
Desynchronization for Sensor Networks with Arbitrary
Graph Topology

Arik Motskin

December 5, 2007

1 Introduction

This project addresses the problem of distributeddesynchronizationof sensor networks with arbi-
trary graph topology. The motivation for desynchronization is wide-ranging, including the estab-
lishment of collision-free communication windows, coordinated sleep schedules, task allocation,
and periodic resource sharing. Although work has been done on this problem in the context of com-
plete graphs (see below), the approaches taken so far do not extend to arbitrary graphs. To tackle
this problem, we frame the desynchronization problem as a discrete one, where being desynchro-
nized is akin to finding a proper vertex coloring over the connectivity graph.

Much of this paper focuses on developing and analyzing novelalgorithms for distributed vertex
coloring, where the emphasis is on reducing the communication and computational resources re-
quired to perform this task quickly and efficiently. Our maincontribution is an analysis of a series
of novel randomized algorithms that converge to a proper coloring in O(log n) rounds with high
probability, using the bare minimum in communication and computational resources.

The plan for the paper is as follows. After discussing existing desynchronization work in
Section 1.1, we examine distributed vertex coloring and examine the spectrum of potential com-
munication and computational models for solving this problem in Section 2. In Sections 3 and 4,
we present and analyze the Neighbor Counting and Neighbor Detection algorithms, whose analysis
forms the bulk of the technical work in this paper. Section 5 includes experimental performance of
this algorithm, while Section 6 offers an alternative algorithm with different properties. Section 7
shows how to convert a distributed vertex coloring algorithm into a desynchronization protocol for
arbitrary graphs, and we conclude in Section 8.

1.1 Existing Work

Although much past work in sensor networks has focused on various aspects of synchronization
(clock synchronization, firefly-like pulse synchronization, etc.), recent work has shifted focus to the
problem ofdesynchronization, as evidenced by the novel DESYNC paradigm of [1]. There, sensor
nodes are modeled as oscillators with frequencyω = 1

T
. Each period, nodes must select a phase at

which to fire so as to adequately distance their firing time from that of their neighbors. Since the

1



network topology considered in that work is a complete graph, each node can hear the firing time
of all other nodes, and must make a decision (without message-passing) as to how to set its firing
time based solely on what it has heard. At convergence, each node will have claimed a1

n
slice

of the lengthT period. The paper presents a lightweight, distributed, self-maintaining protocol,
that is shown in [6] to always converge toε-desynchrony afterO

(

n2 log 1
ε

)

periods. Moreover, the
DESYNC protocol has the property that sensor nodes do not have to be synchronized to a global
clock, since all phase selections are made on a relative-time basis.

On the other hand, the DESYNC protocol requires each node to be awake for the entire period
of lengthT , since a node must hear the firing just before and after its ownfiring, but has no pre-
diction of when this might occur. Most problematic, however, is that the DESYNC protocol does
not extend to arbitary graphs; since real-life sensor network deployments do not form complete
communication graphs in general, there is obvious impetus to construct protocols that work on
networks with non-trivial topologies.

This paper addresses these issues by treating desynchronization as a discrete problem on the
network of sensor nodes. A solution to the minimum vertex coloring problem would lend itself
naturally to optimal sensor network desynchronization, where each node’s assigned color would
correspond to a fraction of the lengthT period. In a proper coloring usingm colors, each node
could be guaranteed a sizeT

m
slice of the period for itself. As minimum vertex coloring isNP-hard,

we cannot hope to find the optimal solution; moreover, our desynchronization algorithm should be
distributed, making the problem even more difficult. This paper focuses on designing distributed
vertex coloring algorithms with good convergence behaviorand reasonable bounds on the number
of colors used.

2 Distributed Vertex Coloring

When judging the performance of a distributed vertex coloring algorithm on a graph withn nodes,
we recall Brooks’ Theorem, which states that any graph besides the complete graph and the odd
cycle can be colored with∆ colors (where∆ is the maximum node degree). We also recall the
trivial centralized algorithm which uses∆ + 1 colors and completes inn rounds. With that in
mind, we view∆ to be a reasonable benchmark for the minimum number of colorsrequired for a
distributed algorithm to converge quickly to a proper coloring.

But how well can a distributed algorithm do, both in the numberof colors used and in the speed
of convergence? Past work, and results presented in this paper, can be characterized by the amount
of communication (between nodes) and computation (within anode) that an algorithm permits
nodes to engage in. As sensor nodes have limited battery lifefor communication and processing
capability for computation, lightweight algorithms are not only preferable but necessary for real-
life deployment. We remark that there is a natural tradeoff between, on the one hand, richness of
actions available to nodes, and on the other, the performance of the algorithm. As allowable node
behavior becomes more restrictive, either i) the time untilconvergence will lengthen, or ii) number
of colors required will increase. Below, we characterize a spectrum of computational models, from
most rich to most naive. Each model encodes the actions available to nodes during each round of
a vertex coloring algorithm; for all algorithms, we assume that a color is selected at the conclusion

2



of each round (either a new color or the same one just used), and that once a proper coloring has
been reached the nodes must know not to switch colors.

MODEL 1 – Rich communication and computation
In every round, each node can:

a) execute arbitrary amount of computation
b) send and receive arbitrary number of messages to and from its neighbors

[5] displays a deterministic distributed algorithm usingO(∆) colors that converges inO
(

log∗
(

n

∆

))

rounds.

MODEL 2 – Moderate communication and computation
In every round, each node can:

a) maintain a palette of potential and available colors
b) observe whether it has a color conflict with any neighbor
c) send and receive adonemessage once a node decides topermanentlyselect a color.

[4] and [2] demonstrate a simple and intuitive algorithm using only∆ + 1 colors that converges in
O(log n) rounds with high probability. Interestingly, for this result to hold, nodes need not know
the max degree∆ of the network, but only their own degree.

MODEL 3 – Minimal communication and computation
In every round, each node can:

a) observe the number of neighbors in conflict with it
b) select next color based on above observation

In the next section, we present an algorithm under this model– dubbed Neighbor Counting –
usingO(∆) colors that converges inO(log n) rounds with high probability. We observe that in
moving from Model 2 to the far more restrictive Model 3, we require slightly more colors in
order to achieve similar time of convergence bounds, and nodes must all know the max degree
∆. On the other hand, Neighbor Counting critically improves onthe algorithm in [4] by being
self-maintaining; that is, if new links are formed or errors are introduced, the Neighbor Counting
protocol easily handles and fixes such situations.

MODEL 4 – Minimal communication and computation, also minimal monitoring
In every round, each node can:

a) observe only whether any neighbor has a conflict with it
b) select next color based on this single bit of information.

With only a small tweak to Neighbor Counting, we present an algorithm under this most restrictive
model called Neighbor Detection that, besides different constants, guarantees the same time of
convergence and number of color bounds as Neighbor Counting.This is an important improve-

3



ment, since in the context of sensor networks, observingwhetherthere are conflicts is a much
easier task thancountingthe number of conflicts.

2.1 Notations and Assumptions

We assume throughout that the graph ofn nodes has a maximum node degree of∆ ≥ 2. Otherwise,
any reasonable procedure reaches a proper coloring quicklywith 2 colors.

3 Neighbor Counting

In this section we introduce our novel, distributed vertex-coloring algorithm – dubbed the Neighbor
Counting algorithm – which satisfies the Model 3 characterization of communication and compu-
tation.

3.1 The Algorithm

Neighbor Counting works on the principle that since both computational and communication re-
sources are scarce, nodes must make severe simplifying assumptions about the state of the graph
when selecting their colors. Since message-passing is forbidden, nodes are forced to simply ob-
serve the colors chosen by their neighbors, oblivious to what color patterns may be unfolding
only two hops away; since non-trivial computation is forbidden, nodes must decide by only basic
computations what color to select next round.

The simplifying assumption made by nodes in Neighbor Counting is to treat the local neigh-
borhood as a complete graph. If I am colored green and three ofmy neighbors are as well, it is
reasonable from my myopic perspective to hope that only one of us will remain green next round,
at least in expectation. This would be a great strategy if thegreen-colored nodes indeed form a
4-clique (which they do not, in general). The algorithm proceeds such that if a node observesk

of her neighbors with the same color as her, she will remain ather color with probability 1
k+1

, and
switch toanothercolor uniformly at random with the remaining probability. The algorithm works
as follows:

1) At time1, each node chooses a color uniformly at random (out ofm possible).

2) At outset of each round, each node counts the number of its neighbors with the same color
as it, sayk of them.

3) At end of round, node remains at current color with probability 1
k+1

and switches to one of
otherm − 1 colors uniformly at random.

We remark that this protocol works on arbitrary graphs, but nodes must know in advance the
number of colorsm being used. We will see in the next section that in order to achieve good
convergence time, we will setm to be a function of the maximum degree∆. One can imagine

4



that in an actual deployment, if a higher degree is observed than the one assumeda priori, a flood
warning of a higher∆ can be initiated.

We observe that a node which has no similarly colored neighbors at timet may very well
conflict with a neighbor at some later time. This is a direct result of the naive computation and
communication model employed by Neighbor Counting. Nodes are not permitted to broadcast that
they have found a good color. While it may seem that as a result of this sacrifice, the speed to
convergence may suffer, we will see in the next section that Neighbor Counting algorithm can still
converge inO(log n) rounds.

On the other hand, Neighbor Counting has the advantage of being self-maintainingin the event
of node failures, link failures, or the appearance of new nodes or links. The protocol easily handles
any of these issues, since no node ever settles on a “permanent” color.

3.2 Main Convergence Result

The goal of this section is to show that the Neighbor Counting algorithm converges to a proper
vertex coloring inO(log n) rounds with high probability. Suppose there arek∆ colors, fork ≥ 1.
Define a nodev to begoodin roundt if each of its neighbors is colored differently fromv during
that round; otherwise the node isbad. Let the random variableXt be the number of good nodes
(out ofn total nodes) at roundt. Since the algorithm halts at a proper coloring – ie. when allnodes
are good – we wish to characterize the time it takes forXt to reachn. This is done, in part, by
proving a lower bound on the probability that a good noderemainsgood from round to round. The
key to proving our main result is to demonstrate that this probability actually converges to1 as the
number of good nodes approachesn.

Fix time t. Suppose that good nodev, currently coloredc, has∆ bad neighbors. We wish to
lower bound the probability thatv will also be goodnextround.

P(nodev remains good next round) = P(none ofv’s neighbors switch to c)

≥

[

1 −

(

∆ − 1

∆

)(

1

k∆ − 1

)]∆

≥

[

1 −
1

k∆

]∆

=

[

(

1 −
1

k∆

)k∆
]

1

k

≥

[

e−1

(

1 −
1

k∆

)]
1

k

≥

[

e−1

(

1 −
1

2k

)]
1

k

= p∗

(1)

5



Clearly, nodes that have fewer than∆ bad neighbors also remain good with probability at least
p∗. We remark that by choosingk high enough, we can makep∗ as close to 1 as we wish, say
p∗ = 0.85 (if k = 7). We now wish to lower bound the probability that a nodeu that is currently
bad, will become good next round. By definition,u has at least one node with the same color, so it
will switch colors next round with probability at least1

2
.

P(nodeu becomes good next round)

≥ P(u switches to a color that is currently unclaimed, and

which no neighboring node will also claim next round)

≥

(

1

2

)(

k∆ − (∆ − 1)

k∆ − 1

)

P(no neighboring node

switches tou’s color)

≥

(

k − 1

2k

)

P(no neighboring nodes switch tou’s color)

=

(

k − 1

2k

)

P(each of∆ neighboring nodes don’t switch tou’s color)

≥

(

k − 1

2k

)

p∗

= q∗

(2)

Again, we remark that by choosingk high enough, we can makeq∗ as close to1
2

as we wish,
say0.35 (if k = 7).

Lemma 1
If Xt ≤

2n

3
, thenE[Xt+1|Xt] ≥ Xt + 0.05(n − Xt).

Proof. By Equations 1 and 2,E[Xt+1|Xt] ≥ 0.85Xt + 0.35(n−Xt) = (0.85Xt + 0.3(n − Xt)) +
0.05(n − Xt). SinceXt ≤ 2n

3
, we have thatXt ≤ 2(n − Xt). Therefore,E[Xt+1|Xt] ≥

(0.85Xt + 0.15Xt) + 0.05(n − Xt) = Xt + 0.05(n − Xt).

Next we will prove a similar result forn(∆−1)
∆

≥ Xt > 2n

3
. We remark that the bounds in

Equations 1 and 2 will no longer be sufficient.
Suppose that there are currentlyn∆−1

∆
≥ Xt = n w

w+1
good nodes, forw > 2. Since each

bad node can be a neighbor to at most∆ good nodes (in fact, to at most∆ − 1), there are at
mostn ∆

w+1
bad neighbors, distributed amongn w

w+1
good nodes. Therefore, the average number

of bad neighbors each good node has is at most∆
w

. Since we wish to lower bound in expectation
the number of good nodes that will remain good next round, we note by Equation 1 that in the
worst case all good nodes have the same number of bad neighbors as each other. That is, in the
worst case, each good node has

⌈

∆
w

⌉

bad neighbors. Therefore we alter Equation 1 for the current
situation where good nodes have at most

⌈

∆
w

⌉

bad neighbors:

6



P(good node remains good next round) = P(none of v’s

⌈

∆

w

⌉

bad neighbors switch to c)

≥

[

1 −

(

∆ − 1

∆

)(

1

k∆ − 1

)]⌈∆

w
⌉

=

(

[

1 −

(

∆ − 1

∆

)(

1

k∆ − 1

)]∆
)

⌈∆
w⌉
∆

≥ (p∗)
⌈∆

w⌉
∆

≥ (p∗)
2

w

(3)

since we know that2
w
≥

⌈∆

w
⌉

∆
when∆ ≥ w, as it is here.

Lemma 2
If n∆−1

∆
≥ Xt > 2n

3
, thenE[Xt+1|Xt] ≥ Xt + 0.05(n − Xt).

Proof. SupposeXt = n w

w+1
where(∆ − 1) ≥ w > 2. Then by Equations 2 and 3,

E[Xt+1|Xt] ≥ (0.85)
2

w

(

w

w + 1

)

n + (0.35)

(

1

w + 1

)

n

=

(

∞
∑

i=0

1

i!

(

2 log .85

w

)i
)

(

w

w + 1

)

n + (0.35)

(

1

w + 1

)

n

≥

(

1 +
2 log .85

w

)(

w

w + 1

)

n + (0.35)

(

1

w + 1

)

n

=

(

w

w + 1

)

n +

(

2 log .85
w

)

+ 0.35

w + 1
n

≥

(

w

w + 1

)

n +
0.05

w + 1
n

= Xt + 0.05(n − Xt)

(4)

Finally, we will prove a similar result forn ≥ Xt >
n(∆−1)

∆
.

Lemma 3
If n ≥ Xt > n∆−1

∆
, thenE[Xt+1|Xt] ≥ Xt + 0.05(n − Xt).

Proof. We recall that a bad node can be a neighbor to at most∆ − 1 good nodes, and that in the
worst case each good node has an equal number of bad neighbors. Therefore ifXt > n∆−1

∆
, then

7



in the worst case(∆ − 1)(n − Xt) good nodes have a single bad neighbor, while the remaining
good nodes have no bad neighbors.

E[Xt+1|Xt] = [(∆ − 1)(n − Xt)]

(

1 −
1

∆k

)

+ [Xt + (n − Xt)(∆ − 1)] + 0.35(N − Xt)

= (n − Xt)(∆ − 1)

(

−
1

∆k

)

+ Xt + 0.35(n − Xt)

= [Xt + 0.05(n − Xt)] + (n − Xt)

(

1

∆k
−

1

k
+ 0.3

)

≥ Xt + 0.05(n − Xt)

(5)

as long ask ≥ 10
3

.

Proposition 1
If Xt is the number of good nodes at timet, thenE[Xt+1|Xt] ≥ Xt + 0.05(n − Xt) for all values
of Xt in [0, n].

Our final task is to show that the algorithm converges quicklyto a proper coloring. In
particular, we prove the following general result:

Proposition 2
Let n > 0 be an integer, andXt be an integer random variable in[0, n] for t ∈ {1, 2, 3, . . .}. Define
variableT to be the smallestt such thatXt = n. Suppose there exists constant0 < c < 1 such
thatE[Xt+1|Xt] ≥ Xt + c(n − Xt). Then

P(T ≥ ⌈logb n⌉ + k + 1) ≤ (1 − c)k

whereb = 1
1−c

.

This is an adapation of the classic result on probablistic recurrence relations in [3]. Proposition
2 generalizes the constantc case of that result by no longer requiring the restriction that Xt be a
monotone non-decreasing random variable. Our proof of thisresult uses a straightforward appli-
cation of the Markov inequality.

Proof. Suppose in the worst case thatX1 = 0. Fix integerk ≥ 0. By the law of iterated
expectations,E[X⌈logb n⌉+k+1|X1] ≥ n − (1 − c)k. DefineY = n − X⌈logb n⌉+k+1. By the Markov
inequality,

P[Y ≥ 1] ≤ E[Y ]

≤ (1 − c)k
(6)

SinceY < 1 ⇔ X⌈logb n⌉+k+1 = n, this proves the theorem.

Proposition 2 implies the result we seek for convergence of the Neighbor Counting Algorithm.

8



Theorem 1
On a graph withn nodes, the Neighbor Counting algorithm converges to a propercoloring in
O(log n) rounds with high probability when usingO(∆) colors.

In particular, ifT is the number of rounds until convergence, then usingk∆ colors,

P(T ≥ ⌈logb n⌉ + w + 1) ≤ (1 − c)w (7)

whereb = 20
19

, c = 0.05 andk ≥ 7. We observe that due to the coarseness of the bounds used
in our proof, in practice theO(log n) convergence result will also hold for smaller values ofk, or
larger values ofb andc. Moreover, there is a natural tradeoff between number of colors used and
time until convergence, which will be examined experimentally in Section 5.

4 Neighbor Detection

The previous algorithm required that at each round, nodescountthe number of neighbors in con-
flict with them. It is a far less demanding task if nodes are to only detectwhetherthey are in conflict
with any neighbor. The following Neighbor Detection algorithm achieves the same bounds for dis-
tributed vertex coloring as does Neighbor Counting, but withdifferent constants.

1) At time1, each node chooses a color uniformly at random (out ofm possible).

2) At outset of each round, each node checks whether any of itsneighbors have the same color
as it.

3) At end of round, node remains at current color if it had no conflict; otherwise, it switches to
one of otherm − 1 colors uniformly at random.

The following analysis establishes the same bounds as thosefor Neighbor Counting. Suppose
there arek∆ colors. Corresponding to equation 1, ifv is currently a good node,

P(nodev remains good next round) = P(none ofv’s neighbors switch to c)

≥

[

1 −

(

1

k∆ − 1

)]∆

≥

[

1 −
1

(k − 1) ∆

]∆

≥

[

e−1

(

1 −
1

2 (k − 1)

)]
1

k−1

= p∗

(8)

Here, by choosingk = 5, we getp∗ > 0.75. Now consider a bad nodeu. Corresponding to the
analysis in equation 2,

9



P(nodeu becomes good next round)

≥ P(u switches to a color that is currently unclaimed, and

which no neighboring node will also claim next round)

≥

(

k∆ − (∆ − 1)

k∆ − 1

)

P(no neighboring node

switches tou’s color)

≥

(

k − 1

k

)

p∗

= q∗

(9)

Settingk = 5 achieves aq∗ > 0.6. It can be shown, following the exact same analysis as for
Neighbor Counting, and using values ofp∗ > 0.75 andq∗ > 0.6, that Lemmas 1, 2, 3 and Theorem
1 hold, except we only require thatk = 5 (the sameb and c values still hold). Thus, while
Neighbor Counting requires7∆ colors to achieve the convergence speed in Theorem 1, Neighbor
Counting requires only5∆ colors. This gain is due entirely to the fact that, with a fixedk, although
good nodes have a slightly smaller probability of remaininggood in Neighbor Detection than in
Neighbor Counting, bad nodes have a much greater probabilityof becominggood. We confirm
experimentally that Neighbor Detection is the faster algorithm in section 5.

5 Experimental Results

To examine the tradeoff between number of colors and time of convergence, we compared the per-
formance of the Neighbor Counting and Neighbor Detection distributed vertex coloring algorithms
empirically. In the experiment, 500 nodes were placed uniformly at random in the unit square, and
connectivity was determined by a unit disk graph model. For both algorithms, 1000 trials of the
algorithm were run for eachk ∈ {1, 2, . . . , 20}, and the mean number of rounds until convergence
was computed. Several radius lengths for the unit disk graphmodel were tested – figures 1 and 2
show the results for unit disk graph radii of0.05 and0.1 (with ∆ = 10 and27 respectively). The
results presented here are typical for all radii tested.

The results indicate that Neighbor Detection converges on average1.5 − 2 times faster than
Neighbor Counting, and that for both the function appears concave. We note that no matter what
algorithm is being used, there will be at least1 round, since the nodes take at least a single round
to verify that there are no conflicts.

6 A Third Option

In this section, we present another algorithm, loosely based on the “wake-up” algorithms presented
in [4] and [2]. The strength of those protocols is how few colors are required: using only∆ + 1
colors, the algorithms converges inO(log n) rounds with high probability. However, what was

10



gained in color efficiency was lost in communication efficiency, as they require nodes to broadcast
a “done” message to their neighbors, who must in turn update and maintain an internal palette
of possible colors. Moreover, those algorithms were not as amenable to self-maintenance, since
nodes settle on apermanentcolor after the first time that they have avoided a conflict with their
neighbors. On the other hand, while the Neighbor Counting andDetection algorithms require
minimal node computation and communication and are self-maintaining, they require more colors
– O(∆) – in order to converge quickly.

The following ε-Wake-upalgorithm strikes a middle ground between these two paradigms.
Unlike our previous analysis, we will be able to establish anexplicit tradeoff between speed of
convergence and number of colors used. Suppose forε > 0 that there arem = (ε + 1) (∆ + 1)
available colors. Each node begins as uncolored. At each round, the algorithm proceeds as follows:

1) If nodev is currently asleep, it “wakes-up” and selects a colorc uniformly at random (out of
m possible).

2) If no neighbors are also coloredc, nodev choosesc as its permanent color, and it calls itself
permanent. Nodev never goes back to sleep, and does not inform its neighbors that it has chosen
a permanent color.

3) If some neighboris also coloredc, nodev goes back to sleep and awaits the next round.

It is clear from the algorithm that if two neighborsu andv are permanent, then their colors
do not conflict. Moreover, once all nodes are permanent, the algorithm has converged to a proper
coloring. We now establish a lower bound on the probability that an uncolored node becomes
permanent during a round.

P(uncolored nodev becomes permanent) = P(v selects a color that no one else selects)

≥

(

(ε + 1) (∆ + 1) − ∆

(ε + 1) (∆ + 1)

)

≥

(

ε

ε + 1

)

(10)

Then by Proposition 2, we get that ifT is the number of rounds until convergence to a proper
coloring,ε > 0, and using(ε + 1)(∆ + 1) colors,

P(T ≥ ⌈logb n⌉ + w) ≤ (1 − c)w (11)

whereb = ε + 1 andc = ε

ε+1
.

It is notable that the probability bound and time of convergence result holds even if individual
nodes do not know the maximum degree∆. In total, there is a list of(ε + 1) (∆ + 1) potential
colors that can be used, but a particular nodeu that has degree∆u ≤ ∆ needs to only consider the
first (ε + 1) (∆u + 1) members of that list when selecting a color. This is consistent with the work

11



in [4] and [2], whereas nodes in the Neighbor Counting and Neighbor Detection algorithms need
to select from the entire list ofO(∆) colors.

7 Converting to a Desynchronizing Algorithm

We now show how to convert a distributed vertex coloring algorithm into a sensor network desyn-
chronizing protocol. As in [1], we will consider nodes to be oscillators with frequencyω = 1

T
. If

a coloring algorithm usesm colors, then each such color will correspond to a lengthT

m
interval of

the lengthT period. If, in the coloring algorithm, some nodev claimed theith color, then this will
correspond to nodev firing for the duration of theith interval of the period.

We assume in the ensuing discussion that each node can measure the length of timeT and T

m
,

and knowing the start and end times of a period, can choose to fire for the duration of theith interval
of length T

m
. For purpose of analysis, assume that there exists a global clock (with which the nodes

are not necessarily synchronized) that keeps track of the beginning of each “global” round of length
T at times{0, T, 2T, 3T, . . .}. Also, assume that each nodev has its own internal clock which keeps
track of what itthinksis the beginning of each round at times{sv, sv + T, sv + 2T, sv + 3T, . . .},
where0 ≤ sv < T .

If every node’s clock is synchronized to the global clock (ie. wheresv = 0 for all nodesv), then
the vertex coloring algorithms are easily adapted to a desynchronization protocol. Every period,
nodes choose a sizeT

m
interval of the period during which to fire; depending on whether there is

a conflict or not, a node may choose a different interval next period according to whatever vertex
coloring procedure is being followed (Neighbor Detection,Neighbor Counting, etc.). The system
is said to be desynchronized when for every node, the selected firing interval does not overlap with
any of its neighbors’ firing intervals. Each node has, in a sense, staked out a lengthT

m
interval for

itself. Accordingly, all previous convergence results hold (including the values of the constantsb, c

andk); that is, the sensor networks converges to desynchronization in O(log n) periods when the
periodT is divided intoO(∆) firing intervals.

If each node’s clock is not necessarily synchronized to the global clock, we run the desynchro-
nizing algorithm as above, but the analysis is complicated by two issues: the beginning and end
of thefiring intervalsof each node do not align with those of its neighbors, and the beginning and
end of theperiod of each node does not align with that of its neighbors. For thefirst issue, we
remark that if all nodes use firing intervals of the same length (which we assume they do), then
the ith interval of nodev can overlap with at most2 of a neighbor’s firing intervals. Then if the
second issue did not exist (ie. beginning and end of each node’s period was synchronized), this
would imply that we requiredoublethe number of colors as in the synchronized case in order to
converge in the same number of rounds.

With regards to the second issue, we perform the following accounting to keep track of “good”
and “bad” nodes: at global timet, we say a nodev is good if its firing interval did not overlap
with the firing interval of its neighbors during itslast period that ended before time t. Otherwise,
it is bad. With this definition, it can be seen that if the clocksynchronized case usedm firing
intervals of lengthT

m
, then by using2m firing intervals of lengthT

2m
in the unsynchronized case,

the probability that a good node at timet is also good at timet + T is lower bounded by the

12



probability of that event in the synchronized case. The sameargument holds for showing a lower
bound on the probability that a bad node at timet will become good at timet + T . That is, to
achieve the same convergence results as the clock synchronized case, we require just twice as
many firing intervals.

Recall that in the DESYNC protocol of [1], nodes were requiredto be awake for the entire
period of lengthT in order to hear the firing times of their neighbors. For our procedure, a node is
required to be awake only during its own firing interval, since it must only check whether neigh-
bors’ intervals have overlapped with its own – this propertyholds irrespective of whether nodes’
clocks are or are not synchronized to a global clock.

8 Conclusion

In this project we address the problem of desynchronizing sensor networks with arbitrary graph
topologies by abstracting the problem to a distributed vertex coloring one. We put forth and an-
alyzed three algorithms that achieve this goal: Neighbor Counting, Neighbor Detection, and the
ε-Wake-up algorithm, each of which converges to a proper vertex coloring inO(log n) rounds
with high probability. Compared to existing work, each of these algorithms uses a very restricted
computational and communication model, achieving quick convergence despite the limited actions
available to each node. Neighbor Counting and Detection bothhave the property of being self-
maintaining (if new links or nodes appear, the algorithm easily adjusts the coloring); on the other
hand, whileε-Wake-up is not self-maintaining, it has a convenient tradeoff lever (parameterized
by ε) that characterizes the speed of the algorithm compared to the number of colors used (and it
can achieve quick convergence using fewer colors than Neighbor Counting or Detection).

Moreover, although Neighbor Detection uses a more restrictive computational model than
Neighbor Counting, it converges to a proper coloring faster (by a constant factor), indicating that
the option in Neighbor Counting tocount the number of conflicts (instead of simply detecting
whetherthere is a conflict) may not add any computational value to algorithms in this context.
Finally, we showed how vertex coloring algorithms can be transformed into sensor network desyn-
chronization protocols, noting that if all nodes’ clocks are synchronized to a global clock, con-
vergence to desynchrony follows directly from the vertex coloring convergence results, while un-
synchronized clocks achieve the same speed of convergence as long as the number of available
“colors” (firing intervals) is doubled.

References

[1] Julius Degesys, Ian Rose, Ankit Patel, and Radhika Nagpal,Desync: self-organizing desyn-
chronization and tdma on wireless sensor networks, IPSN, 2007, pp. 11–20.

[2] Ojvind Johansson,Simple distributedδ+1-coloring of graphs, Information Processing Letters
70(5) (1999), 229–232.

13



[3] Richard M. Karp,Probabilistic recurrence relations, Journal of the ACM41 (1994), 1136–
1150.

[4] Michael Luby, Removing randomness in parallel computation without a processor penalty,
IEEE Symposium on Foundations of Computer Science, 1988, pp.162–173.

[5] Gianluca De Marco and Andrzej Pelc,Fast distributed graph coloring withO(δ) colors,
SODA (Philadelphia, PA, USA), Society for Industrial and Applied Mathematics, 2001,
pp. 630–635.

[6] Ankit Patel, Julius Degesys, and Radhika Nagpal,Desynchronization: The theory of self-
organizing algorithms for round-robin scheduling, SASO, 2007, pp. 87–96.

14



2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

10

Constant k (where algorithm uses k∆ colors)

A
ve

ra
ge

 n
um

be
r 

of
 r

ou
nd

s 
un

til
 c

on
ve

rg
en

ce

Algorithm Performance: ∆ = 10

Neighbor Counting
Neighbor Detection

FIGURE 1

15



2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

Constant k (where algorithm uses k∆ colors)

A
ve

ra
ge

 n
um

be
r 

of
 r

ou
nd

s 
un

til
 c

on
ve

rg
en

ce

Algorithm Performance: ∆ = 27

Neighbor Counting
Neighbor Detection

FIGURE 2

16


