ω∗, then some other external symbol y
must appear between these two occurences in ω∗. Since this y is a middle appearance in
ω, y also appears in earlier and later blocks of ω, giving us the forbidden subsequence
yxyxy in ω (figure 20). ¤

Thus the b blocks of ω have become chains for ω∗. Since no symbol of ω∗ appears in
the first or last block, ω∗ has a decomposition into at most b − 2 chains. Hence ω∗ has
length at most ψ(b− 2, n∗).

Now all we have left to count are the first and last appearances of external symbols.
We argue a bound on first appearances; last appearances are handled symmetrically. Con-
sider the subsequence of all first appearances of external symbols. As before, eliminate all
repetitions using at most m deletions; let ωFIRST be the resulting sequence.

Claim 7. The sequence ωFIRST is an (n∗, 2)-sequence.

Proof: Suppose xyxy appears as a subsequence of ωFIRST for some distinct external sym-
bols x and y. Then these four appearances must all occur in the same block of ω (since all
first appearances of a symbol occur in the same block). Since the x’s are first appearances,
there must be another appearance of x in a later block, giving us the forbidden subsequence
xyxyx in ω. ¤

Thus ωFIRST has length at most λ2(n∗) < 2n∗, so there are at most 2n∗ + m first appear-
ances of external symbols altogether. Likewise for last appearances. We have accounted
for all the symbols of ω, so adding all the terms proves the recurrence. ¤

Analyzing the Recurrence

Given the diagonal definition of the Ackermann function, we should expect some kind of
iterated argument to prove a bound including α(n) as a factor. In effect we prove a se-
quence of bounds, each bound depending on the previous, which converge to our desired
bound. We prove a series of bounds for k ≥ 2 of the form

ψ(m, n) ≤ ψk(m, n) def= ckαk(m) ·m + dkn (6)

where ck and dk are sequences of constants to be determined below.
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Claim 8. Lets fix k ≥ 2. Suppose we know ψ(m, n) ≤ ψk(m, n). Then ψ(m, n) ≤ ψk+1(m, n),
where ck+1 = ck + 4 and dk+1 = dk + 6.

Proof: Consider the recurrence of theorem 5 if we choose b = dm/αk(m)e, so each block
has at most dm/be ≤ αk(m) chains. Then

ψ(m, n) ≤ ψ(bm/αk(m)c, n∗) +
b

∑
i=1

ψ(αk(m), ni) + 4m + 4n∗.

To analyze this equation (when m > 2), we apply our bound ψk to the first term and
recurse on the b summed terms. The recursion stops when we reach m = 2, at which point
we apply the naive bound ψ(2, n′) ≤ 2n′.

We view the recursion as a tree; non-leaf nodes of this tree partitions its sequence,
symbols, and chains among its children. At a given node v of the recursion tree, let mv
denote the number of chains at that node, and (when v is not a leaf) let n∗v denote the
number of external symbols found when we recurse at v.

At the root of the tree (level 0) we have all m chains and all n symbols. At each node v
in the next level of the tree (level 1) we have mv = αk(m) chains and ni symbols (where i
here indexes the child). At each node v in level 2 we have mv = α

(2)
k (m) chains, and so on,

down to level l − 1 (the leaves of the recursion) where we have mv = α
(l−1)
k (m) = 2 chains

per leaf. By claim 3 (parts (ii) and (vi)), we know that l = αk+1(m).

To bound ψ(m, n), we need to sum up the sequence lengths at all the leaves plus the
nonrecursive terms (ψ(bmv/αk(mv)c, 4n∗v, and 4mv) at all the interior nodes v of the tree.
We consider these interior terms first:

4n∗v: Since a symbol becomes external at most once in the entire tree, we have ∑v n∗v ≤ n.
Thus summing 4n∗v over all v gives us at most 4n.

4mv: Since the chains at one level i are all disjoint, we know ∑level i mv ≤ m. Summing
4mv gives us at most 4m per level, for an overall total of at most 4αk+1(m) ·m.

ψ(bmv/αk(mv)c, n∗v):

This is where we apply our given ψk bound. We estimate

ψ(bmv/αk(mv)c, n∗v) ≤ ψk(bmv/αk(mv)c, n∗v)
= ck αk(bmv/αk(mv)c) · bmv/αk(mv)c+ dkn∗v
≤ ck αk(mv) · bmv/αk(mv)c+ dkn∗v
≤ ckmv + dkn∗v.

To sum this over all interior nodes v, we reapply the estimates of the last two cases,
getting the bound ckαk+1(m) ·m + dkn.

Now the leaf terms are easy to count up: since different leaves count disjoint sets of
symbols and have at most mv = 2 chains each, the leaf terms altogether contribute at most
2n at the bottom of the unfolded recurrence.
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Adding everything up gives ψ(m, n) ≤ 4n + 4αk+1(m) ·m + ckαk+1(m) ·m + dkn + 2n
= ck+1αk+1(m) ·m + dk+1n = ψk+1(m, n). ¤

We are almost done, we just need to show how to get started with values for c2 and d2,
and also how to choose a good value for k to balance n.

Claim 9. ψ(m, n) ≤ ψ2(m, n) = c2mdlg me+ d2n, where c2 = 2 and d2 = 6.

Proof: We follow a simplified version of the previous argument. We take b = 2 on each
step. Since we divide the sequence into only two blocks, there are no middle appearances
of external symbols (i.e. ω∗ is empty), so we have the simpler recurrence

ψ(m, n) ≤
2

∑
i=1

ψ(dm/2e, ni) + 2m + 4n∗,

where the 4m in the general theorem may be reduced to 2m in this special case. Our re-
currence tree has leaves at level l − 1 where l = α2(m) = dlg me. Now summing terms as
before (again getting 2n from the leaves), we get the claimed bound. ¤

Corollary 10. For every k ≥ 2, ψ(m, n) ≤ (4k− 6)αk(m) ·m + (6k− 6)n.

Theorem 11. λ3(n) = O(n · α(n)).

Proof: Setting m = 2n, we have λ3(n) = ψ(m, n) = O(k(αk(m) ·m + n)) = O(k αk(n) · n)
for all k ≥ 2. It now suffices to take k just large enough so that αk(n) = O(1). By part (v) of
claim 3, it suffices to take k = α(n) + 1. ¤

5 Arrangements in Higher Dimensions

Overview

Until now, we have looked at arrangements of lines in the plane. We shall now take a short
digression and consider higher dimensional versions of the problem. After some defini-
tions, this lecture will be dedicated to generalizing the zone theorem to higher dimensions.

Definitions

Definition 12. Ed is the d-dimensional Euclidean space.

Definition 13. A hyperplane in Ed is a d− 1 dimensional linear subspace.

Definition 14. A k-flat is a k-dimensional linear subspace. An intersection of d− k hyper-
planes forms a k-flat.

Definition 15. The codimension of a k-dimensional subspace of Ed is d− k.
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Counting Objects in the Arrangement

Recall that an arrangement of lines in the plane creates the following structures: objects
of dimension 0 (vertices), of dimension 1 (edges), and of dimension 2 (faces). A similar
phenomenon takes place in an arrangement of n hyperplanes in Ed, only now structures
of all dimensions between 0 and d, collectively called faces, are created. We will carry
over a lot of the terminology from 2 dimensions: 0-dimensional objects (points) will be
called vertices; 1-dimensional objects are edges; (d− 1)-dimensional objects are called facets;
d dimensional objects are called cells. The terms facet and cell make a great deal of sense if
we consider the case d = 3, i.e. the arrangement is a collections of planes in 3-dimensional
space. As in the 2-dimensional case, each facet is part of the boundary of a cell; and in
general each face of dimension i is a boundary of a face of dimension i + 1.

We begin as we did in the 2-dimensional case, by studying the number of vertices
formed. Assuming no degeneracies, each group of d hyperplanes intersects to define a sin-
gle vertex. Thus the number of vertices is just the number of ways to choose d hyperplanes
from the arrangement, i.e. (n

d). Counting higher dimensional faces requires more work.

Lemma 16. The number of cells in an arrangement of n hyperplanes in Ed is
(

n
d

)
+

(
n

d− 1

)
+ · · ·+

(
n
1

)
+

(
n
0

)

Proof: Recall the 2-dimensional proof. We let each vertex correspond to the face of which
it was the bottom vertex, which gave (n

2) faces, and we then had to count the faces with no
bottom vertex, namely those which were unbounded below. To do this, we drew a hori-
zontal line below all the vertices. It clearly passed through n + 1 faces, since it intersected
each line in the arrangement exactly once, and entered a new face at each intersection.
This gave the result we needed. To generalize to the d dimensional case, do the same
thing. Each cell bounded from below corresponds to a vertex, namely the lowest vertex in
that cell (where “lowest” is measured according to the last dimension). It remains to count
the unbounded cells. If we draw a hyperplane H perpendicular to the last dimension and
below all the vertices, our n hyperplanes in Ed each intersect H in a (d− 2)-dimensional
space. Thus these n hyperplanes impose an arrangement of n (d− 2)-dimensional hyper-
planes in H. Each cell in this arrangement corresponds to one of the unbounded cells in
the original arrangement. The result then follows by induction. ¤

Lemma 17. The number of faces of codimension k in an arrangement of hyperplanes in Ed

is, (
n
k

)
∑

0≤j≤d−k

(
n− k

j

)
.

Proof: Each such face “lives in” some (d− k)-flat. The total number of such faces is thus
equal to the total number of (d− k)-flats, namely (n

k), times the number of faces living in
a single flat. This can be determined using the previous theorem, because for each such
(d − k)-flat, which is an intersection of k hyperplanes, the remaining n − k hyperplanes
impose an arrangement in that flat, namely an arrangement of n− k hyperplanes in d− k

25



dimensions. Each cell (from the perspective of this new arrangement) is a (d− k) dimen-
sional face of the original arrangement. ¤

This number of faces can be written more cleanly as

d

∑
j=k

(
n
j

)(
j
k

)
.

The Zone Theorem in Higher Dimensions

We now come to the main topic of this lecture, namely the zone theorem in higher dimen-
sions.

Theorem 18 (The Zone Theorem). The zone of a hyperplane in an arrangement of n hy-
perplanes in Ed has complexity Θ(nd−1), counting all faces of all dimensions.

Proof: Let H be the original set of n hyperplanes, and A(H) the arrangement defined by
them. We consider some new hyperplane b and want to study the cells which are in the
zone of b in H, written zone(b, H). Let

zk(b, H) = ∑
c∈zone(b,H)

(the number of faces of codimension k in c)

zk(n, d) = max
b,H

zk(b, H).

Our goal is to show that zk(n, d) = O(nd−1) (showing the corresponding lower bound
is left as an exercise). We will do this by first proving and then analyzing the following
recursion, which we claim holds for every d > 1, 0 ≤ k ≤ d, and n > k:

zk(n, d) ≤ n
n− k

(zk(n− 1, d) + zk(n− 1, d− 1)). (7)

A caveat: by counting over all cells individually, we are actually overcounting the zone
complexity, since, e.g. a vertex appears in many cells, and so we count it many times. To
identify each counting of a given face, define a border of codimension k to be a pair ( f , C)
where f is a k-codimensional face and C is a cell that has f as a boundary. Since we will
count the total number of borders, our result is actually stronger than just counting the total
complexity. But the bound is shown to hold even with this overcounting. This is fortunate,
since often we need to overcount for applications in precisely this way.

We will prove Equation 7 by induction on the number of hyperplanes in the arrange-
ment. Let H be some arrangement, and let b be the new hyperplane. For each hyperplane
h ∈ H, we will consider the effect of removing h. Let H/h denote the arrangement in-
duced by H in the hyperplane h, i.e. the (d− 1)-dimensional arrangement of hyperplanes
{j ∩ h | j ∈ H}. Consider the quantity

zk(b, H − {h}) + zk(b ∩ h, H/h)

We claim that this counts all the borders ( f , C) of codimension k in zone(b, H) with f 6⊆ h.
To see this, consider what happens when we remove h from the arrangement. Since f is not
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in h, f remains part of the zone, although it may now merge with some other faces from
which it was previously separated by h. Consider some cell C in b’s zone with h removed.
If h does not cut C, then every border in C in the original arrangement is counted by the
first term in the above equation. The same holds true if h does cut C, but only one of the
two resulting cells is in the zone of b. This is true since for any border which is cut by h,
one of the two resulting borders is a border for the cell not in b’s zone. The only case which
can cause trouble is if both of the cells formed by h splitting C are in the zone of b. But
for this to happen h must hit b within C. This being the case, the second term counts what
happens: each border such that both halves are seen by b forms (by intersection with h) a
k-codimensional border in the zone of b in the arrangement of H/h.

Now apply this argument to each of the n planes in h. Each time we remove a hyper-
plane, we count all the borders not in that hyperplane using the above equation. Thus each
border is counted once each time we remove a hyperplane which does not contain it. Since
the border is in a (d− k)-flat, which is an intersection of k hyperplanes, this happens n− k
times. Thus

(n− k)zk(b, H) = ∑
h∈H

(zk(b, H − {h}) + zk(b ∩ h, H/h))

≤ ∑
h∈H

(zk(n− 1, d) + zk(n− 1, d− 1))

= n(zk(n− 1, d) + zk(n− 1, d− 1)).

Since the proof holds for any choice of arrangement, it must hold for the arrangement
which gives the maximum count. Equation 7 then follows.

It remains to analyze the inequality in Equation 7. This is straightforward. If we let

wk(n, d) =
(n− k)!

n!
zk(n, d) = O(

zk(n, d)
nk )

Then our recurrence becomes

wk(n, d) ≤ wk(n− 1, d) + wk(n− 1, d− 1). (8)

We will now prove the result by induction on n and d. We have already proved the two
dimensional zone theorem, which tells us that for d = 2, zk(n, 2) = O(n). This gives the
base case for the induction. Now assume we have proved the result for d− 1, and prove it
for d. Assume first that k < d− 1. Unwinding the recurrence gives

wk(n, d) =
n

∑
j=1

wk(j, d− 1) + wk(d, d).

Note that wk(d, d) is just a constant (though it depends on d). By our induction hypothesis,
wk(n, d) = O(nd−1−k). We can thus rewrite the equation as

wk(n, d) =
n

∑
j=1

O(jd−2−k) + O(1)

= O(nd−1−k).

and the result for zk follows. What remains are the cases k = d or k = d− 1. Unfortunately,
the above recurrence isn’t powerful enough—solving it for these values of k overestimates
the result by a factor of log n. We thus turn to a different tool—Euler’s Theorem.
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Definition 19. For a cell c, let gk(c) be the number of facets of codimension k bounding c.

Theorem 20 (Euler’s Theorem).

d

∑
i=0

(−1)d−kgk(c) =
{

0 if c is unbounded
1 otherwise.

If we apply this theorem to our arrangement, and sum over all cells in the zone, we get

d

∑
k=0

(−1)d−kzk(b, H) ≥ 0.

If we now move all the zk whose values we have already bounded to the right side of the
equation, we get

zd−1(b, H)− zd(b, H) ≤
d−2

∑
k=0

(−1)d−kzk(b, H)

= O(nd−1).

Note that zd−1 is the number of edges and zd the number of vertices of the arrangement.
We therefore claim that

dzd(b, H) ≤ 2zd−1(b, H)

To see this, observe that a given vertex is at the end of at least d edges: since a vertex is
the intersection of d hyperplanes, the intersection of any d− 1 of these hyperplanes forms
an edge with the vertex as an endpoint. On the other hand, every edge can have at most
two vertices as endpoints. Thus the left hand side is an undercount of the number of edge-
endpoint pairs, since each vertex is in at least d such pairs. On the other hand, the right
hand side is an overcount of the number of such pairs, since each edge is in at most two of
them.

Combining these two equations gives

(1− 2/d)zd−1(b, H) ≤ zd−1(b, H)− zd(b, H)
= O(nd−1).

Therefore zd−1(b, H) = O(nd−1), and similarly zd.

¤

6 Voronoi Diagrams and Delaunay Triangulations

This section deals with two methods of solving proximity problems: Voronoi diagrams
and Delaunay Triangulation. These fundamental diagrams are duals of one another. We
will begin by presenting some preliminary facts about these diagrams.
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Figure 21: Some simple Voronoi diagrams for n ≤ 4 sites.

Voronoi Diagrams

We are given n sites (points) in the plane; for any given point, we wish to know which
site (or sites) is closest. This problem has been referred to as the “post-office problem” in
Knuth, Volume 1. It generates a subdivision of the plane, with each region corresponding
to the locus of all points closest to a particular site. This partitioning of the plane is called
the Voronoi diagram.

It is worth considering a few simple cases (see figure 21). If there is only one site, then
the entire plane is one region. If there are two distinct sites A and B, then there are three
distinct regions: the points equidistant from the two sites (the perpendicular bisector of the
segment between the sites), the locus of points closest to A, and the locus of points closest
to B. If there are three sites (not collinear), we have three unbounded regions divided by
three rays from a central vertex (point); this central vertex is equidistant from all three
sites (i.e., it is the center of the circle through the sites), and the rays lie on the bisectors of
the segments joining the sites. If there are four sites, there are two topologically distinct
(and nondegenerate3) cases; if the four sites are in convex position, then all four regions
are unbounded. If one of the four sites is surrounded by the other three, then there is one
bounded face (a triangle) corresponding to the surrounded site.

What distinguishes these two cases? Note that sites on the convex hull of the sites give
rise to infinite regions, while those sites within the convex hull correspond to finite regions.

Claim 21. A site x has an unbounded region if and only if x lies on the convex hull of the
sites.

Proof: If x is a site on the convex hull, then we may take a supporting line l through x
such that all the sites lie on the same side of l. Then every point on a ray normal to l going
away from the hull has x as its nearest point; hence, the Voronoi region of x is unbounded
since it contains this ray. (Note this argument even applies in the degenerate case when
there are three collinear sites on the hull).

Conversely, if site x has an unbounded region, then since the region is convex, it must
contain an infinite ray emanating from x. Taking the line l through x normal to this ray, we
see that every other site y must lie on the other side of l (otherwise by going out sufficiently
far on the ray, we would find a point closer to y than to x). ¤

3Loosely speaking, the arrangement of sites is nondegenerate if no sufficiently small perturbation of the
sites changes the topology of the diagram. For Voronoi and Delaunay diagrams non-degeneracy means that
no two sites are identical, no three sites are collinear, and no four sites are co-circular.
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Figure 22: The Voronoi diagram (solid) and the Delaunay diagram (dashed).

Claim 22. All the Voronoi regions are convex.

Proof: Fix a site x. For every other site y, the Voronoi region of x is contained in the half-
plane of points that are at least as close to x as they are to y. Thus, the Voronoi region of x
is exactly the intersection of all such half-planes for different sites y. Since each half-plane
is convex and the intersection of convex regions is also convex, the Voronoi region of x is
convex. Note this argument also shows that the boundary of the Voronoi region of x is
polygonal (i.e., it is bounded by line segments or rays). ¤

Note that each vertex or edge of the Voronoi diagram depends on only a bounded
number of the sites: a vertex is defined by its three nearest sites, and an edge is defined
by four sites – the two sites on whose bisector it lies, and two other sites delimiting its
extent. This “finite dependency” property will arise in many other settings in geometric
algorithms. Thus, if we compute the coordinates of one of the vertices of the diagram,
those coordinates are low degree rational functions in the coordinates of the three sites that
define it. But still it would be useful to compute a diagram with no “new” real numbers,
and this motivates the Delaunay diagram.

Delaunay Triangulations

The Delaunay triangulation is the graph theoretic dual, topological dual, or the combinatorial
theoretic dual of the Voronoi diagram (see figure 22): the vertices of the Delaunay triangu-
lation are the sites (corresponding to the regions of the Voronoi diagram), and we connect
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Figure 23: Two circles cannot cross at 4 points.

two sites with an edge in the Delaunay triangulation iff their Voronoi regions share an edge
(thus, the two diagrams have the same number of edges, although the Delaunay triangu-
lation has no unbounded edges). Thus, a vertex in the Voronoi diagram corresponds to a
Delaunay triangle, a Voronoi edge to a Delaunay edge, and a Voronoi face to a Delaunay
vertex (site). Note, however, that dual edges of the two graphs do not necessarily intersect.
Furthermore, we may recover the Voronoi diagram by reversing the process. Note there
are no ‘new’ real numbers needed to describe the Delaunay triangulation.

We now prove various simple properties of the Delaunay triangulation. In particular,
we present the notion that site-free circles through two or three sites are “witnesses to
Delaunay-hood” for edges or triangles, respectively.

Claim 23. For every edge ab in the Delaunay triangulation, there is a circle, called a wit-
ness, through sites a and b that contains no other site. The converse is also true.

Proof: Since a and b are connected, their Voronoi regions must share an edge. Take a
point p in the interior of this edge, then a and b are the same distance r from p, and all
other sites are further away. Hence, the circle of radius r about p suffices.

Conversely, the existence of a circle through a and b with all other sites strictly outside
implies that the center of the circle is on a boundary edge between the Voronoi regions of
a and b. ¤

Claim 24. The Delaunay triangulation is planar.

Proof: It suffices to prove that no two edges may cross. Suppose edges ab and xy appear
in the Delaunay triangulation, and these edges cross. Then there is a circle through a and
b not containing x or y, and likewise there is a circle through x and y not containing a or b.
But then these two distinct circles must intersect at four points, which is impossible. See
figure 23. ¤

Various other properties may also be argued. If abc is a triangle in the Delaunay trian-
gulation, then no other site lies inside its circumcircle, and conversely.

We now turn to counting problems. We will assume non-degeneracy (i.e., no four
points are co-circular, no three points are collinear). We will make precise claims about
the number of edges and triangles in the triangulation.
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Let n be the number of sites, t the number of triangles, and e the number of edges. From
Euler’s Theorem for connected planar graphs, we have

n− e + t + 1 = 2

or
n− e + t = 1

where t + 1 is the number of faces (each triangle is a face and so is the single unbounded
face). We need one more parameter to describe the arrangement. Since each edge belongs
to two faces, we have 3t + k = 2e, where k is the number of sites on the convex hull.
Solving, we have

e = 3(n− 1)− k,
t = 2(n− 1)− k.

By duality, the Voronoi diagram will have e edges (bounded or unbounded) and t vertices.
Hence, these graphs have only linear complexity in the size of the input, which will be
very important to the computational complexity of various planar proximity problems.
For example, this linear complexity implies that the corresponding data structures can be
stored in O(n) space and that the arrangement can be computed in O(n log n) time. How-
ever, this only holds for two dimensions. For the d-dimensional case, we have O(nb d+1

2 c)
complexity.

The Delaunay triangulation is somewhat more intuitive than the Voronoi diagrams, so
we will tend to use the Delaunay triangulation in this write-up. Another comment: Since
the triangulation starts with numerical data and ends up with combinatorial output (e.g.
a graph), complications may arise due to round-off errors, etc.

Delaunay triangulations are used in many applications (e.g., finite element analysis,
interpolation). This triangulation is especially useful because it is easy to compute and it
provides a “nice” triangulation (i.e., the smallest angle in the triangulation is the largest
possible).

Suppose we have n sites, and someone claims a given triangulation is a Delaunay tri-
angulation. How much work do we have to do to verify the claim? If for each site and
each triangle we verify that the site is not in the circumcircle of the triangle, then this is
clearly sufficient. Unfortunately, this is an O(n2) time algorithm.

Delaunay proved a remarkable theorem, that it suffices to only check adjacent triangles,
so that the verification may be performed in linear time.

Theorem 25. Given a triangulation of n sites such that for every pair of adjacent triangles
abc and bcd, a is not in the circumcircle of bcd, then that triangulation is the Delaunay
triangulation.

Proof: First, we define the “power” of a point with respect to a circle. Given a point x
and a circle C, draw a line l through x that intersects C at two points a and b. Then the
power of the point is xa · xb (here xa denotes the distance from x to a). It turns out that this
quantity is independent of the line chosen. Furthermore, given a suitable choice of signs
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Figure 24: The power of point x with respect to the circle is ax · bx, which is independent
of the choice of line l.
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Figure 25: The power of x with respect to lmn is less than the power of x with respect to
klm.

for distances along the line, the sign of the power determines whether x is inside, outside,
or on the circle (the usual convention makes the power positive iff x is outside the circle).

Take a triangle abc of the given triangulation and a site x that lies on the opposite side
of (say) line bc. If the neighboring triangle to abc along bc is xbc, then we are done by
assumption.

Otherwise, consider the line connecting site x to a point d in the interior of triangle abc.
As we move along xd from x to d, we pass through a sequence of triangles, starting with a
triangle having x as a vertex (call it vwx) and ending with triangle abc.

Now consider the sequence of circumcircles of these triangles. We start with the cir-
cumcircle of vwx where the power of x is 0 (since x is on the circle). We claim that the
power of x can only increase as we move to circumcircles of triangles further away from
x. This claim implies that the power of x with respect to the circumcircle of abc must be
positive, so that x is not in the circumcircle of abc, which is what we wanted to prove.

We now argue our claim informally. Given adjacent triangles lmn and klm on the line
from x to d (see figure 25), consider their circumcircles. These circumcircles are both mem-
bers of the family of circles through l and m, and we may continuously “push” the cir-
cumcircle of lmn away from site n until it reaches site k. During this push operation, both
intersection points of the circle with xd move further away from x, hence the power of x
increases. ¤
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Figure 26: Three points in counterclockwise order

7 Geometric Primitives and A Delaunay Triangulation Algorithm

In the first part of this lecture, we are going to introduce two geometric primitives which
enable us to extract some fundamental combinatorial properties of points. In the second
part, we will introduce an algorithm based on the divide and conquer idea for the Delau-
nay triangulation.

Geometric Primitives

Computational geometry problems are characterized by relations among geometric enti-
ties (vertices, edges, ...) and many of these relations can be described quantitatively by
real numbers. But many geometric algorithms are combinatorial by nature. So we need to
have a conversion scheme. Geometric primitives are used to extract combinatorial infor-
mation from the input real numbers; the geometric primitives will map the real numbers
to bits (hence these primitives may also be called predicates). The nice thing about using
geometric primitives is that the complexity of these primitives is constant.

More precisely, these geometric primitives will depend on the signs of certain determi-
nants. Thus the primitives will actually have three values: one of {+,−, 0}. These corre-
spond to true, false, and degenerate. If we assume our input points are in general position,
then 0 (the degenerate case) will never occur, and it is convenient to specify our algorithms
under this assumption. In principle we should specify robust algorithms which also cor-
rectly handle the degenerate cases, but we avoid this for brevity of exposition.

The CCW Primitive

Our first geometric primitive is CCW. Given three points A, B and C, CCW tells us whether
these three points are in counterclockwise order around their common circle by computing
the sign of the determinant ∣∣∣∣∣∣

xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣
If the sign is positive then A, B, C are in counterclockwise order; if the sign is negative then
A, B, C are clockwise in order; if it is zero, then A, B, C are collinear (see figure 26).

Note that to determine the sign of a determinant is as expensive as to calculate its value.
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Figure 27: Dependence of the sign bits
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Figure 28: Point sets with the same CCW bits but different Voronoi Diagrams

An interesting question is, given n points and the (n
3) sign bits corresponding to the

(n
3) different triangles, how many of the bits are independent? It turns out that only

Θ(n log n) of them are independent. For example, figure 27 shows that if CCW(X, A, B),
CCW(X, B, C), and CCW(X, C, A) are all positive, then CCW(A, B, C) must be positive as
well.

We may apply the CCW primitive to the convex hull problem. Given n points, the
convex hull problem is to find all the extreme point in order around the hull. A point x
is not an extreme point of the convex hull if and only if if x is in the interior of triangle
formed by three other points, i.e. iff we can find A, B, C with their CCW sign bits as in
figure 27. Similarly we can recover the order of points around the hull using CCW, hence
we can construct the convex hull using only CCW.

But the CCW primitive is not sufficient for computing the Voronoi Diagram or the De-
launay Triangulation. In some arrangements each of the (n

3) triangles have the same CCW
bits but the n points have non-isomorphic Voronoi Diagrams; see figure 28 for an example
(with n = 4). Our next primitive will be sufficient for constructing the Voronoi Diagram
and the Delaunay Triangulation.

The InCircle Primitive

Given 4 points A, B, C, D, the primitive InCircle(A, B, C, D) is true if and only if D is in the
left face of the oriented circle through A, B, C. The left face is the interior of the circle if
CCW(A, B, C), otherwise the left face is the exterior of the circle. Thus if we take A, B, C in
counterclockwise order, InCircle tells us whether D is in their circle (see figure 29).

Note that there is a degenerate situation if D is on the circle, or if all four points are
collinear. Curiously the situation is not degenerate when A, B, C are collinear and D is off
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Figure 29: The InCircle primitive
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Figure 30: The projection of cocircular points on the parabola

their line, since there is still a definable left face of the line.

Theorem 26. The value of InCircle(A, B, C, D) is given by the sign of the determinant

det =

∣∣∣∣∣∣∣∣

xA yA x2
A + y2

A 1
xB yB x2

B + y2
B 1

xC yC x2
C + y2

C 1
xD yD x2

D + y2
D 1

∣∣∣∣∣∣∣∣

Before proving the theorem, we prove the following lemma.

Lemma 27. InCircle(A, B, C, D) is degenerate if and only if the value of the above determi-
nant is 0.

Proof: We project a point in the plane to a point on the hyperbolic paraboloid z = x2 + y2

by mapping (see figure 30):

λ : (x, y) 7−→ (x, y, x2 + y2)
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Figure 31: Two possible Delaunay edges for four cocircular points

Points A, B, C and D are mapped to points A′, B′, C′ and D′ on the parabolic surface. We
claim that points ABCD are cocircular if and only if points A′B′C′D′ are coplanar.

Suppose first that the points are cocircular. Let (p, q) be the center of circle ABCD and
r be radius; we have the circle equation:

(x− p)2 + (y− q)2 − r2 = 0

that is
(−2p)x + (−2q)y + (1)(x2 + y2) + (p2 + q2 − r2)(1) = 0

The equation holds for the coordinate pairs (xA, yA), (xB, yB), (xC, yC), and (xD, yD). There-
fore there is a linear dependence on the columns of the determinant det and its value must
be zero. (Similarly, if the four points are collinear, then there is a linear dependence among
the first, second, and fourth columns of det.)

Conversely, suppose the determinant is zero, i.e., the four columns are linearly depen-
dent. If there is a linear dependency not involving the third column, then the four points
are collinear. Otherwise, the third column may be written as a linear combination of the
other three columns, i.e. there are constants a, b, and c such that A, B, C, D all lie on the
curve

x2 + y2 = ax + by + c

By completing the squares in this equation, we see that it is in fact a circle centered at
(−a/2,−b/2), hence the points are cocircular. ¤

To complete the proof the theorem, interpret the sign of the determinant as the sign
of the volume of tetrahedron A′B′C′D′. Since the parabolic surface is convex, the interior
of the circle ABC projects to points below the plane A′B′C′ and the exterior of the cir-
cle projects to points above the plane; hence as we move D, the sign of the determinant
changes when we cross the circle. Now we only need to check the sign in one specific
situation to finish the proof (omitted). ¤

When we apply the InCircle test in our Delaunay Triangulation algorithms, we may
face a degenerate situation if some four points are cocircular (see figure 31). For simplicity
when we present our algorithms we will assume that the points are in general position: no
three points are collinear and no four points are cocircular.

A Divide and Conquer Algorithm

In what follows,we present an algorithm to compute the Delaunay triangulation (and
Voronoi diagram) of n sites in the plane, and analyze its complexity. Suppose we have
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Figure 32: The structure of the cross edges

n sites in the plane S1, . . . , Sn. Sort them by x–coordinate (in case of equal x sort by y) and
then (as divide and conquer algorithms typically work) divide them in two equal halves,
the left one (denoted by L) and the right one (R), compute recursively the Delaunay dia-
grams of L and R, and then recombine. The recursion stops when n = 2 or n = 3 since
in these cases the diagram is easy (also our quad-edge structure cannot represent a single
point!). As usual the merge step needs to be analyzed in more detail. During this step we
have to delete some edges and add some others. Clearly we will delete some L–L (or R–R)
edges, and we will add only L–R (called sometime cross) edges. Indeed no new L–L (or
R–R) edge can be added, since such edges would have already been Delaunay.

We can think of the cross edges ordered in ascending y–order and the algorithm that
we present will produce them in this order. The first cross edge will be the lower common
tangent of the convex hull of L and the convex hull of R; similarly the last cross edge will
be their upper common tangent. Thus we can begin finding the lower common tangent.
To find it we use this algorithm:

1. Start from the edge e connecting the rightmost site of L with the leftmost site of R.

2. While e is not a lower tangent to R, move its right endpoint counterclockwise around
the hull of R.

3. While e is not a lower tangent to L, move its left endpoint clockwise around the hull
of L.

4. If e is not yet the common lower tangent then go to step 2.

This algorithm ends with the lower common tangent of L and R, and takes only linear time
(since it passes each hull edge at most once).

Lemma 28. Any two consecutive cross edges share a common vertex.

Proof: Since the Delaunay diagram is a triangulation and the cross edges are exactly the
Delaunay edges crossing a vertical line, two consecutive cross edges must belong to a
triangular face and thus share a common vertex. ¤
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Figure 33: Finding the lower common tangent

Figure 34: The rising bubble

A consequence of this lemma is that if we start from a known cross edge (let us call it
basel ), its successor will be an edge going from one of the vertices of basel to a neighbor
of the other vertex lying above basel . We can think of a circular bubble that has basel as a
chord and rises through that cord until it meets a new site; the edge connecting this site to
the vertex of basel in the opposite half will be the next cross edge. This process continues
until our bubble becomes the upper common tangent of L and R (see figure 34).

To find this edge, the following two lemmas are useful. Here Us(AB) denotes the
upper halfplane determined by AB, Ls(AB) the lower halfplane, Hs(AB) either of upper
or lower and Cir(XYZ) denotes the interior of the circle through the three points X, Y, Z.

Lemma 29. Let AB be an edge. For any point M and N, we always have Cir(ABM) ∩
Hs(AB) ⊇ Cir(ABN) ∩Hs(AB) or Cir(ABM) ∩Hs(AB) ⊆ Cir(ABN) ∩Hs(AB)

Proof: The proof is trivial and is omitted here. ¤
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Figure 35: Proof of lemma 30

Lemma 30. Let AB be the basel edge and let Ni i = 1, . . . , k, be the L-neighbors of A
in Hs(AB) in counterclockwise order; then the succession Γi = Cir(ABNi) ∩Hs(AB) is
unimodal in the sense that there is some j such that for 1 ≤ i < j we have Γi ⊇ Γi+1 while
for j ≤ i < k we have Γi ⊆ Γi+1.

Proof: For each circle ANiNi+1 let Xi be its intersection with line AB. We claim the se-
quence of points Xi move monotonically toward A. Consider 3 consecutive neighbors
Ni−1, Ni, Ni+1 of A. The point Ni+1 is not inside the circle ANi−1Ni, for otherwise ANi
could not have been a Delaunay edge in L. Thus we have to push circle ANi−1Ni through
chord ANi to reach point Ni+1, and the intersection with AB moves toward A, proving our
claim.

The lemma is now proved by observing that while Xi is to the right of B, B is inside the
circle ANiNi+1 or equivalently Ni+1 is inside the circumcircle ABNi, so Γi ⊇ Γi+1. After Xi
moves to the left of B, a similar argument shows that Ni+1 is outside the circle ABNi, so
Γi ⊆ Γi+1. ¤

We can prove an analogous lemma for the R-neighbors of B, and in this way we can
find two candidates (one for each side) to be the next cross edge. A final test between the
two candidates will give us the next cross edge. The following lemma formally proves this
result.

Lemma 31. Suppose AB is the previous Delaunay edge. AM and BN are two new candi-
dates. Assume BN is the one to be picked (i.e., N is inside Cir(ABM). Then we claim that
BN is the new Delaunay edge.

Proof: First we show that no vertices in Ls(AB) is inside of Cir(ABN). Assume ABC was
the last Delaunay triangle. Since Cir(ABC) does not contain N, Cir(ABC) ∩ Ls(AB) ⊇
Ls(ABN) ∩ Ls(AB). ABC implies that no vertices are in Cir(ABC) ∩ Ls(AB). So no ver-
tices are in Ls(ABN) ∩ Ls(AB). So no vertices in Ls(AB) are inside of Cir(ABN). Now
we claim that no vertices in Us(AB) are in Cir(ABN). Since M is outside of Cir(ABN),
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Cir(ABM)∩Us(AB) ⊇ Ls(ABN)∩Us(AB). But we know that all vertices in L∩Us(AB)
are not inside of Us(AB) ∩ Cir(ABN) and all vertices in R ∩ Us(AB) are not inside of
Cir(ABM)∩Us(AB); this implies that all vertices in Us(AB) are not in Ls(ABN)∩Us(AB).
This completes the proof. ¤

Now we are going to analyze the time complexity for the algorithm. Suppose A’s can-
didate is Nj. The unimodularity proved in the lemma allows us to find Nj in j comparisons,
by searching until the first “local minimum” going counterclockwise around A. Further-
more the edges ANi for i < j can be immediately deleted (even if B’s candidate won over
Nj) because we know that these edges cannot be part of the merged Delaunay diagram (B
prevents them).

Thus the cost of searching through the candidate vertices can be charged to the deleted
edges (all other costs are clearly linear). Since the old triangulations had a linear number
of edges, this gives us linear time overall to find all the cross edges, completing the merge.
Since the first part of the merge (finding the lower common tangent) was also linear time,
the entire merge process takes O(n) time, and the time complexity of the algorithm is
O(n log n) (Note that the initial sorting step needs to be done only once).

8 Randomized Incremental Algorithm for Delaunay Triangula-
tions

In the previous lecture we discussed a divide-and-conquer algorithm to find the Delaunay
triangulation of a set of sites. In this lecture we present a randomized incremental algorithm
for the same problem. We will first discuss the basic incremental algorithm (without in-
troducing randomization). We will then randomize the algorithm to improve its expected
running time.

A Basic Incremental Algorithm

The idea in our incremental method is to add the sites in some sequence to the current set
and update the Delaunay triangulation of the set of sites to reflect the addition of the new
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site. For convenience in describing the algorithm, we add three hypothetical sites at the
very beginning; they are chosen such that they form a very large triangle that contains all
the other sites. If we make this triangle large enough, it will clearly not affect the Delaunay
triangulation of the original sites.

We now define our incremental Delaunay triangulation algorithm, starting with the tri-
angle on these three sites, adding the other sites in some order, and updating the Delaunay
triangulation after each addition.

Suppose that we add a new site S. Assuming non-degeneracies, it will be inside a
triangle. The idea is to locate the triangle that the new site falls into, link the new site to
the three vertices of the enclosing triangle, and reconsider the Delaunayhood of the edges
of the enclosing triangle; if such an edge fails the circle test, the edge is flipped, and the
test-and-flip procedure continues for edges further out.

Let XYZ be the old Delaunay triangle containing S, with circumcircle C. Then the new
edges SX, SY, and SZ are Delaunay: the circle passing through S and tangent to C at X is
a site-free witness for the Delaunayhood of the edge SX (we can argue analogously for SY
and SZ).

The edges XY, XZ, YZ are suspect since we do not know if they pass the InCircle test
with respect to S and the triangle on their other side. We have to check these suspect
edges; if an edge fails the InCircle test then it will be swapped, creating a new Delaunay
edge emanating from S and creating two new suspect edges that must now be tested. We
call this the “wave of suspicion” spreading from the newly inserted site S (illustrated in
Fig 37).

We will now prove a worst case upper-bound on the running time of the algorithm
over all possible locations of the sites and all possible sequences of insertions of the sites.

Lemma 32. When a new site S is inserted, no edge is tested more than once.

Proof: The wave of suspect edges moves away from S to the edges on the convex hull
(which are always Delaunay), and all the new edges (forming a star around S) are never
suspect. ¤

When the wave stops all the edges pass the InCircle test, so the triangulation is again
Delaunay. The previous lemma tells us that each insertion needs at most O(n) time, so the
total time required by the algorithm is O(n2).

It is possible to construct example input sequences which achieve this quadratic run-
ning time (we leave that as an exercise). We will now see that this algorithm has much
better O(n lg n) expected running time when the input sites are inserted in a random order.

Randomizing the Incremental Method

We saw that the obvious sequential incremental method may create O(n2) Delaunay tri-
angles during the running of the algorithm. To try to achieve O(n log n) time we need to
randomize. The algorithm is very easy. Given a set of sites, we simply choose a random
ordering of the sites and add them one at a time, updating the Delaunay triangulation as
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S

Figure 37: The wave of suspect edges

already described. Note that we have not yet described a way of locating the triangle in
which the new site lies (we will do this in the next section).

We observe that the total amount of work performed during the algorithm is related to
the number of Delaunay triangles that ever arise during the running of the algorithm. We
will prove that the expected number of such triangles is Θ(n).

Theorem 33. If τ is the expected number of Delaunay triangles that ever arise during the
running of the algorithm, then τ = O(n). In fact, τ ≤ 6n − 15Hn + 10.5, where Hn =
1 + 1

2 + 1
3 + · · ·+ 1

n .

Proof: For a triangle 4 defined by three sites, let w(4) denote the scope of the triangle:
the number of sites inside the circumcircle of4. Let Tj be the number of triangles of scope
j (so in particular T0 is the number of triangles in the final Delaunay triangulation). Then

τ = ∑
4

Pr[at some point of the algorithm, 4 appears as Delaunay]

If w(4) = j, then4 appears as Delaunay sometime during the algorithm iff the three sites
defining 4 are chosen before any of the j sites inside its circumcircle. Thus

Pr[4 appears as Delaunay] =
3!j!

(j + 3)!
=

6
(j + 1)(j + 2)(j + 3)
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and

τ =
n−3

∑
j=0

6
(j + 1)(j + 2)(j + 3)

Tj

Now, suppose we choose r of the sites at random and look at the Delaunay triangulation
of this r-set. The expected number of triangles in this triangulation is 2r− hr − 2, where hr
is the expected number of sites (from among the r-set) on the convex hull of the r-set.

2r− hr − 2 = ∑
4

Pr[4 is in Delaunay triangulation of r-set]

=
n−r

∑
j=0

(
n− j− 3

r− 3

)

(
n
r

) Tj

Let T≤k = ∑k
i=1 Ti.

Lemma 34. T≤k = O(n(k + 1)2).

Proof:

2r ≥ 2r− hr − 2

=
k

∑
j=0

(n−j−3
r−3 )
(n

r)
Tj ≥

k

∑
j=0

(n−k−3
r−3 )
(n

r)
Tj

=
(n−k−3

r−3 )
(n

r)

k

∑
j=0

Tj =
(n−k−3

r−3 )
(n

r)
T≤k ,

therefore

T≤k ≤ 2r n!
r! (n− r)!

· (r− 3)! (n− k− r)!
(n− k− 3)!

This is true for all r. It turns out that the r value that makes this formula as small as possible
is 2n

k+2 . Thus, T≤k = O(n(k + 1)2). ¤

To finish the proof of the theorem we recall the technique often used to simplify inte-
grals, namely integration by parts. Here we do a summation by parts.

τ =
n−3

∑
j=0

6
(j + 1)(j + 2)(j + 3)

Tj

= T0 +
n−3

∑
j=1

6
(j + 1)(j + 2)(j + 3)

(T≤j − T≤j−1)

= T0 + 18 ∑
j≥1

T≤j

(j + 1)(j + 2)(j + 3)(j + 4)

= T0 + ∑
j≥1

O(n(j + 1)2)
(j + 1)(j + 2)(j + 3)(j + 4)
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= T0 + O(∑
j≥1

n
j2

)

= O(n)

¤

Efficient Randomized Point-Location

While insertion of a particular site can take O(n) time in the worst case, we showed that if
sites are inserted in random order, the expected overall running time of the update part of
the incremental algorithm for constructing the Delaunay triangulation is O(n). We are yet
to describe a crucial part of our randomized incremental algorithm: namely, locating the
triangle in which the new site falls.

In order to obtain an overall efficient algorithm for the randomized incremental con-
struction of the Delaunay triangulation, we need an efficient algorithm for locating the
triangle that contains a new site. We will give an algorithm for this point-location prob-
lem that contributes an overall randomized time complexity of O(n log n), resulting in an
overall randomized time complexity of O(n log n). This bound is optimal, since sorting is
O(n) reducible to computing the Delaunay triangulation, and sorting is known to have a
lower bound of Ω(n log n) in the randomized time complexity model.

The trick to achieving an efficient algorithm for the point-location problem is to keep a
history of the construction of the triangulation. We can think of this history as consisting
of a stack of paper triangles glued on top of one another.

Given a history of the construction, the algorithm for finding the triangle in the current
triangulation containing a query point P is as follows. Assume we know that the triangle
T contains point P at some step in the construction of the triangulation. If T is present in
the final triangulation, we are done. Otherwise, T will be split in one of two ways: either
a new point of the triangulation is added into the triangle T, in which case T will be split
into three children, or one of the edges of T gets flipped, in which case T will be split into
two children (see Figure 38). In both cases, it takes only constant time to determine which
“child” of T contains the query point P.

In order to prove that the overall running time of the point-location part of the algo-
rithm for the incremental construction of the Delaunay triangulation is O(n log n) on the
average, we need to obtain a bound on the number of triangles examined during each of
the point-locations. In the “stack of paper triangles metaphor”, we need to estimate the
average thickness of the stack of paper triangles that are glued on top of one another at
each site.

Lemma 35.

n

∑
i=1
E(# of triangles crossed during the i-th insertion) = O(n log n)

Note that this lemma does not establish that any specific point-location query can be car-
ried out in expected time O(log n) (why?).
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Figure 38: The different ways in which a Delaunay triangle can get split during the incre-
mental construction of the Delaunay triangulation.

Proof: We will carry out an amortized analysis. We will relate the number of triangles
crossed during the search to the number Tj of triangles of scope j (remember that the scope
of a triangle is the number of sites contained in the circumcircle of that triangle).

Assume that we are trying to locate the triangle containing point P and that we have
already localized point P in the triangle XYZ. If XYZ is part of the final Delaunay trian-
gulation, we can ignore it in the count (there are only O(n) such triangles). (Please refer to
Figure 38 for a rough sketch of the geometry of the situation.)

Consider now the point at which triangle XYZ gets destroyed by the insertion of a site
W during the incremental construction of the Delaunay triangulation. There are two pos-
sible ways in which this can happen. Either W gets inserted into the interior of the triangle
XYZ, or the triangle XYZ gets destroyed because one of the edges of the triangle flips dur-
ing the construction. In the first case, we know that XYZ must have been Delaunay before
the insertion of the site W into its interior, and P is obviously contained in its circumcircle,
so we simply charge the scope of XYZ with it.
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In the second case, let XW be the edge that replaces YZ. Now, depending on which
way the “wave of suspect edges” has arrived at the edge YZ, either XYZ or WYZ was
Delaunay before the flip. If XYZ was Delaunay, we can again simply charge P to its scope.
If WYZ was Delaunay before the flip, the evidence against its Delaunayhood must have
come from site X. But if X is contained in the circumcircle of WYZ, so is P, and we can
charge P against the scope of the Delaunay triangle WYZ.

Therefore, we can charge every crossing to an event of the form that P is contained in
the circumcircle of a triangle that was Delaunay at some point during the construction.
And, if P charges the circumcircle of some triangle, it is easy to see that it can do so only
once.

Therefore, we obtain:

n

∑
i=1
E(# of triangles crossed during the ith insertion)

= E(∑ scopes of all Delaunay triangles that ever arose)

= E(
n−3

∑
j=0

j Tj

(j + 1)(j + 2)(j + 3)
)

This last expression is easily seen to be O(n log n)—we use the same technique we
used for obtaining the O(n) bound on the number of triangles formed during the con-
struction. Roughly, the above expression is of the form ∑n Tj

j2 ; if we consider the number
T≤j of triangles of scope less than or equal to j, this sum can be rewritten to be roughly

of the form ∑n T≤j

j3 . Using our previous results for T≤j, this expression takes on the form

∑n nj2

j3 = n ∑n 1
j = O(n log n). ¤

With this lemma, and the above observation about the cost of locating subtriangles, we
can therefore state the following theorem.

Theorem 36. The expected overall cost of point-location for the randomized incremental
construction of the Delaunay triangulation is O(n log n).

Convex Hulls and Delaunay Triangulations

In the previous lecture we introduced a correspondence between the sites of 2-space to
points on a paraboloid in 3-dimensions such that the mapping satisfies some special prop-
erties. Recall that we project a point in the plane to a point on the hyperbolic paraboloid
z = x2 + y2 by mapping (see figure 39):

λ : (x, y) 7−→ (x, y, x2 + y2)

Points A, B, C and D are mapped to points A′, B′, C′ and D′ on the parabolic surface. We
proved that points ABCD are cocircular if and only if points A′B′C′D′ are coplanar.

This implies that every circle in the plane maps to a planar curve on the paraboloid (the
intersection of some plane with the paraboloid).
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Figure 39: The projection of cocircular points on the parabola

Our construction has another nice property. Suppose we are given a triangle formed
by three sites in the plane, which maps to three points on the paraboloid. From our con-
struction, it easily follows that a fourth site lies inside the circle formed by the three sites in
the plane iff the mapped point lies below the plane formed by the three points in 3-space.
This means that Delaunay triangles in the plane (whose circumcircles are empty) map to
triangles in 3-space which don’t have any point below them. In other words, a Delaunay
triangle maps to a lower convex hull triangle of the mapped set of points in 3-space.

Hence, the problem of finding the Delaunay Triangulation of a set of points reduces to
that of finding the lower convex hull of a set of points on a paraboloid in three dimensions.
It turns out that this correspondence extends to arbitrary dimensions. That is, the problem
of finding the Delaunay diagram of n points in d dimensions corresponds to the problem
of finding the convex hull of n points in d + 1 dimensions. We do not prove this claim here,
although it is very straightforward.

Applications

Computing the Voronoi diagram and Delaunay triangulation is useful not only for its own
sake, but also is an important part of many other efficient geometric algorithms.

For example, the edge connecting the closest pair of sites in a collection of sites is a
Delaunay edge. Finding the closest pair is therefore reducible to finding the minimum
length Delaunay edge.

Finding all nearest neighbors is similarly easily accomplished starting with the Delau-
nay triangulation, because all edges connecting a site and its nearest neighbor must be
Delaunay.

As a final example consider the computation of the Euclidean Minimum Spanning Tree
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(EMST). The EMST must be a subset of the Delaunay triangulation (considered as a graph),
and can be obtained from it by application of a minimum spanning tree (MST) graph algo-
rithm. In fact, all the known EMST algorithms with good complexity compute the Delau-
nay triangulation first.
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