
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks*

S a m u e l M a d d e n , M i c h a e l J. F rank l in , and J o s e p h M. He l l e r s t e in

{ m a d d e n , f r a n k l i n , j m h } @ c s . b e r k e l e y . e d u

UC Berkeley

Wei H o n g

w e i . h o n g @ i n t e l - r e s e a r c h . n e t

Intel Research, Berkeley

A b s t r a c t

We present the Tiny AGgregation (TAG) service for ag-
gregation in low-power, distributed, wireless environ-
ments. TAG allows users to express simple, declarative
queries and have them distributed and executed efficiently
in networks of low-power, wireless sensors. We discuss
various generic properties of aggregates, and show how
those properties affect the performance of our in network
approach. We include a performance study demonstrat-
ing the advantages of our approach over traditional cen-
tralized, out-of-network methods, and discuss a variety of
optimizations for improving the performance and fault-
tolerance of the basic solution.

1 Introduction

Recent advances in computing technology have led to the
production of a new class of computing device: the wire-
less, battery powered, smart sensor [25]. These new sen-
sors are active, full fledged computers, capable not only of
measuring real world phenomena but also filtering, shar-
ing, and combining those measurements. One example
of such small sensor devices are the motes under devel-
opment at UC Berkeley. Current generation motes are
roughly 2cm x 4cm x lcm and are equipped with a radio,
a processor, memory, a small battery pack, and a suite of
sensors. The mote operating system, TinyOS, provides a
set of primitives designed to facilitate the deployment of
motes in ad-hoc networks. In such networks, devices can
identify each other and route data without prior knowl-
edge of or assumptions about the network topology, al-
lowing the network topology to change as devices move,
run out of power, or experience shifting waves of interfer-
ence.

Due to the relative ease of deployment of mote-based sen-
sor networks, practitioners in a variety of fields have be-
gun considering them for a range of monitoring and data
collection tasks. For example: civil engineers are using
motes to monitor building integrity during earthquakes

*This work has been partially supported by the NSF under grants
IIS-0086057 and SI0122599, and by research funds from IBM, lntel,
Microsoft, and the UC Micro program.

[31]; biologists are planning mote deployments for habitat
monitoring[21, 5]; administrators of large computer clus-
ters are interested in using motes to monitor the tempera-
ture and power usage in their data centers.

All of these sensor applications depend on the ability to
extract data from the network. Often, this data consists of
summaries (or aggregations) rather than raw sensor read-
ings. Other researchers have noted the importance of data
aggregation in sensor networks [13, 10, 12]. This previous
work has tended to view aggregation as an application-
specific mechanism that would be programmed into the
devices on an as-needed basis, typically in error-prone,
low-level languages like C. In contrast, our position is that
because aggregation is so central to emerging sensor net-
work applications, it must be provided as a core service
by the system software. Instead of a set of extensibte C
APIs, we believe this service should consist of a generic,
easily invoked high-level programming abstraction. This
approach enables users of sensor networks, who often are
not networking experts or even computer scientists, to fo-
cus on their applications free from the idiosyncrasies of
the underlying embedded OS and hardware.

1.1 The T A G Approach

We have developed Tiny AGgregation (TAG), a generic
aggregation service for ad hoc networks of TinyOS motes.
There are two essential attributes of this service. First, it
provides a simple, declarative interface for data collection
and aggregation, inspired by selection and aggregation fa-
cilities in database query languages. Second, it intelli-
gently distributes and executes aggregation queries in the
sensor network in a time and power-efficient manner, and
is sensitive to the resource constraints and lossy commu-
nication properties of wireless sensor networks. TAG pro-
cesses aggregates in the network by computing over the
data as it flows through the sensors, discarding irrelevant
data and combining relevant readings into more compact
records when possible.

TAG operates as follows: users pose aggregation queries
from a powered, storage-rich basestation. Operators that
implement the query are distributed into the network by
piggybacking on the existing ad hoc networking protocol.

USENIX Association 5th Symposium on Operating Systems Design and Implementation 131

Sensors route data back towards the user through a routing
tree rooted at the basestation. As data flows up this tree,
it is aggregated according to an aggregation function and
value-based partitioning specified in the query. As an ex-
ample, consider a query that counts the number of nodes
in a network of indeterminate size. First, the request to
count is injected into the network. Then, each leaf node in
the tree reports a count of 1 to their parent; interior nodes
sum the count of their children, add 1 to it, and report that
value to their parent. Counts propagate up the tree in this
manner, and flow out at the root.

1.2 O v e r v i e w of the P a p e r

The contributions of this paper are four-fold: first, we pro--
pose a simple, SQL-tike declarative language for express-
ing aggregation queries over streaming sensor data and
identify key properties of aggregation functions that affect
the extent to which they can be efficiently processed inside
the network. Second, we demonstrate how such in net-
work execution can yield an order of magnitude reduction
in communication compared to centralized approaches.
Third, we show that by adopting a well-defined, declar-
ative query language as a level of abstraction between
the user and specific networking and routing protocols,
a number of optimizations can be transparently applied to
further reduce the data demands on the system. Finally,
we show that our focus on a high-level language leads to
useful end-to-end techniques for reducing the effects of
network loss on aggregate results.

The remainder of the paper is structured as follows. In
the next section, we briefly review the TinyOS hardware
and software environment. Then, we discuss the syntax
and semantics of queries in TAG and classify the types of
aggregates supported by the system, focusing on the char-
acteristics of aggregates that impact their performance and
fault tolerance. We then present the core TAG algorithm
and show how our solution satisfies the query require-
ments while providing performance and tolerance to net-
work faults. We discuss several optimizations for improv-
ing the performance of the basic approach. Additionally,
we include experimental results demonstrating the effec-
tiveness and robustness of our algorithms in a simulation
environment, as well as a brief study of a real-world de-
ployment on TinyOS motes. Finally, we discuss related
work and conclude.

2 Motes and Ad-Hoc Networks
In this section, we provide a brief overview of the mote
hardware architecture, the TinyOS system, and an ad hoc

routing algorithm for mote-based sensor networks.

2 , t Motes

Current generation TinyOS motes are equipped with a
4Mhz Atmel microprocessor with 4 kB of RAM and 128
kB of code space, a 917 MHz RFM radio running at 50
kb/s, and 512kB of EEPROM. An expansion slot accom-
modates a variety of sensor boards by exposing a number
of analog input lines as well as popular chip-to-chip serial
busses. Current sensor options include: light, tempera-
ture, magnetic field, acceleration, sound, and power.

The single-channel radio is half duplex, meaning motes
cannot send and receive at the same time. Currently, the
default TinyOS implementation uses a CSMA-like media
access protocol with a random backoff scheme. Message
delivery is unreliable by default, though applications can
build up an acknowledgment layer. Often, a message ac-
knowledgment can be obtained for free (see Section 2.2).

Power is supplied via an AA battery pack or a coin-cell
attached through the expansion slot. The effective life-
time of the device is determined by this power supply. In
turn, the power consumption of each sensor node tends
to be dominated by the cost of transmitting and receiving
messages. In terms of power consumption, transmitting a
single bit of data is equivalent to 800 instructions. This
energy tradeoff between communication and computation
implies that many applications will benefit by processing
the data inside the network rather than simply transmitting
the sensor readings. An AA battery pack will allow a mote
to send 5.52 million messages (if it does no other compu-
tation and only powers its radio up to transmit) which is
equivalent to one message per second every day for about
two months - not long if the goal is to deploy long lived,
zero-maintenance ad-hoc sensor networks. Hence, power-
conserving algorithms are particularly important. 1 As we
will discuss in Section 4.1, our design is amenable to very
low power modes in which the radio is kept powered down
for long periods of time.

To understand how data is routed in our ad-hoc aggrega-
tion network, two properties of radio communication need
to be emphasized. First, radio is a broadcast medium so
that any mote within hearing distance hears a message,
irrespective of whether or not that mote is the intended re-
cipient. Second, we only make use of symmetric links
(where if mote a can hear mote b, b can also hear a.)
As is common in ad-hoc protocols, asymmetric links are
detected and blacklisted using a technique similar to that
proposed in AODV [24].

Messages in the current generation of TinyOS are a fixed

INote that as sensor devices become more integrated, it is expected
that the ratio of communication to computation costs will get more im-
portant over time as silicon efficiency increases while the physical costs
of pushing radio waves over the air remain constant.

132 5th Symposium on Operating Systems Design and Implementation USENIX Association

size - by default, 30 bytes. Each device has a unique
s e n s o r 1D that distinguishes it from others. All messages
specify their recipient (or speciI~¢ broadcas t , meaning all
available recipients), allowing motes to ignore messages
not intended for them, although non-broadcast messages
are received by all motes within range - unintended recip-
ients simply drop messages not addressed to them.

2.2 Ad-Hoc Routing Algorithm
Given this overview of the mote environment, we now dis-
cuss how sensor devices route data. One common tech-
nique, which we sketch here, is to build a routing tree.
We omit some details of this approach due to space con-
straints - a number routing protocols suitable for this
purpose have been proposed; the reader is referred to
[32, 13, 12, 14, 1] for more information. In general, TAG
is agnostic to the choice of routing algorithm, requiring
it to provide just two capabilities. First, it must be able
to deliver query requests to all nodes in a network. 2 Sec-
ond, it must be able to provide one or more routes from
every node to the root of the network where aggregation
data is being collected. These routes must guarantee that
at most one copy of every message arrive (no duplicates
are generated).

In the tree-based routing scheme, one mote is appointed to
be the root , usually because it is the point where the user
interfaces to the network. The root broadcasts a message
asking motes to organize into a routing tree; in that mes-
sage it specifies its own id and its level , or distance from
the root (in this case, zero.) Any mote without an assigned
level that hears this message assigns its own level to be the
level in the message plus one. It also chooses the sender
of the message as its paren t , through which it will route
messages to the root.

Each of these motes then rebroadcasts the routing mes-
sage, inserting their own ids and levels. The routing mes-
sage floods down the tree in this fashion, with each node
rebroadcasting the message until all nodes have been as-
signed a level and a parent. These routing messages are
periodically broadcast from the root, so that the process
of topology discovery goes on continuously. This constant
topology maintenance makes it relatively easy to adapt to
network changes caused by mobility of certain nodes, or
to the addition or deletion of motes. We describe a specific
topology maintenance protocol used for our experiments
on loss in Section 7.1 below. To maintain stability in the
network, parents are retained unless a child does not hear
from them for some long period of time, at which point it

2Note that, as an optimization, it may be useful for the routing layer
to limit the extent to which queries are propagated based on properties of
the query - for example, a short-lived query over constrained geographic
area need not be sent to motes far away from that area. We reserve such
optimizations for future work.

selects a new parent using this same process. We look in
more detail at the robustness of this approach with respect
to loss and its eftect on aggregate values in Section 7.

When a mote wishes to send a message to the root, it
broadcasts a message addressed to its parent, which in
turn forwards the message on to its parent, and so on,
eventually reaching the root. In Section 4, we show how,
as data is routed towards the root, it can be combined with
data from other motes to efficiently combine routing and
aggregation. Now, however, we turn to the syntax and se-
mantics o f aggregate queries in TAG.

3 Query Model and Environment

Given our goal of allowing users to pose declarative
queries over sensor networks, we needed a language for
expressing such queries. Rather than inventing our own,
we chose to adopt a SQL-style query syntax. We sup-
port SQL-style queries (without joins) over a single ta-
ble called s e n s o r s , whose schema is known at the base
station. As is the case in Cougar [23], this table can be
thought o f as an append-only relational table with one at-
tribute per input of the motes (e.g., temperature, light.)
In TAG, we focus on the problem of aggregate sensor
readings, though facilities for collecting individual sensor
readings also exist.

Before describing the semantics of queries in general, we
begin with an example query. Consider a user who wishes
to monitor the occupancy of the conference rooms on a
particular floor of a building, which she chooses to do by
using microphone sensors attached to motes, and looking
for rooms where the average volume is over some thresh-
old (assuming that rooms can have multiple sensors). Her
query could be expressed as:

SELECT AVG (volume) , room FROM sensors

WHERE floor = 6

GROUP BY room

HAVING AVG(volume) > threshold
EPOCH DURATION 30s

This query partitions motes on the 6th floor according
to the room in which they are located (which may be a
hard-coded constant in each device, or may be determined
via some localization component available to the devices.)
The query then reports all rooms where the average vol-
ume is over a specified threshold. Updates are delivered
every 30 seconds, although the user may deregister her
query at any time.

In general, queries in TAG have the form:

SELECT {agg(expr), attrs} FROM sensors

WHERE {selPreds}

GROUP BY {attrs}

HAVING {havingPreds}

EPOCH DURATION i

With the exception of the EPOCH DURATION clause, the
semantics of this statement are similar to SQL aggregate

USENIX Association 5th Symposium on Operating Systems Design and Implementation 133

queries. The SELECT clause specifies an arbitrary arith-
metic expression over one or more aggregation attributes.
We expect that the common case here is that expr will
simply be the name of a single attribute. A t t r s (option-
ally) selects the attributes by which the sensor readings are
partitioned ; these can be any subset of a t t r s that appear
in the GROUP BY clause. The syntax of the a99 clause
is discussed below; note that multiple aggreggates may
be compmed in a single query. The WHERE clause filters
out individual sensor readings before they are aggregated.
Such predicates can typically be executed locally at the
mote before readings are communicated, as in [23, 18].
The GROUP BY clause specifies an attribute based par-
titioning of sensor readings. Logically, each reading be-
longs to exactly one group, and the evahmtion of the query
is a table of group identifiers and aggregate values. The
HAVING clause filters that table by suppressing groups
that do not satisfy the h a v k n g P r e d s predicates.

The primary semantic difference between 'IAG queries
and SQL queries is that the output of a TAG query is a
stream of values, rather than a single aggregate value (or
batched result). In monitoring applications, such contin-
uous results are often more useful than a single, isolated
aggregate, as they allow users to understand how the net-
work is behaving over time and observe transient effects
(such as message losses) that make individual results,
taken in isolation, hard to interpret. In these stream se-
mantics, each record consists of one <group id,aggregate
value> pair per group. Each group is time-stamped and
the readings used to compute an aggregate record all be-
long to the same time interval, or epoch. The duration
of each epoch is the argument of the EPOCH DURATION
clause, which specifies the amount of time (in seconds)
devices wait before acquiring and transmitting each suc-
cessive sample. This value may be as large as the user
desires; it must be at least as long as the time it takes
for a mote to process and transmit a single radio message
and do some local processing - about 30 ms (including
average MAC backoff in a low-contention environment)
for current generation motes (yielding a maximum sam-
ple rate of about 33 samples per second.) In section 4.1,
we discuss situations that require longer lower bounds on
epoch duration.

3.1 Structure of Aggregates

The problem of computing aggregate queries in large clus-
ters of nodes has been addressed in the context of shared-
nothing parallel query processing environments [26]. l i ke
sensor networks, those environments require the coordina-
tion of a large number of nodes to process aggregations.
Thus, while the severe bandwidth limitations, lossy com-
munications, and variable topology of sensor networks

mean that the specific implementation techniques used in
the two environments must differ, it is still useful to lever-
age the techniques for aggregate decomposition used in
database systems [2, 35].

The approach used in such systems (and followed in
TAG) is to implement agg via three functions: a merging
function f , an initializer i, and an evaluator, e.

In general, f has the following structure:

<z>= f (< x > , < y >)

where < x > and < y > are multi-valued partial state
records, computed over one or more sensor values, repre-
senting the intermediate state over those values that will
be required to compute an aggregate. < z > is the partial-
state record resulting from the application of function f
to < x > and < y >. For example, if f is the merg-
ing function for AVERAGE, each partial state record will
consist of a pair of values: SUN and COUNT, and f is spec-
ified as follows, given two state records < St , C1 > and

< S2,C2 >:

f(< SI,C1 > ,< $2,C2 >) =< S1 -~ $2,61 -t-C2 >

The initializer i is needed to specify how to instantiate a
state record for a single sensor value; for an AVERAGE
over a sensor value of x, the initializer i(x) returns the
tuple < x, 1 >. Finally, the evaluator e takes a partial
state record and computes the actual value of the aggre-
gate. For AVERAGE, the evaluator e (< S, C >) simply
returns S /C .

These three functions can easily be derived for the basic
SQL aggregates; in general, any operation that can be ex-
pressed as commutative applications of a binary function
is expressible.

3.2 Taxonomy of Aggregates

Given our basic syntax and structure of aggregates, an
obvious question remains: what aggregate functions can
be expressed in TAG? The original SQL specification
offers just five options: COUNT, MIN, HAX, SUM, and
AVERAGE. Although these basic functions are suitable for
a wide range of database applications, we did not wish to
constrain TAG to only these choices. For this reason, we
present a general classification of aggregate functions and
show how the dimensions of that classification affect the
performance of TAG throughout the paper. We will as-
sttme that when aggregation functions are registered with
TAG, they are classified along the dimensions described

below)

3We omit a detailed discussion of how new aggregate functions
are registered with motes. For now, aggregates arc pre-compiled into
motes. Virtuabmachine languages recently proposed for TinyOS-style
[16] motes could also be used for this purpose.

134 5th Symposium on Operating Systems Design and Implementation USENIX Association

Duplicate Sensitive No
Exemplary (E), Summary (S) E
Monotonic Yes
Partial State Distributive

COUNT, SUM AVERAGE MEDIAN COUNT DISTINCT 4 HISTOGRAM) 11 Section

Yes Yes Yes No Yes Section 7.5
S S E S S Section 6.2
Yes No No Yes No Section 4.2
Distributive Algebraic Holistic Unique Content-Sensitive Section 5.1

Table 1 : Classes of aggregates

We classify aggregates according to four properties that
are particularly important to sensor networks. Table 1
shows how specific aggregation functions can be classi-
fied according to these properties, and indicates the sec-
tions of the paper where the various dimensions of the
classification are emphasized.

The first dimension is duplicate sensitivity. Duplicate in-
sensitive aggregates are unaffected by duplicate readings
from a single device while duplicate sensitive aggregates
will change when a duplicate reading is reported. Dupli-
cate sensitivity implies restrictions on network properties
and on certain optimizations, as described in Section 7.5.

Second, exemplary aggregates return one or more repre-
sentative values from the set of all values; summary ag-
gregates compute some property over all values. This
distinction is important because exemplary aggregates be-
have unpredictably in the face of loss, and, for the same
reason, are not amenable to sampling. Conversely, for
summary aggregates, the aggregate applied to a subset can
be treated as a robust approximation of the true aggregate
value, assuming that either the subset is chosen randomly,
or that the correlations in the subset can be accounted for
in the approximation logic.

Third, monotonic aggregates have the property that when
two partial state records, s l and s~, are combined via
f , the resulting state record s ' will have the prop-
erty that either Vsl, s2, e(s') _> MAX(e(81), e(s2)) or
Vst,s2,e(s ') < MIN(e(s l) ,e (s2)) . This is impor-
tant when determining whether some predicates (such as
HAVING) can be applied in network, before the final value
of the aggregate is known. Early predicate evaluation
saves messages by reducing the distance that partial state
records must flow up the aggregation tree.

The fourth dimension relates to the amount of state re-
quired for each partial state record. For example, a partial
AVERAGE record consists of a pair of values, while a par-
tial COUNT record constitutes only a single value. Though
TAG correctly computes any aggregate that conforms to
the specification of f in Section 3 above, its performance
is inversely related to the amount of intermediate state re-
quired per aggregate. The first three categories of this di-
mension (e.g. distributive, algebraic, holistic) were ini-
tially presented in work on data-cubes [9].

• In Distributive aggregates, the partial state is simply
the aggregate for the partition of data over which they
are computed. Hence the size of the partial state records

is the same as the size of the final aggregate.

® In Algebraic aggregates, the partial state records are
not themselves aggregates tbr the partitions, but are of
constant size.

® In Holistic aggregates, the partial state records are pro-
portional in size to the set of data in the partition. In
essence, for holistic aggregates no useful partial aggre-
gation can be done, and all the data must be brought
together to be aggregated by the evaluator.

o Unique aggregates are similar to holistic aggregates,
except that the amount of state that must be propagated
is proportional to the number of distinct values in the
partition.

• In Content-Sensitive aggregates, the partial state
records are proportional in size to some (perhaps sta-
tistical) property of the data values in the partition.
Many approximate aggregates proposed recently in
the database literature are content-sensitive. Exam-
ples of such aggregates include fixed-width histograms,
wavelets, and so on; see [3] for an overview of such
functions.

In summary, we have classified aggregates according to
their state requirements, tolerance of loss, duplicate sen-
sitivity, and monotonicity. We will refer back to this clas-
sification throughout the text, as these properties will de-
termine the applicability of communication optimizations
we present later. Understanding how aggregates fit into
these categories is a cross-cutting issue that is critical (and
useful) in many aspects of sensor data collection.

Note that our formulation of aggregate functions, com-
bined with this taxonomy, is flexible enough to encompass
a wide range of sophisticated operations. For example, we
have implemented (in the simulator described in Section
5 below), an isobar finding aggregate. This is a duplicate-
insensitive, summary, monotonic, content-sensitive aggre-
gate that builds a topological map representing discrete
bands of one attribute (light, for example) plotted against
two other attributes (x and y position in some local coor-
dinate space, for example.)

4The HISTOGRAM aggregate sorts sensor readings into fixed-width

buckets and returns the size of each bucket; it is content-sensitive be-
cause the number of buckets varies depending on bow widely spaced

sensor readings are.
5COUNT DISTINCT returns the number of distinct values reported

across all motes.

USENIX Association 5th Symposium on Operating Systems Design and Implementation 135

3,3 A t t r i b u t e C a t a l o g

Queries ira TAG contain named attributes. Some mecha-
nism is needed to allow users to determine the set of at-
tributes they may query, and to allow motes to advertise
the attributes they can provide. In TAG, we include on
each mote a small catalog of attributes. This catalog can
be searched for attributes of a specific name, or iterated
through. To limit the burden of reporting catalog informa-
tion from motes, we assume the central query processor
caches or stores the attributes of at1 motes it may access.

When a TAG sensor receives a query, it converts named
fields into local catalog identifiers. Nodes lacking at-
tributes specified in the query simply tag missing at-
tributes as NULL in their result records (alternatively, the
query could specify that the lacking node should opt out
of the query.) This technique increases the scalability of
large sensor network deployments as it does not require
all nodes to have global knowledge of all attributes.

As in relational databases, partial state records result-
ing from the evaluation of a query have the same layout
across all nodes. Thus, tuples in TAG need not be self-
describing; attribute names are not carried with results,
leading to a significant reduction in the amount of data that
must be propagated with each tuple. At the same time, it
is not necessary for all nodes to have identical catalogs,
which allows heterogeneous sensing capabilities and in-
cremental deployment of motes.

Attributes in TAG may be direct representations of sen-
sor values, such as light or temperature, or may be in-
trospective, such as remaining energy or network neigh-
borhood information. More generally, they can represent
time-varying statistics over local sensor values, such as an
exponentially decaying average of the last n light read-
ings, or more complicated attributes such as a room num-
ber, GPS coordinate, or relative distance to some neighbor
from a localization component. Individual software com-
ponents in TinyOS choose which attributes they will make
available, and provide an accessor function for acquiring
the next attribute reading.

4 In Network Aggregates

Given the simple routing protocol from Section 2.2 and
our query model, we now discuss the implementation of
the core TAG algorithm for in network aggregation.

A naive implementation of sensor network aggregation
would be to use a centralized, server-based approach
where all sensor readings are sent to the base station,
which then computes the aggregates. In TAG, however,
we compute aggregates in network whenever possible,
because, if properly implemented, this approach can be

lower in number of message transmissions, latency, and
power consumption than the server-based approach. We
will measure the advantage of in network aggregation in
Section 5 below; first, we present the basic algorithm in
detail. We first consider the operation of the basic ap-
proach in the absence of grouping; we show how to extend
it with grouping in Section 4.2.

4.1 Tiny Aggregation

TAG consists of two phases: a distribution phase, in which
aggregate queries are pushed down into the network, and
a collection phase, where the aggregate values are contin-
ually routed up from children to parents. Recall that our
query semantics partition time into epochs of duration i,
and that we must produce a single aggregate value (when
not grouping) that combines the readings of all devices in
the network during that epoch.

Given our goal of using as few messages as possible, the
collection phase must ensure that parents in the routing
tree wait until they have heard from their children be-
fore propagating an aggregate value for the current epoch.
We will accomplish this by having parents subdivide the
epoch such that children are required to deliver their par-
tial state records during a parent-specified time interval.
This interval is selected such that there is enough time for
the parent to combine partial state records and propagate
its own record to its parent.

When a mote p receives a request to aggregate, r, either
from another mote or from the user, it awakens, synchro-
nizes its clock according to timing information in the mes-
sage, and prepares to participate in aggregation. In the tree
based routing scheme, p chooses the sender of the mes-
sage as its parent. In addition to the information in the
query, r includes the interval when the sender is expect-
ing to hear partial state records from p. p then forwards
the query request r down the network, setting this delivery
interval for children to be slightly before the time its par-
ent expects to see p 's partial state record. In the tree-based
approach, this forwarding consists of a broadcast of r, to
include any nodes that did not hear the previous round,
and include them as children (if it has any.) These nodes
continue to forward the request in this manner, until the
query has been propagated throughout the network.

During the epoch after query propagation, each mote lis-
tens for messages from its children during the interval it
specified when forwarding the query. It then computes a
partial state record consisting of the combination of any
child values it heard with its own local sensor readings.
Finally, during the transmission interval requested by its
parent, the mote transmits this partial state record up the
network. Figure 1 illustrates the process. Notice that par-
ents listen for longer than the transmission interval they

136 5th Symposium on Operating Systems Design and Implementation USENIX Association

Root

Level 1

Level 2

L e v e l 3

Level 4

Level 5

Start of
Epoch

~I'E~9
)epth

End of
Epoch

[] Sensing and Processing, [] Listening/Receiving
Radio Idle

[] (Transmitting)Delivery Interval [] Radio and Processor Idle

Figure 1: Partial state records flowing up the tree during
an epoch.

specified, to overcome limitations in the quality of clock
synchronization algorithms between parents and children.
In this way, aggregates flow back up the tree interval-by-
interval. Eventually, a complete aggregate arrives at the
root. During each subsequent epoch, a new aggregate is
produced. Notice that, for a significant portion of each
epoch, motes are idle and can enter a low power state.

This scheme begs the question of how parents choose the
duration of the interval in which they will receive values.
It needs to be long enough such that all of a node's chil-
dren can report, but not so long that the epoch ends be-
fore nodes deep in the tree can schedule their communi-
cation. Furthermore, longer intervals require radios to be
powered up for more time, which consumes precious en-
ergy. In general, the proper choice of duration for these
intervals is somewhat environment specific, as it depends
on the density of radio cells and "bushiness" of the net-
work topology. For the purposes of the simulations and
experiments in this paper, we assume the network has a
maximum depth d, and set the duration of each interval
to be (EPOCH DURATION)/d, with nodes at level i trans-
mitting during the i th interval. We rely on the TinyOS
MAC layer [32] to avoid collisions between nodes trans-
mitting during the same interval. Note that this provides
a lower-bound on the EPOCH DURATION and constrains
the maximum sample rate of the network, since the epoch
must be long enough for partial state records from the bot-
tom of the tree to propagate to the root.

To increase the sample rate, one could consider pipelining
the communications schedule shown in Figure 1. With
pipelining, the output of the network would be delayed by
one or more epochs, as some nodes would wait until the
next epoch to report the aggregates they collected during
the current epoch. In exchange for such delays, the effec-
tive sample rate of the system is increased (for the same
reason that pipelining a long processor stage increases the
clock rate of a CPU.) We do not consider such schemes

in detail here; we discussed a fully-pipelined approach to
aggregation in a workshop submission [20].

In Section 5.1 we show how TAG can provide an order
of magnitude decrease in communications costs over a
centralized approach. However, before discussing perfor-
mance, we extend the approach to support grouping.

4.2 Grouping

Grouping in TAG is functionally equivalent to the
GROUP BY clause in SQL: each sensor reading is placed
into exactly one group, and groups are partitioned accord-
ing to an expression over one or more attributes. The basic
grouping technique is to push the expression down with
the query, ask nodes to choose the group they belong to,
and then, as answers flow back, update aggregate values
in the appropriate groups.

Partial state records are aggregated just as in the approach
described above, except that those records are now tagged
with a group id. When a node is a leaf, it applies the
grouping expression to compute a group id. It then tags
its partial state record with the group and forwards it on
to its parent. When a node receives an aggregate from a
child, it checks the group id. If the child is in the same
group as the node, it combines the two values using the
combining function f . If it is in a different group, it stores
the value of the child's group along with its own value for
forwarding in the next epoch. If another child message
arrives with a value in either group, the node updates the
appropriate aggregate. During the next epoch, the node
sends the value of all the groups about which it collected
information during the previous epoch, combining infor-
mation about multiple groups into a single message as
long as message size permits. Figure 2 shows an example
of computing a query grouped by temperature that selects
average light readings.

Recall that queries may contain a HAVZNG clause, which
constrains the set of groups in the final query result. This
predicate can sometimes be passed into the network along

[sma¢-~ A w (Z l g h e) . e = ~ / z 0] l
.v IX'~nP :20 I i~RCl.f aexxnors II ~ I ! [101(S,5,2)

LOt:50 I " - / o I ? I r ~ l V / .0

"~[Ughi:2S I AVG(ligIII) ~ , ~] 1 I lot(6, 5)
' ' ~ 'AI 3 t ~ l (4)

\', , " ~_mUl~ .~, , . ' / I I 1
~ ~ '~ '~6~ 1 : 0<temp s l0

. . - " V I L l ' g t l l : l b I 2 : 1 0 <temp s20 .~.~ i ~]

Figure 2: A sensor network (left) with an in network,
grouped aggregate applied to it (right). Parenthesized
numbers represent nodes that contribute to the average

USENIX Association 5th Symposium on Operating Systems Design and Implementation 137

with the grouping expression. The predicate is only sent
if it can potentially be used to reduce the number of mes-
sages that must be sent: for example, if the predicate is
of the form N£X (a t t r) < x, then information about
groups with HAX (a t t r) > x need not be transmitted
up the tree, and so the predicate is sent down into the net-

work. When a node detects that a group does not satisfy a
HAVING clause, it can notify other nodes in the network

of this information to suppress transmission and storage
of -values from that group. Note that HAVING clauses
can be pushed down only for monotonic aggregates; non-
monotonic aggregates are not amenable to this technique.
However, not all HAVING predicates on monotonic aggre-
gates can be pushed down; for example, MAX (a t t r) >
x cannot be applied in the network because a node cannot
know that, just because its local value of attr is less than
z, the HAX over the entire group is less than z.

Grouping introduces an additional problem: the number
of groups can exceed available storage on any one (non-
leaf) device. Our proposed solution is to evict one or more
groups from local storage. Once an eviction victim is se-
lected, it is forwarded to the node's parent, which may
choose to hold on to the group or continue to forward
it up the tree. Notice that a single node may evict sev-

eral groups in a single epoch (or the same group multiple
times, if a bad victim is selected). This is because, once

group storage is full, if only one group is evicted at a time,
a new eviction decision must be made every time a value
representing an unknown or previously evicted group ar-
rives. Because groups can be evicted, the base station at
the top of the network may be called upon to combine par-
tial groups to form an accurate aggregate value. Evicting
partially computed groups is known as partial preaggre-
gation, as described in [151.

Thus, we have shown how to partition sensor readings
into a number of groups and properly compute aggregates
over those groups, even when the amount of group infor-
mation exceeds available storage in any one device. We
will briefly mention experiments with grouping and group
eviction policies in Section 5.2. First, we summarize some
of the additional benefits of TAG.

4.3 Additional Advantages of TAG

The principal advantage of TAG is its ability to dramat-
ically decrease the communication required to compute
an aggregate versus a centralized aggregation approach.
However, TAG has a number of additional benefits.

One of these is its ability to tolerate disconnections and
loss. In sensor environments, it is very likely that some
aggregation requests or partial state records will be gar-
bled, or that devices will move or run out of power. These

losses will invariably result in some nodes becoming lost,
either without a parent or not incorporated into the aggre-

gation network during tile initial flooding phase. If we
include information about queries in partial state records,

lost nodes can reconnect by listening to other node's state
records - not necessarily intended for them - as they flow

up the tree. We revisit the issue of loss in Section 7.

A second advantage of tile TAG approach is that, in most
cases, each mote is required to transmit only a single mes-

sage per epoch, regardless of its depth in the routing tree.
In the centralized (non TAG) case, as data converges to-
wards the root, nodes at the top of the tree are required to
transmit significantly more data than nodes at the leaves;
their batteries are drained faster and the lifetime of the

network is limited. Furthermore, because the top of the
routing tree must forward messages for every node in the

network, the maximum sample rate of the system is in-
versely proportional to the total number of nodes. To see
this, consider a radio channel with a capacity of r~ mes-
sages per second. If m motes are participating in a cen-
tralized aggregate, to obtain a sample rate of k samples
per second, m x k messages must flow through the root
during each epoch, m x k must be no larger than n, so
the sample rate k can be at most n / m messages per mote
per epoch, regardless of the network density. When using
TAG, the maximum transmission rate is limited instead

by the occupancy of the largest radio-cell; in general, we
expect that each cell will contain far fewer than m motes.

Yet another advantage of TAG is that, by explicitly divid-
ing time into epochs, a convenient mechanism for idling
the processor is obtained. The long idle times in Figure 1
show how this is possible; during these intervals, the radio
and processor can be put into deep sleep modes that use
very little power. Of course, some bootstrapping phase
is needed where motes can learn about queries currently
in the system, acquire a parent, and synchronize clocks;
a simple strategy involves requiring that every node wake
up infrequently but periodically to advertise this informa-
tion and that devices that have not received advertisements
from their neighbors listen for several times this period
between sleep intervals. Research on energy aware MAC
protocols [34] presents a similar scheme in detail. That
work also discusses issues such as time synchronization
resolution and the maximum sleep duration to avoid the
adverse effects o f clock skew on individual devices.

Taken as a whole, these TAG features provide users with a
stream of aggregate values that changes as sensor readings
and the underlying network change. These readings are
provided in an energy and bandwidth efficient manner.

138 5th Symposium on Operating Systems Design and Implementation USENIX Association

5 Simulation-Based Evaluation

In this section, we present a simulation environment for
TAG and evaluate its behavior using this simulator. We
also have an initial, real-world deployment; we discuss its
performance at the end of the paper, in Section 8.

To study the algorithms presented in this paper, we simu-
lated TAG in Java. The simulator models mote behavior at
a coarse level: time is divided into units of epochs, mes-
sages are encapsulated into Java objects that are passed
directly into nodes without any model of the time to send
or decode. Nodes are allowed to compute or transmit ar-
bitrarily within a single epoch, and each node executes
serially. Messages sent by all nodes during one epoch are
delivered in random order during the next epoch to model
a parallel execution. Note that this simulator cannot ac-
count for certain low-level properties of the network: for
example, because there is no fine-grained model of time,
it is not possible to model radio contention at a byte level.

Our simulation includes an interchangeable communica-
tion model that defines connectivity based on geographic
distance. Figure 3 shows screenshots of a visualization
component of our simulation; each square represents a
single device, and shading (in these images) represents the
number of radio hops the device is from the root (center);
darker is closer. We measure the size of networks in terms
of diameter, or width of the sensor grid (in nodes). Thus,
a diameter 50 network contains 2500 devices.

We have run experiments with three communications
models; 1) a simple model, where nodes have perfect
(lossless) communication with their immediate neighbors,
which are regularly placed (Figure 3(a)), 2) a random
placement model (Figure 3(b)), and 3) a realistic model
that attempts to capture the actual behavior of the radio
and link layer on TinyOS motes (Figure 3(c).) In this last
model, notice that the number of hops from a particular
node to the root is no longer directly proportional to the
geographic distance between the node and the root, al-
though the two values are still related. This model uses
results from real world experiments [7] to approximate the
actual loss characteristics of the TinyOS radio. Loss rates
are high in in the realistic model: a pair of adjacent nodes
loses more than 20% of the traffic between them. Devices
separated by larger distances lose still more traffic.

The simulator also models the costs of topology mainte-
nance: if a node does not transmit a reading for several
epochs (which will be the case in some of our optimiza-
tions below), that node must periodically send a heartbeat
to advertise that it is still alive, so that its parents and chil-
dren know to keep routing data through it. The interval
between heartbeats can be chosen arbitrarily; choosing a
longer interval means fewer messages must be sent, but

...... • ? i [.~.- --~ N ~ - -

c 7 ;;?L ~!! 2 , , ~ , ; , . . . ? g j : : ~

2 " 7. ?-~i

(a) Simple (b) Random (c) Realistic

Figure 3: The TAG Simulator, with Three Different Com-
munications Models, Diameter = 20.

requires nodes to wait longer before deciding that a par-
ent or child has disconnected, making the network less
adaptable to rapid change.

This simulation allows us to measure the the number of
bytes, messages, and partial state records sent over the
radio by each mote. Since we do not simulate the mote
CPU, it does not give us an accurate measurement of the
number of instructions executed in each mote. It does,
however, allow us to obtain an approximate measure of
the state required for various algorithms, based on the size
of the data structures allocated by each mote.

Unless otherwise specified, our experiments are over the
simple radio topology in which there is no loss. We also
assume sensor values do not change over the course of a
single simulation run.

5.1 P e r f o r m a n c e o f TAG

In the first set of experiments, we compare the perfor-
mance of the TAG in network approach to centralized ap-
proaches on queries for the different classes of aggregates
discussed in Section 3.2. Centralized aggregates have the
same communications cost irrespective of the aggregate
function, since all data must be routed to the root. For this
experiment, we compared this cost to the number of bytes
required for distributive aggregates (MAX and COUNT),
an algebraic aggregate (AVERAGE), a holistic aggregate
(MEDIAN), a content-sensitive aggregate (HI STOGRAM),
and a unique aggregate (COUNT DISTINCT); the results
are shown in Figure 4.

Values in this experiment represent the steady-state cost
to extract an additional aggregate from the network once
the query has been propagated; the cost to flood a request
down the tree in not considered.

In our 2500 node (d = 50) network, MAX and COUNT
have the same cost when processed in the network, about
5000 bytes per epoch (total over all nodes), since they both
send just a single integer per partial state record; similarly
AVERAGE requires just two integers, and thus always has
double the cost of the distributive aggregates. MEDIAN
costs the same as a centralized aggregate, about 90000
bytes per epoch, which is significantly more expensive

USENIX Association 5th Symposium on Operating Systems Design and Implementation 139

co

8c~x~

<

..c2 60o0o

~0~oo

0

In-network vs. Centralized Aggregation
Network Diameter = 50, No Loss

]
[~ T A G (In N k)] ~ : [
L~:~m:~:~:t Any c~,,~liz~ AwS~2j

.......... 4
: ~i i I

[

t

Z

o ~

O

A g g r e g a t i o n Func t ion

Figure 4: In network Vs. Central&ed Aggregates

than other aggregates, especially for larger networks, as
parents have to forward all of their children's values to the
root. COUNT DISTINCT is only slightly less expensive
(73000 bytes), as there are few duplicate sensor values;
a less uniform sensor-value distribution would reduce the
cost of this aggregate. For the HISTOGRAN aggregate,
we set the size of the fixed-width buckets to be 10; sensor
values ranged over the interval [0.. 1000]. At about 9000
messages per epoch, HISTOGRAN provides an efficient
means for extracting a density summary of readings from
the network.

Note that the benefit of TAG will be more or less pro-
nounced depending on the topology. In a flat, single-hop
environment, where all motes are directly connected to the
root, TAG is no better than the centralized approach. For
a topology where n motes are arranged in a line, central-
ized aggregates will require n2/2 partial state records to
be transmitted, whereas TAG will require only n records.

Thus, we have shown that, for our simulation topology, in
network aggregation can reduce communication costs by
an order of magnitude over centralized approaches, and
that, even in the worst case (such as with MEDIAN), it
provides performance equal to the centralized approach.

5.2 Grouping Experiments

We also ran several experiments to measure the perfor-
mance of grouping in TAG, focusing on the behavior of
various eviction techniques. We tried a number of simple
eviction policies, but found that the choice of policy made
little difference for any of the sensor-value distributions
we tested - in the most extreme case, the difference be-
tween the best and worst case eviction policy accounted
for less than 10% of the total messages. Due to the rel-
ative insignificance of these results and space limitations,

we omit a detailed discussion of the merits of various evic-
tion policies.

6 Opf i rn iza t ions

In this section, we present several techniques to improve
the performance and accuracy of the basic approach de-
scribed above. Some of these techniques are function de-
pendent; that is, they can only be used for certain classes
of aggregates. Also note that, in general, these techniques
can be applied in a user-transparent fashion, since they are
not explicitly a part of the query syntax and do not affect
the semantics of the results.

6.1 T a k i n g A d v a n t a g e of A S h a r e d C h a n n e l

In our discussion of aggregation algorithms up to this
point, we have largely ignored the fact that motes com-
municate over a shared radio channel. The fact that every
message is effectively broadcast to all other nodes within
range enables a number of optimizations that can signifi-
cantly reduce the number of messages transmitted and in-
crease the accuracy of aggregates in the face of transmis-
sion failures.

In Section 4.3, we saw an example of how a shared chan-
nel can be used to increase message efficiency when a
node misses an initial request to begin aggregation: it can
initiate aggregation even after missing the start request by
snooping on the network traffic of nearby nodes. When it
hears another device reporting an aggregate, it can assume
it too should be aggregating. By allowing nodes to exam-
ine messages not directly addressed to them, motes are
automatically integrated into the aggregation. Note that
snooping does not require nodes to listen all the time; by
listening at predefined intervals (which can be short once
a mote has time-synchronized with its neighbors), duty
cycles can be kept quite low.

Snooping can also be used to reduce the number of mes-
sages sent for some classes of aggregates. Consider com-
puting a MAX over a group of motes: if a node hears a peer
reporting a maximum value greater than its local maxi-
mum, it can elect to not send its own value and be sure it
will not affecting the value of the final aggregate.

6.2 Hypothesis Testing

The snooping example above showed that we only need
to hear from a particular node if that node's value will af-
fect the end value of the aggregate. For some aggregates,
this fact can be exploited to significantly reduce the num-
ber of nodes that need to report. This technique can be
generalized to an approach we call hypothesis testing. For
certain classes of aggregates, if a node is presented with a
guess as to the proper value of an aggregate, it can decide

140 5th Symposium on Operating Systems Design and Implementation USENIX Association

locally whether contributing its reading and the readings
of its children will affect the value of the aggregate.

For K~&~, MIN and other monotonic, exemplary aggre-

gates, this technique is directly applicable. There are a
number of ways it can be applied - the snooping approach,
where nodes suppress their local aggregates if they hear
other aggregates that invalidate their own, is one. Alter-
natively, the root of the network (or any subtree of the
network) seeking an exemplary sensor value, such as a
MIN, might compute the minimum sensor value m over
the highest levels of the subtree, and then abort the aggre-
gate and issue a new request asking for values less than
m over the whole tree. In this approach, leaf nodes need
not send a message if their value is greater than the min-
imum observed over the top k levels; intermediate nodes,
however, must still forward partial state records, so even if
their value is suppressed, they may still have to transmit.

Assuming for a moment that sensor values are inde-
pendent and uniformly distributed, then a particular leaf
node must transmit with probability 1/b k (where b is the
branching factor, so lib k is the number of nodes in the
top k levels), which is quite low for even small values of
k. For bushy routing trees, this technique offers a signif-
icant reduction in message transmissions - a completely
balanced routing tree would cut the number of messages
required to 1/k. Of course, the performance benefit may
not be as substantial for other, non-uniform, sensor value
distributions; for instance, a distribution in which all sen-
sor readings are clustered around the minimum will not
allow many messages to be saved by hypothesis testing.
Similarly, less balanced topologies (e.g. a line of nodes)
will not benefit from this approach.

For summary aggregates, such as AVERAGE or
VARIANCE, hypothesis testing via a guess from the
root can be applied, although the message savings are
not as dramatic as with monotonic aggregates. Note that
the snooping approach cannot be used: it only applies
to monotonic, exemplary aggregates where values can
be suppressed locally without any information from a
central coordinator. To obtain any benefit with summary
aggregates and hypothesis testing, the user must define a
fixed-size error bound that he or she is willing to tolerate
over the value of the aggregate; this error is sent into the
network along with the hypothesis value.

Consider the case of an AVERAGE: any device whose sen-
sor value is within the error bound of the hypothesis value
need not answer - its parent will then assume its value
is the same as the approximate answer and count it ac-
cordingly (to apply this technique with AVERAGE, par-
ents must know how many children they have.) It can be
shown that the total computed average will not be off from

Steady State M e s s a g e s / E p o c h
Max Query With HypolhesFs Testing

2500 ' ' N o HylZ, Othesis' I ' ' '
Hypothesis : 50 ---.-~- ~ . . "
Hypothesis : 90 -...-~ ~ / z " _ 2000

Hypothesis via Snooping ' - E l - - . / ' /
t'

1500

i 1000 . / . -), ,.."

5oo

10 15 20 25 30 35 40 45 50
Network Diameter

Figure 5: Benefit of Hypothesis Testing for

the actual average by more than the error bound, and leaf
nodes with values close to the average will not be required
to report. Obviously, the value of this scheme depends on
the distribution of sensor values. In a uniform distribu-
tion, the fraction of leaves that need not report approxi-
mates the size of the error bound divided by the size of
the sensor value distribution interval. If values are nor-
mally distributed, a much larger fraction of leaves do not
report.

We conducted a simple experiment to measure the ben-
efit of hypothesis testing and snooping for a N_AX aggre-
gate. The results are shown in Figure 5. In this exper-
iment, sensor values were uniformly distributed over the
range [0.. 100], and a hypothesis was made at the root. No-
tice that the performance savings are nearly two-fold for
a hypothesis of 90. We compared the hypothesis testing
approach with the snooping approach (which will be ef-
fective even in a non-uniform distribution); surprisingly,
snooping beat the other approaches by offering a nearly
three-fold performance increase over the no-hypothesis
case. This is because in the densely packed simple node
distribution, most devices have three or more neighbors
to snoop on, suggesting that only about one in four de-
vices will have to transmit. With topology maintenance
and forwarding of child values by parents, the savings by
snooping is reduced to a factor of three.

7 Improving Tolerance to Loss

Up to this point in our experiments we used a reliable
environment where no messages were dropped and no
nodes disconnected or went offline. In this section, we
address the problem of loss and its effect on the algo-
rithms presented thus far. Unfortunately, unlike in tradi-
tional database systems, communication loss is a a fact of
life in the sensor domain; the techniques described in the
section seek to mitigate that loss.

USENIX Association 5th Symposium on Operating Systems Design and Implementation 141

7,1 Topo logy M a i n t e n a n c e a n d R e c o v e r y

TAG is designed to sit on top of a shifting network topol-
ogy that adapts to the appearance and disappearance of
nodes. Although a study of mechanisms for adapting
topology is not central to this paper, for completeness we
describe a basic topology maintenance and recovery al-
gorithm which we use in both our simulation and imple-
mentation. This approach is similar to techniques used in
practice in existing TinyOS sensor networks, and is de-
rived from the general techniques proposed in the ad-hoc
networking literature[28, 22].

Networking fauIts are monitored and adapted to at two
levels: First, each node maintains a small, fixed sized list
of neighbors, and monitors the quality of the link to each
of those neighbors by tracking the proportion of packets
received from each neighbor. This is done via a locally
unique sequence number associated with each message by
its sender. When a node n observes that the link quality to
its parent p is significantly worse than that of some other
node p' , it chooses p ' as its new p a r e n t / f p ' is as close
or closer to the root as p and p ' does not believe n is its
parent (the latter two conditions prevent routing cycles.)

Second, when a node observes that it has not heard from
its parent for some fixed period of time (relative to the
epoch duration of the query it is currently running), it as-
sumes its parent has failed or moved away. It resets its
local level (to ~) and picks a new parent from the neigh-
bor table according to the quality metric used for link-
quality. Note that this can cause a parent to select a node
in the routing subtree underneath it as its parent, so child
nodes must reselect their parent (as though a failure had
occurred) when they observe that their own parent's level
has gone up.

Note that switching parents does not introduce the pos-
sibility of multiple records arriving from a single node,
as each node transmits only once per epoch (even if it
switches parents during that epoch.) Parent switching can
cause temporary disconnections (and thus additional lost
records) in the topology, however, due to children select-
ing a new parent when their parent's level goes up.

7.2 Effects of A Single Loss

We first study the effect that a single device going offline
has on the value of the aggregate; this is an important mea-
surement because it gives some intuition about the magni-
tude of error that a single loss can generate. Note that, be-
cause we are doing hierarchical aggregation, a single mote
going offline causes the entire subtree rooted at the node to
be (at least temporarily) disconnected. In this first exper-
iment we used the simple topology, with sensor readings
chosen from the uniR~rm distribution over [1.. 1000]. Af-

M&xin~lm Efror vs Aggrega~on Function Average Error vs Aggr~Jation Fut~ct~on

o 3o : I

(a) Maximum Error (b) Average Error
Figure 6: Effect of a Single Loss on Various Aggregate
Functions. Computed over a total of 100 runs at each
point. Error bars indicate standard error of the mean, 95%
confidence intervals.

ter running the simulation for several epochs, we selected,
uniformly and at a random, a node to disable. In this en-
vironment, children of the disabled node were temporar-
ily disconnected but eventually their values were reinte-
grated into the aggregate once they rediscovered their par-
ents. Note that the amount of time taken for lost nodes to
reintegrate is directly proportional to the depth of the lost
node, so we did not measure it experimentally. Instead,
we measured the maximum temporary deviation from the
true value of the aggregate that the loss caused in the per-
ceived aggregate value at the root during any epoch. This
maximum was computed by performing 100 runs at each
data point and selecting the largest error reported in any
run. We also report the average of the maximum error
across all 100 runs.

Figure 6 shows the results of this experiment. Note that
the maximum loss (Figure 6(a)) is highly variable and that
some aggregates are considerably more sensitive to loss
than others. COUNT, for instance, has a very large error in
the worst case: if a node that connects the root to a large
portion of the network is lost, the temporary error will be
very high. The variability in maximum error is because a
well connected subtree is not always selected as the vic-
tim. Indeed, assuming some uniformity of placement (e.g.
the devices are not arranged in a line), as the network
size increases, the chances of selecting such a node go
down, since a larger proportion of the nodes are towards
the leaves of the tree. In the average case(Figure 6(b)), the
error associated with a COUNT is not as high: most losses
do not result in a large number of disconnections. Note
that MIN is insensitive to loss in this uniform distribution,
since several nodes are at or near the true minimum. The
error for MEDIAN and AVERAGE is less than COUNT and
more than MIN: both are sensitive to the variations in the
number of nodes, but not as dramatically as COUNT.

7.3 Effect of Realistic Communication

In the second experiment, we examine how well TAG per-
forms in the realistic simulation environment (discussed

142 5th Symposium on Operating Systems Design and Implementation USENIX Association

in Section 5 above). In such an environment, without
some technique to counteract loss, a large number of par-

tial state records will invariably be dropped and not reach
the root of the tree. We ran an experiment to measure
the effect of this loss in the realistic environment. The
simulation ran until the first aggregate arrived at the root,
and then the average number of motes involved in the ag-
gregate over the next several epochs was measured• The
"No Cache" line of Figure 7 shows the performance of
this approach; at diameter 10, about 40% of the partial
state records are reflected in the aggregate at the root; by
diameter 50, this percentage has fallen to less than 10%.
Performance falls off as the number of hops between the
average node and the root increases, since the probability
of loss is compounded by each additional hop. Thus, the
basic TAG approach presented so far, running on current
prototype hardware (with its very high loss rates), is not
highly tolerant to loss, especially for large networks. Note
that any centralized approach would suffer from the same
loss problems.

7.4 Child Cache

Fib improve the quality of aggregates, we propose a
simple caching scheme: parents remember the partial
state records their children reported for some number of
rounds, and use those previous values when new values
are unavailable due to lost child messages. As long as
the duration of this memory is shorter than the interval
at which children select new parents, this technique will
increase the number of nodes included in the aggregate
without over-counting any nodes. Of course, caching
tends to temporally smear the aggregate values that are
computed, reducing the temporal resolution of individ-
ual readings and possibly making caching undesirable for
some workloads. Note that caching is a simple form of in-
terpolation where the interpolated value is the same as the
previous value. More sophisticated interpolation schemes,
such as curve fitting or statistical observations based on
past behavior, could be also be used.

We conducted some experiments to show the improve-
ment caching offers over the basic approach; we allocate
a fixed size buffer at each node and measure the average
number of devices involved in the aggregation as in Sec-
tion 7.3 above. The results are shown in the top three
lines of Figure 7 - notice that even five epochs of cached
state offer a significant increase in the number of nodes
counted in any aggregate, and that 15 rounds increases the
number of nodes involved in the diameter 50 network to
70% (versus less than 10% without a cache). Aside from
the temporal smearing described above, there are two ad-
ditional drawbacks to caching; First, it uses memory that
could be used for group storage. Second, it sets a mini-
mum bound on the time that devices must wait before de-

I00~

9O

80

7O

50

40-

3O

20

I0

0

Percentage of Ne twork Involved, Ch i ld Cach ing

10 15 20 25 30 35 40 45 50

Network Diameter

No Cache I 9 Epochs Cache """~1t~"
5 Epochs Cache -----~- 15 Epochs Cache []

Figure 7: Percentage of Network Participating in Aggre-
gate For Varying Amounts of Child Cache

termining their parent has gone offline; given the benefit it
provides in terms of accuracy, however, we believe it to be
useful despite these disadvantages. The substantial benefit
of this technique suggests that allocating RAM to applica-
tion level caching may be more beneficial than allocating
it to lower-level schemes for reliable message delivery, as
such schemes cannot take advantage of the semantics of
the data being transmitted.

7.5 Using Available Redundancy

Because there may be situations where the RAM or la-
tency costs of the child cache are not desirable, it is worth-
while to look at alternative approaches for improving loss
tolerance. In this section, we show how the network topol-
ogy can be leveraged to increase the quality of aggregates.
Consider a mote with two possible choices of parent: in-
stead of sending its aggregate value to just one parent, it
can send it to both parents. A node can easily discover
that it has multiple parents by building a list of nodes it
has heard that are one step closer to the root. Of course,
for duplicate-sensitive aggregates (see Section 3.2), send-
ing results to multiple parents has the undesirable effect
of causing the node to be counted multiple times. The so-
lution to this is to send part of the aggregate to one parent
and the rest to the other. Consider a COUNT; a mote with
e - 1 children and two parents can send a COUNT of c/2
to both parents instead of a count of c to a single parent.
Generally, if the aggregate can be linearly decomposed in
this fashion, it is possible to broadcast just a single mes-
sage that is received and processed by both parents, so this
scheme incurs no message overheads, as long as both par-
ents are at the same level and request data delivery during
the same sub-interval of the epoch.

A simple statistical analysis reveals the advantage of do-
ing this: assume that a message is transmitted with proba-
bility p, and that losses are independent, so that if a mes-
sage m from node s is lost in transition to parent P1, it is
no more likely to be lost in transit to P2.6 First, consider

6Although independent failures are not always a valid assumption,

USENIX Association 5th Symposium on Operating Systems Design and Implementation 143

the case where s sends c to a single parent; the expected
value of the transmitted count is io x c (0 with probabil-
ity (1 - p) and c with probability p), and the variance is
c 2 x p x (1 - p), since these are standard Bernoulli trials

with a probability of success p multiplied by a constant c.
For the case where s sends e/2 to both parents, linearity
of expectation telts us the expected value is the sum of the
expected value through each parent, or 2 x p x c/2 = p x c.
Similarly, we can sum the variances through each parent:

var = 2 x (c/2) 2 x p x (1 - p) = C2/2 X p X (1 - - p)

Thus, the variance of the multiple parent COLTN22 is much
less than with just a single parent, although its expected
value is the same. This is because it is much less likely
(assuming independence) for the message to both parents
to be lost, and a single loss will less dramatically affect
the computed value.

We ran an experiment to measure the benefit of this ap-
proach in the realistic topology for COUNT with a network
diameter of 50. We measured the number of devices in-
volved in the aggregation over a 50 epoch period. When
sending to multiple parents, the mean COUNT was 974
(~ = 330), while when sending to only one parent, the
mean COLTN~2 was 94 (a = 41). Surprisingly, sending to
multiple parents substantially increases the mean aggre-
gate value; most likely this is due to the fact that losses
are not truly independent as we assumed above.

This technique applies equally well to any distributive
or algebraic aggregate. For holistic aggregates, like
MEDIAN, this technique cannot be applied, since partial
state records cannot be easily decomposed.

8 Prototype Implementation

Based on the encouraging simulation results presented
above, we have built an implementation of TAG for
TinyOS Mica motes [19]. The implementation does not
currently include many of the optimizations discussed in
this paper, but contains the core TAG aggregation algo-
rithm and catalog support for querying arbitrary attributes
with simple predicates. In this section, we briefly sum-
marize results from experiments with this prototype, to
demonstrate that the simulation numbers given above are
consistent with actual behavior and to show that substan-
tial message reductions over a centralized approach are
possible in a real implementation.

These experiments involved sixteen motes arranged in a
depth four tree, computing a COLrNT aggregate over 150
4-second epochs (a 10 minute run.) No child caching
or snooping techniques were used. Figure 8 shows the

they will occur when local interference is the cause of loss. For example,
a hidden node may garble communication to P1 but not P2, or one parent
may be in the process of using the radio when the message arrives.

Count Per Epoch, 16 Nodes (Epoch Duration = 4 Seconds

2O
TAG - -

Centralized

~o 4

o
20 40 60 80 100 120 140

Epoch

Figure 8: Comparison of Centralized and TAG based Ag-
gregation Approaches in Lossy, Prototype Environment
Computing a COUNT over a 16 node network.

COLrNT observed at the root for a centralized approach,
where all messages are forwarded to the root, versus the
in network TAG approach. Notice that the quality of
the aggregate is substantially better for TAG; this is due
to reduced radio contention. To measure the extent of
contention and compare the message costs of the two
schemes, we instrumented motes to report the number of
messages sent and received. The centralized approach re-
quired 4685 messages, whereas TAG required just 2330,
representing a 50% communications reduction. This is
less than the order-of-magnitude shown in Figure 4 for
COLTNT because our prototype network topology had a

higher average fanout than the simulated environment, so
messages in the centralized case had to be retransmitted

fewer times to reach the root. Per hop loss rates were
about 5% in the in network approach. In the centralized
approach, increased network contention drove these loss
rates to 15%. The poor performance of the centralized
case is due to the multiplicative accumulation of loss, such
that only 45% of the messages from nodes at the bottom
of the routing tree arrived at to the root.

This completes our discussion of algorithms for TAG. We
now turn to the extensive related work in the networking
and database communities.

9 Related Work

The database community has proposed a number of dis-
tributed and push-down based approaches lbr aggregates
in database systems [26, 33], but these universally assume
a well-connected, low-loss topology that is unavailable in
sensor networks. None of these systems present tech-
niques for loss tolerance or power sensitivity. Further-
more, their notion of aggregates is not tied to a taxonomy,
and so techniques for transparently applying various ag-
gregation and routing optimizations are lacking. The par-
tial preaggregation techniques [15] used to enable group
eviction were proposed as a technique to deal with very
large numbers of groups to improve the efficiency of hash
joins and other bucket-based database operators.

144 5th Symposium on Operating Systems Design and Implementation USENIX Association

The first three components of the partial-state dimension
of the taxonomy presented in Section 3.2 (e.g. algebraic,
distributive, and holistic) were originally developed as a
part of the research on data-cubes [9]; the duplicate sensi-
tivity, exemplary vs. summary, and monotonicity dimen-
sions, as well as the unique and content-sensitive state
components of partial-state are our own addition. [29]
discusses online aggregation [11] in the context of nested-
queries; it proposes optimizations to reduce tuple-flow be-
tween outer and inner queries that bear similarities to our
technique of pushing HAVING clauses into the network.

With respect to query language, our epoch based approach
is related to languages and models from the Temporal
Database literature; see [27] for a survey of relevant work.
The Cougar project at Cornell [23] discusses queries over
sensor networks, as does our own work on Fjords [18], al-
though the former only considers moving selections (not
aggregates) into the network and neither presents specific
algorithms for use in sensor networks.

Literature on active networks [30] identified the idea that
the network could simultaneously route and transform
data, rather than simply serving as an end-to-end data con-
duit. The recent SIGCOMM paper on ESP [4] provides
a constrained framework for in network aggregation-like
operations in a traditional network. Within the sensor
network community, work on networks that perform data
analysis is largely due to the USC/ISI and UCLA com-
munities. Their work on directed diffusion [13] dis-
cusses techniques for moving specific pieces of informa-
tion from one place in a network to another, and pro-
poses aggregation-like operations that nodes may perform
as data flows through them. Their work on low-level-
naming[10] proposes a scheme for imposing names onto
related groups of devices in a network, in much the way
that our scheme partitions sensor networks into groups.
Work on greedy aggregation [12] discusses networking
protocols for routing data to improve the extent to which
data can be combined as it flows up a sensor network -
it provides low level techniques for building routing trees
that could be useful in computing TAG style aggregates.

These papers recognize that aggregation dramatically re-
duces the amount of data routed through the network
but present application-specific solutions that, unlike the
declarative query approach approach of TAG, do not offer
a particularly simple interface, flexible naming system, or
any generic aggregation operators. Because aggregation is
viewed as an application-specific operation in diffusion, it
must always be coded in a low-level language. Although
some TAG aggregates may also be application-specific,
we ask that users provide certain functional guarantees,
such as composability with other aggregates, and a clas-
sification of semantics (quantity of partial state, mono-

tonicity, etc.) which enable transparent application of
various optimizations and create the possibility of a li-
brary of common aggregates that TAG users can freely
apply within their queries. Furthermore, directed diffu-
sion puts aggregation APIs in the routing layer, so that ex-
pressing aggregates requires thinking about how data will
be collected, rather than just what data will be collected.
This is similar to old-fashioned query processing code that
thought about navigating among records in the database -
by contrast, our goal is to separate the expression of ag-
gregation logic from the details of routing. This allows
users to focus on application issues and enables the sys-
tem to dynamically adjust routing decisions using general
(taxonomic) information about each aggregation function.

Networking protocols for routing data in wireless net-
works are very popular within the literature [14, 1, 8],
however, none of them address higher level issues of data
processing, merely techniques for data routing. Our tree-
based routing approach is clearly inferior to these ap-
proaches for peer to peer routing, but works well for
the aggregation scenarios we are focusing on. Work on
(N)ACKs (and suppression thereof) in scalable, reliable
multicast trees [6, 17] bears some similarity to the prob-
lem of propagating an aggregate up a routing tree in
TAG. These systems, however, consider only fixed, lim-
ited types of aggregates (e.g. ACKs or NAKs for regions
or recovery groups.) Finally, we presented an early ver-
sion of this work in a workshop publication [20].

10 C o n c l u s i o n s

In summary, we have shown how declarative aggregate
queries can be distributed and efficiently executed over
sensor networks. Our in network approach can provide an
order of magnitude reduction in bandwidth consumption
over approaches where data is aggregated and processed
centrally. The declarative query interface allows end-users
to take advantage of this benefit for a wide range of aggre-
gate operations without having to modify low-level code
or confront the difficulties of topology construction, data
routing, loss tolerance, or distributed computing. Further-
more, this interface is tightly integrated with the network,
enabling transparent optimizations that further decrease
message costs and improve tolerance to failure and loss.

We plan to extend this work as the data collection needs
of the wireless sensor community evolve. We are moving
towards an event-driven model where queries can be ini-
tiated and results collected in response to external events
in the interior of the network, with the results of those
internal sub-queries being aggregated across nodes and
shipped to points on the network edge.

As sensor networks become more widely deployed, es-
pecially in remote, difficult to administer locations,

USENIX Association 5th Symposium on Operating Systems Design and Implementation 145

bandwidth- and power-sensit ive methods to extract data

from those networks will become increasingly important.

In such scenarios, the users are often scientists who lack

fluency in embedded software development but are inter-

ested in using sensor networks to further their own re-

search. For such users, high-level programming interfaces

are a necessity; these interfaces must balance simplicity,

expressiveness, and efficiency in order to meet data col-

lection and battery lifetime requirements. Given this bal-

ance, we see TAG as a very promising service for data

collection: the simplicity of declarat ive queries, combined

with the ability of TAG to efficiently opt imize and execute

them makes it a good choice for a wide range of sensor

network data processing situations.

Acknowledgments
Thanks to our shepherd, Deborah Estrin, and to our

anonymous reviewers for their thoughtful reviews and ad-

vice. Robert Szewczyk, David Culler, Alec Woo, and

Ramesh Govindan contributed to the design o f the net-

working protocols discussed in this paper. Per ~ k e Lar-

son suggested the use of partial preaggregat ion for group

eviction. Kyle Stanek implemented isobar aggregates in

our simulator.

References
[1] W. Adjue-Winoto, E. Schwartz, H. Balakrishnan, and

J. Lilley. The design and implementation of an intentional
naming system. In ACM SOSP, December 1999.

[2] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez.
FAD, a powerful and simple database language. In VLDB,
1987.

[3] D. Barbarfi, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M.
Hellerstein, Y. E. Ioannidis, H. Jagadish, T. Johnson, R. T.
Ng, V. Poosala, K. A. Ross, and K. C. Sevcik. The New
Jersey data reduction report. Data Engineering Bulletin,
20(4):3--45, 1997.

[4] K. Calvert, J. Griffioen, and S. Wen. Lightweight net-
work support for scalable end-to-end services. In ACM
SIGCOMM, 2002.

[5] A. Cerpa, J. Elson, D.Estlriin, L. Girod, M. Hamilton, ,
and J. Zhao. Habitat monitoring: Application driver for
wireless communications technology. In ACM SIGCOMM
Workshop on Data Communications in Latin America and
the Caribbean, 2001.

[6] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang.
A reliable multicase framework for light-weight sessions
and application level framing. IEEE Transactions on Net-
working, 5(6):78.4-.-803, 1997.

[7] D. Ganesan. Network dynamics in rene motes. PowerPoint
Presentation, January 2002.

[8] T. Goff, N. Abu-Ghazaleh, D. Phatak, and R. Kahvecioglu.
Preemptive routing in ad hoc networks. In ACM MobiCom,
July 2001.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relatioaal aggregation operator generaliz-
ing group-by, cross-tab, and sub-total. In ICDE, February
1996.

[10] J. Heidemann, E Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless sen-
sor networks with low-level naming. In SOSP, October
2001.

[I 1] J. Hellerstein, P Hass, and H. Wang. Online aggregation.

In Proceedings of the ACM SIGMOD, pages t 71-182, Tuc-
son, AZ, May 1997.

[121] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Hei-
demann, hnpact of network density on data aggregation
in wireless sensor networks. Submitted for Publication,
ICDCS-22, November 2001.

[t3] C. lntanagonwiwat, R. Govindan, and D. Estrin. Directed
diffiasion: A scalable mad robust communication paradigm
for sensor networks. In MobiCOM, Boston, MA, August
2000.

[14] J. Kulik, W. Rabiner, and H. Balakrishnan. Adaptive proto-
cols for information dissemination in wireless sensor net-
works. In MobiCOM, 1999.

[15] P.-~. Larson. Data reduction by partial preaggregation. In
lCDE, 2002.

[16] R Levis and D. Culler. Mat& A tiny virtual machine for
sensor networks. Submitted for Publication.

[17] J. Lin and S. Paul. RMTP: A Reliable Multicast Transport
Protocol. In INFOCOM, pages 1414--1424, 1996.

[18] S. Madden and M. J. Franklin. Fjording the stream: An
architechture for queries over streaming sensor data. In
ICDE, 2002.

[19] S. Madden, W. Hong, J. Hellerstein, and M. Franklin.
TinyDB web page. http://telegraph.cs.berkeley.edu/tinydb.

[20] S. Madden, R. Szewczyk, M. Franklin, and D. Culler. Sup-
porting aggregate queries over ad-hoc wireless sensor net-
works. In Workshop on Mobile Computing and Systems
Applications, 2002.

[21] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler.
Wireless sensor networks for habitat monitoring. In ACM
Workshop on Sensor Networks and Applications, 2002.

[22] V. D. Park and M. S. Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. In INFO-
COM, 1997.

[23] P.Bonnet, J.Gehrke, and P.Seshadfi. Towards sensor
database systems. In Conference on Mobile Data Man-
agement, January 2001.

[24] C. E. Perkins and E. M. Royer. Ad-hoc on-demand dis-
tance vector routing. In Workshop on Mobile Computing
and Systems Applications, 1999.

[25] G. Pottie and W. Kaiser. Wireless integrated network sen-
sors. Communications of the ACM, 43(5):51 - 58, May
2000.

[26] A. Shatdal and J. Naughton. Adaptive parallel aggregation
algorithms. In ACM SIGMOD, 1995.

[27] R. T. Snodgrass, editor. The TSQL2 Temporal Query Lan-
guage. Kluwer Academic Publisher, 1995.

[28] L. Subramanian and R. H.Katz. An architecture for build-
ing self-configurable systems. In MobiHOC, Boston, Au-
gust 2000.

[29] K.-L. 1"an, C. H. Goh, and B. C. Ooi. Online feedback for
nested aggregate queries with multi-threading. In VLDB,
1999.

[30] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survery of active network
research. IEEE Communications, 1997.

[31] UC Berkeley. Smart buildings admit their faults.
Web Page, November 2001. Lab Notes: Research
frora the College of Engineering, UC Berkeley.
http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.

[32] A. Woo and D. Culler. A transmission control scheme for
media access in sensor networks. In ACM Mobicom, July
2001.

[33] W. P. Yan and P. ~. Larson. Eager aggregation and lazy
aggregation. In VLDB, 1995.

[34] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In IEEE lnfo-
com, 2002.

[35] A. Yu and J. Chen. The POSTGRES95 User Manual. UC
Berkeley, 1995.

146 5th Sympos ium on Operat ing Systems Design and Implementat ion USENIX Associa t ion

