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Abstract

We give a simple proof for the tight(!) upper bound of ⌊9.5n⌋ − 3 for the complexity of a
zone of a line in an arrangement of n + 1 lines in the affine plane.

1 Introduction

Let L be an arrangement of n + 1 lines in general position in the affine plane, that is, no two lines
are parallel and no three pass through a common point. The zone of a line ℓ in L is the collection
of all faces in L supported by ℓ. The complexity of the zone of ℓ is the sum of the sizes of all faces
in the zone of ℓ, where the size of a face is the number of its edges (those edge may be bounded or
unbounded in case of an unbounded face).

The notion of a zone of a line was defined in [CGL85] where an upper bound of 10n+2 is shown
for the complexity of the zone of a line in an arrangement of n + 1 lines. This bound was further
improved to ⌊9.5n⌋ − 1 in [BEY91] and shown to be best possible up to small additive factor.

In this paper we give a simpler proof of the latter upper bound and even improve it by two
units to be optimal. Our proof in fact follows the approach in [CGL85] more closely than the one
in [BEY91].

Theorem 1. The complexity of a zone of a line in an arrangement of n+1 lines in general position

in the plane is at most ⌊9.5n⌋ − 3.

We note that a construction with zone complexity ⌊9.5n⌋−3 is introduced in [BEY91], implying
that Theorem 1 is tight. Yet, we consider the merit of this paper also for the simplified proof of the
upper bound and not only for the small improvement in the bound. Having said this we note that
perhaps one third of the proof is devoted to getting the optimal additive factor in the bound. The
proof can be shortened significantly if one just wants to obtain a bound of the form 9.5n + O(1),
and the reader will notice this easily.

2 The Proof

We follow the proof in [CGL85]. We consider ℓ to be horizontal line. Let F be a face supported by
ℓ such that F lies above ℓ. If F is bounded we call the two edges of F incident to the highest vertex
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of F top edges (of F ). If F is unbounded, then the unbounded edge(s) of F are top edges. The
other edges of F are divided into left edges and right edges (of F ) according to whether they are
in the left or right component of the boundary of F minus ℓ and the top edges of F . (see Figure
1). If F lies below ℓ we analogously define two bottom edges as well as left and right edges (of F ).

The basic observation in [CGL85] is that every line in the arrangement may contain at most
one left edge and at most one right edge of some faces in the zone of ℓ that lie above ℓ and similarly
at most one left edge and at most one right edge of some faces in the zone of ℓ below ℓ. This count
gives the upper bound of 10n + 2 in [CGL85] (2n top edges, 2n bottom edge, 2n right edges, 2n
left edges, and 2(n + 1) edges on ℓ).

To prove the upper bound in Theorem 1 we will show that for every line in L that contains two
left edges and two right edges there corresponds a unique “missing” right or left edge on one of the
other lines in L.

For every line t ∈ L \ {ℓ} we denote the first bounded (if exists) edge on t above the line ℓ by
e1(t). We denote by e2(t) the first bounded (if exists) edge on t below the line ℓ. Observe that each
of e1(t) and e2(t) serves as either a left or a right edge in some face in the zone of ℓ (see Figure 1).

$F$
t

right edge
ℓ

Bottom edge of G

Top edge of F

left edge

right edge

e2(t)

e1(t)

G

Figure 1: Some terminology in the proof

Let m ∈ L \ {ℓ} be a line that contains two left edges and two right edges of some faces in the
zone of ℓ. Let z denote the intersection point of ℓ and m. Denote by x1 and x2 the vertices of
e1(m) and e2(m), respectively, different from z. Without loss of generality assume that e1(m) is a
left edge of some face. We claim that e2(m) must be a right edge of some face. Indeed, assume to
the contrary that e2(m) is also a left edge, then it is easy to see that m may contain at most one
right edge, contradicting our assumption (see Figure 2).

Therefore, we assume that e2(m) is a right edge. Let f1 and f2 be the other right and left edges,
respectively, on m. Hence f1 lies above ℓ and f2 lies below ℓ. Let y1 and w1 denote the vertices of
f1, where w1 is closer to ℓ than y1, and let y2 and w2 denote the vertices of f2, where w2 is closer
to ℓ than y2 (see Figure 3).

For a line t we denote by arg(t) the angle that the half line of t above the x-axis creates with the
positive part of the x-axis. Let s1 be the line crossing m at a point on the line segment [x1, w1] and
such that arg(s1) is minimum. Let s2 be the line crossing m at a point on the line segment [x2, w2]
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f1 cannot be a right edge

Figure 2: An impossible case.

such that arg(s2) is minimum (if, to start with, e1(m) is a right edge, then replace minimum by
maximum when defining s1 and s2).

Without loss of generality assume that arg(s1) > arg(s2). We will show that s1 does not contain
a left edge above ℓ (if arg(s1) < arg(s2) one can just rotate the plane at 180 degrees or equivalently
show that s2 does not contain a right edge below ℓ). Observe that e1(s1) is a right edge or else we
get a contradiction to the minimality of s1. Because f1 is a right edge there is a line k ∈ L that
passes through y1 and crosses ℓ at a point z′ to the right of z. z′ must also be to the right of the
intersection point of s2 and ℓ, or else f2 is not a left edge of a face supported by ℓ. If s1 contained
a left edge g, then g must be contained in the interval between the crossing points of s1 with ℓ and
k. However, in this case the line that crosses s1 at the higher vertex of g contradicts the minimality
of s1 (see the dashed line in Figure 3).
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Figure 3: The missing edge.
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Before continuing to showing that s1 is uniquely assigned to the line m we make two simple
observations about s1 that will help up to obtain a tight bound up to the additive factor as well.
The first observation is that s1 does not contain a top infinite edge of a face supported by ℓ (see
Figure 3). In particular s1 is never the line such that arg(s1) is maximum possible or minimum
possible. The second observation is that the crossing point of s1 with ℓ is never the left most or
the right most on ℓ. We refer the reader to Figure 3 where it is evident that the crossing point of
s1 with ℓ is to the left of z and z′. To see that this crossing point is not the left most observe that
because f2 is a left edge there is a line k′ ∈ L through y2 that crosses ℓ to the left of the crossing
point of ℓ and s1 for otherwise f1 cannot be a right edge of a face supported by ℓ (see Figure 3
again).

We will now show that s1 does not correspond in this way to any other line m′ that contains
two right edges and two left edges. Suppose to the contrary that it does. We must have that e1(m

′)
is a left edge and e2(m

′) is a right edge (as is the case with the line m, because the missing edge is
a LEFT edge ABOVE ℓ). We may assume without loss of generality that m′ crosses ℓ at a point
z′′ to the right of z. Then z′′ must be to the left of the intersection point of s2 and ℓ or else s2 will
contradict the minimality of s1 with respect to m′ (recall that arg(s2) < arg(s1)). It is important
to observe that m′ must cross m at a point above ℓ. For if m′ crosses m below ℓ, then m′ cannot
contain a right edge of a face in the zone of ℓ that lies above ℓ. However, now it is evident that m

cannot contain (f2 as) a left edge below ℓ, contradicting our assumption (see Figure 4).
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Figure 4: The missing edge is uniquely assigned to m.

We can now turn to counting part of the paper. We have 2n top edges and 2n bottom edges.
We also have 2(n+1) edges on ℓ. It remains to estimate the number of right and left edges of faces
supported by ℓ. Every line may contain at most two left edges and two right edges of such faces.
We saw that for every line that contains the complete set of two left edges and two right edges
there is a unique missing (left or right) edge on one of the other lines.

Let r1 be the line such that arg(r1) is minimum and let r2 be the line such that arg(r2) is
maximum. Observe that r1 and r2 contain at most one right edge and one left edge each. Moreover
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by applying a suitable projective transformation taking to the line at infinity a line that is very
close to a line (to become r1) containing a complete set of two left and two right edges as in Figure
5 (it may take a moment to get convinced that the complexity of the zone of ℓ remains unchanged),
we may assume that r1 contains only one left edge and no right edges, as we may assume that r1

creates together with ℓ an unbounded face with just two edges. Denote by r′1 the line such that
arg(r′1) is the second smallest (see Figure 5). r′1 contains an infinite top edge and no right edge
above the line ℓ. As we already observed, s1 in the proof is never one of r1, r

′

1, or r2. r1, r
′

1, and
r2 contribute altogether at most 6 left and/or right edges to the count as follows: r1 contributes
exactly one left edge below ℓ. r2 contributes one right edge below ℓ and one left edge above ℓ. r′1
cannot contribute a left edge above ℓ and therefore contributes at most 3 to the count.

r′
1

goes to line at infinity

r′
1

r2

r1

ℓ ℓ

r2

r1

Figure 5: The lines r1, r
′

1, and r2.

Let r3 denote the line that crosses ℓ at the left most vertex on ℓ. Notice that r3 cannot be equal
to r1 or to r2, as r′1 crosses ℓ to the left of the crossing points of ℓ with r1 and r2. Notice also that
r3 cannot contain a complete set of two left edges and two right edges, as such a line never crosses
ℓ at an extreme intersection point on ℓ (see Figure 3). Moreover, as we observed earlier, s1 in the
proof is never r3, for s1 never crosses ℓ at an extreme crossing point on ℓ.

Case 1. r3 6= r′1. Notice that r1, r
′

1, r2, and r3 contain altogether at most 9 left and/or right edges.

Denote by xi (i = 1, 2, 3, 4) the number of lines (other than r1, r
′

1, r2, and r3) containing exactly
i right and/or left edges of faces supported by ℓ. (Observe that every line m ∈ L must contain at
least one left or right edge, namely e1(m) and/or e2(m), as at least one exists.)

We have x1 + x2 + x3 + x4 = n − 4. The correspondence between lines counted by x4 and
“missing” edges implies x4 ≤ x3 + 2x2 + 3x1. We are interested in estimating the number of
left and right edges on lines different from r1, r

′

1, r2 and r3, that is, we are interested in the sum
4x4 + 3x3 + 2x2 + x1. This is now quite easy:

4x4 + 3x3 + 2x2 + x1 ≤ 4x4 + 3x3 + 2.5x2 + 2x1 =

= 3.5(x4 + x3 + x2 + x1) + 0.5(x4 − x3 − 2x2 − 3x1) ≤

≤ 3.5(n − 4) = 3.5n − 14

We conclude that the complexity of the zone of ℓ is bounded from above by

2n + 2n + 2(n + 1) + (⌊3.5n − 14⌋) + 9 = ⌊9.5n⌋ − 3.
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Case 2. r3 = r′1. In this case r′1 contain precisely 2 left and/or right edges (in fact right edges only),
implying that r1, r

′

1, and r2 contain altogether at most 5 left and/or right edges.

Therefore, for x1, x2, x3, x4 as in the previous case, we have x1 + x2 + x3 + x4 = n − 3. The
correspondence between lines counted by x4 and “missing” edges implies x4 ≤ x3 +2x2 +3x1. Now
the sum 4x4 + 3x3 + 2x2 + x1 can be bounded as follows:

4x4 + 3x3 + 2x2 + x1 ≤ 4x4 + 3x3 + 2.5x2 + 2x1 =

= 3.5(x4 + x3 + x2 + x1) + 0.5(x4 − x3 − 2x2 − 3x1) ≤

≤ 3.5(n − 3) = 3.5n − 10.5

We conclude that the complexity of the zone of ℓ is bounded from above by

2n + 2n + 2(n + 1) + (⌊3.5n − 10.5⌋) + 5 = ⌊9.5n − 3.5⌋ ≤ ⌊9.5n⌋ − 3.
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