The Zone Theorem Revisited

Rom Pinchasi*

July 4, 2011

Abstract

We give a simple proof for the tight(!) upper bound of $\lfloor 9.5 n\rfloor-3$ for the complexity of a zone of a line in an arrangement of $n+1$ lines in the affine plane.

1 Introduction

Let \mathcal{L} be an arrangement of $n+1$ lines in general position in the affine plane, that is, no two lines are parallel and no three pass through a common point. The zone of a line ℓ in \mathcal{L} is the collection of all faces in \mathcal{L} supported by ℓ. The complexity of the zone of ℓ is the sum of the sizes of all faces in the zone of ℓ, where the size of a face is the number of its edges (those edge may be bounded or unbounded in case of an unbounded face).

The notion of a zone of a line was defined in [CGL85] where an upper bound of $10 n+2$ is shown for the complexity of the zone of a line in an arrangement of $n+1$ lines. This bound was further improved to $\lfloor 9.5 n\rfloor-1$ in [BEY91] and shown to be best possible up to small additive factor.

In this paper we give a simpler proof of the latter upper bound and even improve it by two units to be optimal. Our proof in fact follows the approach in [CGL85] more closely than the one in [BEY91].

Theorem 1. The complexity of a zone of a line in an arrangement of $n+1$ lines in general position in the plane is at most $\lfloor 9.5 n\rfloor-3$.

We note that a construction with zone complexity $\lfloor 9.5 n\rfloor-3$ is introduced in [BEY91], implying that Theorem 1 is tight. Yet, we consider the merit of this paper also for the simplified proof of the upper bound and not only for the small improvement in the bound. Having said this we note that perhaps one third of the proof is devoted to getting the optimal additive factor in the bound. The proof can be shortened significantly if one just wants to obtain a bound of the form $9.5 n+O(1)$, and the reader will notice this easily.

2 The Proof

We follow the proof in [CGL85]. We consider ℓ to be horizontal line. Let F be a face supported by ℓ such that F lies above ℓ. If F is bounded we call the two edges of F incident to the highest vertex

[^0]of F top edges (of F). If F is unbounded, then the unbounded edge(s) of F are top edges. The other edges of F are divided into left edges and right edges (of F) according to whether they are in the left or right component of the boundary of F minus ℓ and the top edges of F. (see Figure 1). If F lies below ℓ we analogously define two bottom edges as well as left and right edges (of F).

The basic observation in [CGL85] is that every line in the arrangement may contain at most one left edge and at most one right edge of some faces in the zone of ℓ that lie above ℓ and similarly at most one left edge and at most one right edge of some faces in the zone of ℓ below ℓ. This count gives the upper bound of $10 n+2$ in [CGL85] ($2 n$ top edges, $2 n$ bottom edge, $2 n$ right edges, $2 n$ left edges, and $2(n+1)$ edges on $\ell)$.

To prove the upper bound in Theorem 1 we will show that for every line in \mathcal{L} that contains two left edges and two right edges there corresponds a unique "missing" right or left edge on one of the other lines in \mathcal{L}.

For every line $t \in \mathcal{L} \backslash\{\ell\}$ we denote the first bounded (if exists) edge on t above the line ℓ by $e_{1}(t)$. We denote by $e_{2}(t)$ the first bounded (if exists) edge on t below the line ℓ. Observe that each of $e_{1}(t)$ and $e_{2}(t)$ serves as either a left or a right edge in some face in the zone of ℓ (see Figure 1).

Figure 1: Some terminology in the proof

Let $m \in \mathcal{L} \backslash\{\ell\}$ be a line that contains two left edges and two right edges of some faces in the zone of ℓ. Let z denote the intersection point of ℓ and m. Denote by x_{1} and x_{2} the vertices of $e_{1}(m)$ and $e_{2}(m)$, respectively, different from z. Without loss of generality assume that $e_{1}(m)$ is a left edge of some face. We claim that $e_{2}(m)$ must be a right edge of some face. Indeed, assume to the contrary that $e_{2}(m)$ is also a left edge, then it is easy to see that m may contain at most one right edge, contradicting our assumption (see Figure 2).

Therefore, we assume that $e_{2}(m)$ is a right edge. Let f_{1} and f_{2} be the other right and left edges, respectively, on m. Hence f_{1} lies above ℓ and f_{2} lies below ℓ. Let y_{1} and w_{1} denote the vertices of f_{1}, where w_{1} is closer to ℓ than y_{1}, and let y_{2} and w_{2} denote the vertices of f_{2}, where w_{2} is closer to ℓ than y_{2} (see Figure 3).

For a line t we denote by $\arg (t)$ the angle that the half line of t above the x-axis creates with the positive part of the x-axis. Let s_{1} be the line crossing m at a point on the line segment $\left[x_{1}, w_{1}\right]$ and such that $\arg \left(s_{1}\right)$ is minimum. Let s_{2} be the line crossing m at a point on the line segment $\left[x_{2}, w_{2}\right]$

Figure 2: An impossible case.
such that $\arg \left(s_{2}\right)$ is minimum (if, to start with, $e_{1}(m)$ is a right edge, then replace minimum by maximum when defining s_{1} and s_{2}).

Without loss of generality assume that $\arg \left(s_{1}\right)>\arg \left(s_{2}\right)$. We will show that s_{1} does not contain a left edge above $\ell\left(\right.$ if $\arg \left(s_{1}\right)<\arg \left(s_{2}\right)$ one can just rotate the plane at 180 degrees or equivalently show that s_{2} does not contain a right edge below ℓ). Observe that $e_{1}\left(s_{1}\right)$ is a right edge or else we get a contradiction to the minimality of s_{1}. Because f_{1} is a right edge there is a line $k \in \mathcal{L}$ that passes through y_{1} and crosses ℓ at a point z^{\prime} to the right of $z . z^{\prime}$ must also be to the right of the intersection point of s_{2} and ℓ, or else f_{2} is not a left edge of a face supported by ℓ. If s_{1} contained a left edge g, then g must be contained in the interval between the crossing points of s_{1} with ℓ and k. However, in this case the line that crosses s_{1} at the higher vertex of g contradicts the minimality of s_{1} (see the dashed line in Figure 3).

Figure 3: The missing edge.

Before continuing to showing that s_{1} is uniquely assigned to the line m we make two simple observations about s_{1} that will help up to obtain a tight bound up to the additive factor as well. The first observation is that s_{1} does not contain a top infinite edge of a face supported by ℓ (see Figure 3). In particular s_{1} is never the line such that $\arg \left(s_{1}\right)$ is maximum possible or minimum possible. The second observation is that the crossing point of s_{1} with ℓ is never the left most or the right most on ℓ. We refer the reader to Figure 3 where it is evident that the crossing point of s_{1} with ℓ is to the left of z and z^{\prime}. To see that this crossing point is not the left most observe that because f_{2} is a left edge there is a line $k^{\prime} \in \mathcal{L}$ through y_{2} that crosses ℓ to the left of the crossing point of ℓ and s_{1} for otherwise f_{1} cannot be a right edge of a face supported by ℓ (see Figure 3 again).

We will now show that s_{1} does not correspond in this way to any other line m^{\prime} that contains two right edges and two left edges. Suppose to the contrary that it does. We must have that $e_{1}\left(m^{\prime}\right)$ is a left edge and $e_{2}\left(m^{\prime}\right)$ is a right edge (as is the case with the line m, because the missing edge is a $L E F T$ edge $A B O V E \ell$). We may assume without loss of generality that m^{\prime} crosses ℓ at a point $z^{\prime \prime}$ to the right of z. Then $z^{\prime \prime}$ must be to the left of the intersection point of s_{2} and ℓ or else s_{2} will contradict the minimality of s_{1} with respect to m^{\prime} (recall that $\arg \left(s_{2}\right)<\arg \left(s_{1}\right)$). It is important to observe that m^{\prime} must cross m at a point above ℓ. For if m^{\prime} crosses m below ℓ, then m^{\prime} cannot contain a right edge of a face in the zone of ℓ that lies above ℓ. However, now it is evident that m cannot contain (f_{2} as) a left edge below ℓ, contradicting our assumption (see Figure 4).

Figure 4: The missing edge is uniquely assigned to m.

We can now turn to counting part of the paper. We have $2 n$ top edges and $2 n$ bottom edges. We also have $2(n+1)$ edges on ℓ. It remains to estimate the number of right and left edges of faces supported by ℓ. Every line may contain at most two left edges and two right edges of such faces. We saw that for every line that contains the complete set of two left edges and two right edges there is a unique missing (left or right) edge on one of the other lines.

Let r_{1} be the line such that $\arg \left(r_{1}\right)$ is minimum and let r_{2} be the line such that $\arg \left(r_{2}\right)$ is maximum. Observe that r_{1} and r_{2} contain at most one right edge and one left edge each. Moreover
by applying a suitable projective transformation taking to the line at infinity a line that is very close to a line (to become r_{1}) containing a complete set of two left and two right edges as in Figure 5 (it may take a moment to get convinced that the complexity of the zone of ℓ remains unchanged), we may assume that r_{1} contains only one left edge and no right edges, as we may assume that r_{1} creates together with ℓ an unbounded face with just two edges. Denote by r_{1}^{\prime} the line such that $\arg \left(r_{1}^{\prime}\right)$ is the second smallest (see Figure 5). r_{1}^{\prime} contains an infinite top edge and no right edge above the line ℓ. As we already observed, s_{1} in the proof is never one of r_{1}, r_{1}^{\prime}, or $r_{2} . r_{1}, r_{1}^{\prime}$, and r_{2} contribute altogether at most 6 left and/or right edges to the count as follows: r_{1} contributes exactly one left edge below $\ell . r_{2}$ contributes one right edge below ℓ and one left edge above $\ell . r_{1}^{\prime}$ cannot contribute a left edge above ℓ and therefore contributes at most 3 to the count.

Figure 5: The lines r_{1}, r_{1}^{\prime}, and r_{2}.

Let r_{3} denote the line that crosses ℓ at the left most vertex on ℓ. Notice that r_{3} cannot be equal to r_{1} or to r_{2}, as r_{1}^{\prime} crosses ℓ to the left of the crossing points of ℓ with r_{1} and r_{2}. Notice also that r_{3} cannot contain a complete set of two left edges and two right edges, as such a line never crosses ℓ at an extreme intersection point on ℓ (see Figure 3). Moreover, as we observed earlier, s_{1} in the proof is never r_{3}, for s_{1} never crosses ℓ at an extreme crossing point on ℓ.

Case 1. $r_{3} \neq r_{1}^{\prime}$. Notice that $r_{1}, r_{1}^{\prime}, r_{2}$, and r_{3} contain altogether at most 9 left and/or right edges.
Denote by $x_{i}(i=1,2,3,4)$ the number of lines (other than $r_{1}, r_{1}^{\prime}, r_{2}$, and $\left.r_{3}\right)$ containing exactly i right and/or left edges of faces supported by ℓ. (Observe that every line $m \in \mathcal{L}$ must contain at least one left or right edge, namely $e_{1}(m)$ and/or $e_{2}(m)$, as at least one exists.)

We have $x_{1}+x_{2}+x_{3}+x_{4}=n-4$. The correspondence between lines counted by x_{4} and "missing" edges implies $x_{4} \leq x_{3}+2 x_{2}+3 x_{1}$. We are interested in estimating the number of left and right edges on lines different from $r_{1}, r_{1}^{\prime}, r_{2}$ and r_{3}, that is, we are interested in the sum $4 x_{4}+3 x_{3}+2 x_{2}+x_{1}$. This is now quite easy:

$$
\begin{aligned}
4 x_{4}+3 x_{3}+2 x_{2}+x_{1} & \leq 4 x_{4}+3 x_{3}+2.5 x_{2}+2 x_{1}= \\
& =3.5\left(x_{4}+x_{3}+x_{2}+x_{1}\right)+0.5\left(x_{4}-x_{3}-2 x_{2}-3 x_{1}\right) \leq \\
& \leq 3.5(n-4)=3.5 n-14
\end{aligned}
$$

We conclude that the complexity of the zone of ℓ is bounded from above by

$$
2 n+2 n+2(n+1)+(\lfloor 3.5 n-14\rfloor)+9=\lfloor 9.5 n\rfloor-3
$$

Case 2. $r_{3}=r_{1}^{\prime}$. In this case r_{1}^{\prime} contain precisely 2 left and/or right edges (in fact right edges only), implying that r_{1}, r_{1}^{\prime}, and r_{2} contain altogether at most 5 left and/or right edges.

Therefore, for $x_{1}, x_{2}, x_{3}, x_{4}$ as in the previous case, we have $x_{1}+x_{2}+x_{3}+x_{4}=n-3$. The correspondence between lines counted by x_{4} and "missing" edges implies $x_{4} \leq x_{3}+2 x_{2}+3 x_{1}$. Now the sum $4 x_{4}+3 x_{3}+2 x_{2}+x_{1}$ can be bounded as follows:

$$
\begin{aligned}
4 x_{4}+3 x_{3}+2 x_{2}+x_{1} & \leq 4 x_{4}+3 x_{3}+2.5 x_{2}+2 x_{1}= \\
& =3.5\left(x_{4}+x_{3}+x_{2}+x_{1}\right)+0.5\left(x_{4}-x_{3}-2 x_{2}-3 x_{1}\right) \leq \\
& \leq 3.5(n-3)=3.5 n-10.5
\end{aligned}
$$

We conclude that the complexity of the zone of ℓ is bounded from above by

$$
2 n+2 n+2(n+1)+(\lfloor 3.5 n-10.5\rfloor)+5=\lfloor 9.5 n-3.5\rfloor \leq\lfloor 9.5 n\rfloor-3
$$

References

[BEY91] M. Bern, D. Eppstein, F. Yao, Horizon theorems for lines and polygons. Discrete and computational geometry (New Brunswick, NJ, 1989/1990), 45-66, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 6, Amer. Math. Soc., Providence, RI, 1991.
[CGL85] B. Chazelle, L. J. Guibas, D.T. Lee, The power of geometric duality. BIT 25 (1985), no. 1, 76-90.

[^0]: *Mathematics Dept., Technion-Israel Institute of Technology, Haifa 32000, Israel. room@math.technion.ac.il.

