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2 Introduction 
This report discusses the implementation of the single-hop desynchronization 
algorithm as proposed in the IPSN 2007 paper “DESYNC: Self Organizing 
Desynchronization and TDMA on Wireless Sensor Networks”. The algorithm 
was implemented and tested on the Intel iMote2 hardware platform running the 
1.x branch of the TinyOS operating system.  
 
The original single-hop algorithm has also been extended and modified to allow 
network wide updates to the desync period and to ensure that entire network 
maintains a consistent period even when nodes enter or leave the network. 
 
Furthermore, an algorithm has been developed and tested for multi-hop 
networks. The algorithm defines an error function and performs steepest 
descent optimization where each node directs neighbouring nodes to reduce 
the error. The algorithm has been tested under a custom Matlab simulator and 
has also been implemented on the iMote2 platform. 
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3 Original algorithm: One hop networks 
For a single-hop network, our implementation is strictly based on the desync 
paper. The main issue here – apart from translating the desync idea to TinyOS 
code - is how to maintain the period. In addition, we took care of clock overflow 
(~20 mins) by checking (and when needed, fixing) our timer-variable relations. 
Both of these solutions make our algorithm robust and reliable for long term 
usage. We have tested the alpha parameter and found the value also described 
in the original paper (alpha = 0.95) to be suitable. 

3.1 Period management scheme 
The period management scheme described below applies both for the single-
hop and the multi-hop versions. While trying to implement desync, we had to 
decide what kind of packets we should use and what information they should 
contain. To maintain the simple nature of the algorithm nodes only send 
(modified) desync packets. Period packets are sent only by the base-station 
and are interpreted by the nodes. 
 
The original desync messages are modified to carry extra information, 
necessary for our algorithm. Understanding the impact on the communication 
overhead, we tried to eliminate this piggybacked information, and send it only 
when necessary. In the single-hop version, a desync package includes 5 bytes 
(besides those for a standard TOS message): 
 

• 1 byte for source address 
• 2 bytes for period 
• 2 bytes for period-timestamp 

 
They are necessary to maintain the period provided by the base station, and 
their use becomes clear while explaining our algorithm. We assume that there is 
only one base-station, and that the nodes should always run using the most 
recent period given by the base-station. In order to do this, we use the 
timestamp idea. Every node maintains its period with an associated timestamp. 
When a node starts, it has a default period (in our case 1 second) and 
timestamp 0. When it receives a new period message from the base station, it 
adopts the new period and increases its timestamp to match that of the new 
period. Supposing that all its neighbours had the same period-timestamp pair, it 
advertises the new pair which is then adopted by them. As we said before, extra 
effort was paid to keep bytes transmitted as low as possible. There are four 
cases when a node should send its period-timestamp pair. 
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• When a node starts up, it actually requests for a valid period using a 
meaningless timestamp 0 (the first period provided by the base-station 
will take timestamp 1). 

• When a node renews its period (after receiving a more recent (= higher 
timestamp) period), it advertises-propagates it to others. 

• When a node realizes that another node has an older period (receiving 
period with lower timestamp than its own), it informs the node about the 
current period. 

• When a node meets new neighbours, it informs them about its period-
timestamp, thus initiating a procedure which will end up in a 
neighbourhood where all nodes have the same - and more recent - 
period. 

 
The latter case represents the scenario where a node with an incorrect period 
enters the network. Nodes will see that they have a new neighbour and will try 
to ensure whether it has the right period or not. In order to do that, we keep a 
one-period history of our neighbours (source address used). If we have seen a 
node in the previous period, we can assume that we already have a common 
period - and if not we will through the other mechanisms. Otherwise, we send 
our period-timestamp pair, and the other node will either adopt our period or 
inform us of its more recent period. 
 
Thus, we have limited sending extra information in the afore-mentioned cases. 
In all other cases, our desync messages will include only one byte of 
information (source address which is always necessary to keep 1-hop 
neighbours information). Note here that currently, for testing needs (our Java 
testing requires that all desync messages should be of equal size), every 
desync packet contains all extra information plus a byte saying whether this 
extra info is valid or not. This is just for testing and plays no role in our algorithm 
(we actually discard these bytes in the receiver part). 
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4 Design of a desyncronization algorithm for multi-hop 
networks 

4.1 Introduction 
The previously discussed algorithm is suitable for one hop networks where each 
node essentially has global information. That is, each node can hear the firing 
time of every other node that is present in the network. Such fully connected 
networks are very rare, especially in wireless networks where fading, obstacles 
and irregular placement disrupt communication links. It is natural therefore to 
consider extending the algorithm for multi-hop networks. 

4.2 Single-hop desync applied to a multi-hop network 
Before continuing with the development of a multi-hop algorithm it is worthwhile 
to first consider the performance of the original single-hop desync algorithm if it 
is applied to a simple multi-hop network. In Figure 1(a) a three node network is 
shown where the centre node can hear both neighbours but each neighbour 
can only hear the centre node. The single-hop desync algorithm will quickly 
converge to the phase diagram shown in (b). From the perspective of the two 
outer nodes this is the optimum layout – each is maximally distant from their 
single neighbour (the centre node) in phase. For the centre node it sees that its 
two neighbours are actually completely synchronized. Depending on the use of 
the network (e.g. desynchronized sampling, TDMA, etc.) this likely to be 
undesirable. 
 

 

Figure 1  Original desync algorithm applied to a simple multi-hop network.  (a) Three node 
network where the centre node can hear  both neighbours but each neighbour can only hear the 

centre node. (b)  Optimum phase diagram using the original desync algorithm. 
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4.3 Metrics 
One hop network 
In the one hop case, we have that the network of N nodes is fully connected. If 
we consider the firing time of each mote globally we sort the times and denote 
them as follows: 

110 ... −<<< Nttt   

We can then express the average phase error as 
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The operator % represents the operator modulo as we are computing the 
relative error between all the nodes within a desync period. Since under ideal 
conditions the N motes will have a spacing of T/N  the above equation denotes 
the average error of each interval from the optimum separation. 
 
Multi-hop network 
In the project proposal, this metric has been extended for multi-hop networks. In 
this case there is still a global ordering on the motes, but it is not clear what the 
“correct" metric is. The metric of the proposal is an average of the metric 
defined in (1) taken at each mote:  
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Proposed metric 
However the metric defined above does not take into account the “importance” 
of the nodes and fails under certain conditions. A more suitable metric may be 
to weight the error at each node by the degree of the node. In such a metric, 
nodes with high degree are deemed more important. This would be appropriate 
for example if the algorithm was used to determine TDMA slot times. High 
degree nodes would be seen as aggregation centres or perhaps as bottlenecks. 
In either case it would be important to optimize the throughput at these nodes, 
possibly at the expense of other nodes.  
 
In light of this the metric is modified to include weighting the error by the node 
degree. 
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Consider for example a star configuration with one centre node and four 
surrounding nodes (similar to Figure 1). Due to the high number of neighbours 
the unweighted error is dominated such the minimum error configuration is as 
shown in Figure 2 (a). This is clearly not optimal for a TDMA scenario as all 
packets would collide at the centre node. If the weighted metric is used then the 
configuration of Figure 2 (b) is obtained where packets sent to the centre node 
would not collide. 
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Figure 2  Representation of the beacons in the period: Situation (a)  24.0=ε  following metric 
(2) 2.1=ε  following metric (3). Situation (b)  29.0=ε  following metric (2) 81.0=ε  following 

metric (3).   

4.4 Suboptimal approximations 
Since an algorithm computing the optimal position explicitly is too expensive for 
a sensor network, we studied two suboptimal approximations which try to find 
one solution “close” enough to the optimal in a distributed way. 
 

• In the first one, the approximation taken is to include a node’s one-hop 
neighbours in its desync message. This provides each node with 
information about its two-hop neighbourhood. 
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• The second one uses the fact that after a desync period each node has 
enough information to calculate the exact error of its neighbourhood, and 
therefore try to minimize it by changing its own position and influencing 
the position of the other neighbours. 

 
In the next two sections we will describe these two approximations: 

4.5 Two-hop-neighbourhood data 
The idea of this approximation is that most of the information about a network is 
contained in a node’s two-hop neighbourhood. If each node can cooperatively 
determine its optimal phase for its two hop neighbourhood then the 
arrangement may not be globally optimal but it will ensure that collisions are 
avoided. Such an algorithm may therefore be most suited for determining TDMA 
slots. 
The main idea of the algorithm is that at each update step a node uses its two-
hop neighbour information to decide how to shift its phase. It evaluates the error 
metric to determine which out of several possibilities will locally produce the 
best solution. Note that this approach permits a node to knowingly worsen its 
own error if it believes that it will improve the combined error. 
The three classes of phase operations are as follows 
 

1. SWAP:- Evaluate swapping phase with a one-hop neighbour. If a 
phase swap is determined to have a net reduction in the error metric then 
either a specialized swap message can be sent to the node or simply 
jump to a time just before the node will be fire, effectively displacing it 
from its phase. 

2. JUMP:- Evaluate jumping to a new phase. To limit the number of 
phase points considered only the midpoints of neighbouring phase points 
are considered.  

3. DESYNC:- If neither a SWAP or a JUMP is determined to reduce the 
net error then adjustment of the phase is performed using the normal 
desync algorithm. 

 
This algorithm has the advantage that it easy to implement different error 
metrics without affecting the overall algorithm. However, a major disadvantage 
is that it requires the continual transmission of two-hop information. Each node 
transmits O(d) extra bytes of information (d = degree of node). In most networks 
d is relatively small however this is a significant increase in communication. 

4.6 Neighbour directed gradient descent algorithm 
The main idea of this approximation is that each of the nodes can calculate an 
exact error associated to its neighbourhood. Remember that the error 
associated to the node j in metrics (2) and (3) was obtained by: 
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of the ith node in the neighbourhood of the node j. We can define a new error 

jε~  for the node j by squaring the terms of the sum of jε .  
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Note that the error evaluates to zero when all the neighbour nodes of j are 
equally spaced around the period and that 00~ →⇒→ jj εε . Using the error jε~  
a node can construct a gradient function depending on the firing time of each of 
the nodes in its neighbourhood: 
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This discussion suggests a steepest descent algorithm for changing the position 
of the node firing a time )( j

kt  in order to reduce the contribution to jε~  by the error 
of the node j. Since we are interested in reducing the error we will choose the 
negative descent direction: 
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where α  represents the step size of the algorithm and )()( mt j
k  the firing time for 

the desync period number m. Note that these correction quantity to apply in the 
node firing at )( j

kt  can be easily calculated with the information present in the 
node j, since a node knows its number of neighbours and the fire times of each 
of them. 
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Global error minimization 
However we pretend to reduce the error on the whole network and not only at 
one node. We can write the error for the whole network following the metric (2) 
(extension to metric (3) is immediate) as: 
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If we consider now the contribution of the position in the period of one node j to 
the whole network error we have that 

∑∑
== ∂

∂
=

∂
∂≈

∂
∂ N

i j

i
N

i
i

jj tNNtt 00

~1~1 εεε
 

That is, each node contributes to the global gradient jt∂∂ /ε  with a sum of all the 
individual gradients ji t∂∂ /~ε   with respect to its neighbours. Thus we can write 
the global update formula for the node j as: 
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where k is the position of the node j in the neighbourhood of i; j
i

k tt =)(  

Information exchanged 
Note that the update formula for the timing of the node j depends on the 
corrections calculated in the own node jj t∂∂ /~ε  and in the corrections from all 
its neighbours i: ji t∂∂ /~ε . Thus, for each iteration of the algorithm a node j has to 
share a number of corrections 1−jn  addressed to its neighbours. 
 
To avoid this overhead of communication we chose to reduce the number of 
neighbours addressed in each iteration to one. Moreover, to avoid flooding the 
network with extra messages, the information will be attached to the current 
DESYNC message sent by the node. The neighbour to which the gradient is 
sent can be chosen by a round robin or a randomized selection procedure.  All 
the nodes must now keep a table with the last error-reports received from their 
neighbours and they keep updating it when they receive a new message 
addressed to them. The size of the information exchanged by the algorithm is 
described in section 5 which discusses the practical implementation of the 
algorithm.  
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This design decision is however arbitrary and we could choose to send the error 
calculated to two or even more nodes. This allows a trade-off between the 
overhead introduced by the algorithm, and the velocity of convergence and 
stability one convergence is achieved. 
 
Local minima 
The gradient function kt∂∂ /ε  presents multiple local minima and the algorithm 
can get stuck depending on the initial firing times of the motes, on the desync 
period and on the topology of the network. That can happen for example when 
one node is in the way of one of its neighbour nodes to their optimal position. In 
this case the algorithm will stabilise in this local minimum and not evolve 
towards the global minimum. 
 
To avoid these situations we propose a series of heuristics that detect when the 
algorithm is stuck in one of these local minima, and to jump to a situation where 
the algorithm can continue evolving. 
 
To understand the JUMP conditions we must remember the equation controlling 
the evolution of each of the nodes: 
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And the node will not change its position. We can see this situation as a force 
equilibrium since a node is receiving the same force to move in one direction as 
the force to move in the opposite direction. Figure 3 shows graphically this 
interpretation of the errors received from the neighbours. If the two opposite 
forces present in a node are large it means that this node is contributing to the 
global error by a large amount and that it does not allow the neighbours to 
evolve to their equilibrium position. 
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Figure 3  Example of the forces applied to node 2 in the case of a 
three node full connected network.  

The heuristic we propose is that if the force in one direction is larger than the 
distance to the closest neighbour in this direction we choose to jump over it with 
a small probability. We jump with a small probability to avoid multiple 
simultaneous jumps, since in a stuck situation it is possible that several nodes 
are with high tension and decide to jump simultaneously. This situation is shown 
in the Figure 4. 

1

2

3

 

Figure 4 Example of a local minimum in a multi-hop network. Nodes 1 and 3 can hear all the 
nodes on the network while node 2 can only hear nodes 1 and 3. The forces applied to 2 are 

bigger than the threshold defined by the positions of its neighbours and therefore would choose 
to jump with a small probability. 
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Robustness of the algorithm 
It is interesting to remark that this algorithm makes no assumptions about the 
topology of the network, or about the stability of the nodes. If the topology 
changes the algorithm adapts itself to the new situation and derives the global 
minimum of the new configuration. 
Another advantage of using this scheme is the scalability of the solution. Since 
the algorithm is totally distributed it could be extended to arbitrary topologies 
without limiting the number of nodes.  
The result of this simplicity and adaptability is in the convergence speed, which 
cannot be the same as in the case of calculating directly the optimal situation 
and the transmitting it to the rest of the nodes. Our algorithm needs several 
desync periods in order to converge to a stable solution. 

4.7 Simulations 
The capabilities and performance of the algorithm exposed in 4.6 have been 
assessed by computer simulation using Matlab. This event oriented simulator 
shows in a diagram the evolution of the different nodes in a period and is able to 
perform simulations of homogeneous networks (all the nodes with the same 
code) with a specified topology and a certain probability of packet loss. 
 
The simulations of the algorithm showed good behaviour in most of classical 
topologies such as star, ring and one hop networks. The algorithm was shown 
to be capable of finding a quasi optimal solution for most of the more complex 
scenarios studied. In the following points we will show the solutions obtained by 
the algorithm for some of this topologies. 
 
Graphical representations used in this section 
We chose to present the firing times of the different nodes in a circle 
representing the desync period. The nodes are connected by lines of different 
colours for different cliques in order to make it easy to see which neighbours 
can hear each of the nodes. 
 
Five nodes ring 
 

 

Figure 5 Topology of a ring of five nodes. 
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Figure 6 Evolution of the nodes in the period cycle:  
(a) Local minima (b) Final solution 
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5 Algorithm implementation for the platform: imote2 
The algorithms described in the sections 4.6 (Neighbour directed gradient 
descent algorithm) and 3.1 (Period management) have been implemented for 
the imote2 platform and tested for different multi-hop topologies with up to 8 
nodes. 
 
To simplify the implementation it has been assumed that the nodes of the 
network have address numbers ranging from 0 to 7. This assumption is arbitrary 
and the implementation can easily be extended for the more general case 
where the space address is bigger. The only assumption of the algorithm 
presented in 4.6 is that the two hop neighbours of a node must have different 
addresses or identification numbers. 
 
We have chosen to send only three extra bytes during the normal operation of 
the algorithm. In each desync period each node randomly chooses one of its 
neighbours which will be the receiver of our gradient information. The data sent 
is:  
 

• 1 byte for source address 
• 1 byte for report receiver address 
• 1 byte for the error report 

 
Four additional bytes are attached to the message as necessary to update and 
maintain the desync period. This has been described in section 2.1 
 
Another problem in the implementation of the algorithm for the imote2 platform 
is the lack of floating point support and that the original algorithm was designed 
to work with infinite precision. To minimize the complexity of the compiled code 
and to avoid the use of software floating point emulation we decided to use 
fixed point arithmetic. 
 
For the implementation of the algorithm further problems had to be solved. 
Some of them were the following: 

• Estimation of the number of neighbours. For all the calculus present in 
the algorithm the number of neighbours has to be known. Since in each 
desync period a node can hear the messages of all its neighbours, the 
estimation reduces to counting the number of desync packets received. 
However, since some packets can get lost we chose to smooth the 
variations of the estimation of the number of neighbours, which in the 
final version is a fractional number. 

• Management of the old information present in each node. Since each 
node keeps the last information received from all its neighbours, it has to 
decide what to do when the information turns old, or when it already used 
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the information to correct its position. The solution chosen involves the 
progressive attenuation of the old information. 

• Compression of the error report to one byte. Internal operations of the 
nodes related to the time are performed with 32 bits precision. On the 
other hand we chose to send only one byte indicating the error to the 
nodes. We had to define a way to map between the two representations. 

5.1 Debug and testing 
For the debug of the coded protocol we designed a Java application using the 
infrastructure provided by the Radiowrapper and the TestDesync available 
modules. The Java application is capable to configure the topology of the 
network, to send an update period message to one of the nodes and to perform 
a query of all the internal timers programmed on the nodes. 

 

Figure 7 Interface of the java application used for debug purposes 
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Test scenarios: 
 

• Original desync algorithm running in eight of the motes simultaneously in 
a fully connected network. Various period management tests as, for 
instance, changing the period when a big part of the network is 
unconnected before the network is merging again. 

• Multi-hop algorithm for a star topology with one central node and five 
neighbours. No perfect solution is possible in this case. 

• Ring of 5 nodes. 
• Ring of 6 nodes. Perfect solution is found in this case. 
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