

Design and implementation of a multi-hop
desynchronization algorithm for Wireless

Sensor Networks

Ian Downes, Gonzalo Vazquez Vilar, Yiannis Yiakoumis
{downes,gvazquez,yiannisy}@stanford.edu

CS321 Information processing for wireless networks

Final report 1

1 Table of contents

1 Table of contents ... 1
2 Introduction.. 2
3 Original algorithm: One hop networks.. 3

3.1 Period management scheme.. 3
4 Design of a desyncronization algorithm for multi-hop networks............... 5

4.1 Introduction... 5
4.2 Single-hop desync applied to a multi-hop network 5
4.3 Metrics.. 6
4.4 Suboptimal approximations .. 7
4.5 Two-hop-neighbourhood data .. 8
4.6 Neighbour directed gradient descent algorithm 8
4.7 Simulations... 13

5 Algorithm implementation for the platform: imote2 15
5.1 Debug and testing .. 16

6 References .. 18

CS321 Information processing for wireless networks

Final report 2

2 Introduction
This report discusses the implementation of the single-hop desynchronization
algorithm as proposed in the IPSN 2007 paper “DESYNC: Self Organizing
Desynchronization and TDMA on Wireless Sensor Networks”. The algorithm
was implemented and tested on the Intel iMote2 hardware platform running the
1.x branch of the TinyOS operating system.

The original single-hop algorithm has also been extended and modified to allow
network wide updates to the desync period and to ensure that entire network
maintains a consistent period even when nodes enter or leave the network.

Furthermore, an algorithm has been developed and tested for multi-hop
networks. The algorithm defines an error function and performs steepest
descent optimization where each node directs neighbouring nodes to reduce
the error. The algorithm has been tested under a custom Matlab simulator and
has also been implemented on the iMote2 platform.

CS321 Information processing for wireless networks

Final report 3

3 Original algorithm: One hop networks
For a single-hop network, our implementation is strictly based on the desync
paper. The main issue here – apart from translating the desync idea to TinyOS
code - is how to maintain the period. In addition, we took care of clock overflow
(~20 mins) by checking (and when needed, fixing) our timer-variable relations.
Both of these solutions make our algorithm robust and reliable for long term
usage. We have tested the alpha parameter and found the value also described
in the original paper (alpha = 0.95) to be suitable.

3.1 Period management scheme
The period management scheme described below applies both for the single-
hop and the multi-hop versions. While trying to implement desync, we had to
decide what kind of packets we should use and what information they should
contain. To maintain the simple nature of the algorithm nodes only send
(modified) desync packets. Period packets are sent only by the base-station
and are interpreted by the nodes.

The original desync messages are modified to carry extra information,
necessary for our algorithm. Understanding the impact on the communication
overhead, we tried to eliminate this piggybacked information, and send it only
when necessary. In the single-hop version, a desync package includes 5 bytes
(besides those for a standard TOS message):

• 1 byte for source address
• 2 bytes for period
• 2 bytes for period-timestamp

They are necessary to maintain the period provided by the base station, and
their use becomes clear while explaining our algorithm. We assume that there is
only one base-station, and that the nodes should always run using the most
recent period given by the base-station. In order to do this, we use the
timestamp idea. Every node maintains its period with an associated timestamp.
When a node starts, it has a default period (in our case 1 second) and
timestamp 0. When it receives a new period message from the base station, it
adopts the new period and increases its timestamp to match that of the new
period. Supposing that all its neighbours had the same period-timestamp pair, it
advertises the new pair which is then adopted by them. As we said before, extra
effort was paid to keep bytes transmitted as low as possible. There are four
cases when a node should send its period-timestamp pair.

CS321 Information processing for wireless networks

Final report 4

• When a node starts up, it actually requests for a valid period using a
meaningless timestamp 0 (the first period provided by the base-station
will take timestamp 1).

• When a node renews its period (after receiving a more recent (= higher
timestamp) period), it advertises-propagates it to others.

• When a node realizes that another node has an older period (receiving
period with lower timestamp than its own), it informs the node about the
current period.

• When a node meets new neighbours, it informs them about its period-
timestamp, thus initiating a procedure which will end up in a
neighbourhood where all nodes have the same - and more recent -
period.

The latter case represents the scenario where a node with an incorrect period
enters the network. Nodes will see that they have a new neighbour and will try
to ensure whether it has the right period or not. In order to do that, we keep a
one-period history of our neighbours (source address used). If we have seen a
node in the previous period, we can assume that we already have a common
period - and if not we will through the other mechanisms. Otherwise, we send
our period-timestamp pair, and the other node will either adopt our period or
inform us of its more recent period.

Thus, we have limited sending extra information in the afore-mentioned cases.
In all other cases, our desync messages will include only one byte of
information (source address which is always necessary to keep 1-hop
neighbours information). Note here that currently, for testing needs (our Java
testing requires that all desync messages should be of equal size), every
desync packet contains all extra information plus a byte saying whether this
extra info is valid or not. This is just for testing and plays no role in our algorithm
(we actually discard these bytes in the receiver part).

CS321 Information processing for wireless networks

Final report 5

4 Design of a desyncronization algorithm for multi-hop
networks

4.1 Introduction
The previously discussed algorithm is suitable for one hop networks where each
node essentially has global information. That is, each node can hear the firing
time of every other node that is present in the network. Such fully connected
networks are very rare, especially in wireless networks where fading, obstacles
and irregular placement disrupt communication links. It is natural therefore to
consider extending the algorithm for multi-hop networks.

4.2 Single-hop desync applied to a multi-hop network
Before continuing with the development of a multi-hop algorithm it is worthwhile
to first consider the performance of the original single-hop desync algorithm if it
is applied to a simple multi-hop network. In Figure 1(a) a three node network is
shown where the centre node can hear both neighbours but each neighbour
can only hear the centre node. The single-hop desync algorithm will quickly
converge to the phase diagram shown in (b). From the perspective of the two
outer nodes this is the optimum layout – each is maximally distant from their
single neighbour (the centre node) in phase. For the centre node it sees that its
two neighbours are actually completely synchronized. Depending on the use of
the network (e.g. desynchronized sampling, TDMA, etc.) this likely to be
undesirable.

Figure 1 Original desync algorithm applied to a simple multi-hop network. (a) Three node
network where the centre node can hear both neighbours but each neighbour can only hear the

centre node. (b) Optimum phase diagram using the original desync algorithm.

CS321 Information processing for wireless networks

Final report 6

4.3 Metrics
One hop network
In the one hop case, we have that the network of N nodes is fully connected. If
we consider the firing time of each mote globally we sort the times and denote
them as follows:

110 ... −<<< Nttt

We can then express the average phase error as

()∑
−

=
+ −−=

1

0
)%1(%

1 N

i
iNi N

T
Ttt

N
ε (1)

The operator % represents the operator modulo as we are computing the
relative error between all the nodes within a desync period. Since under ideal
conditions the N motes will have a spacing of T/N the above equation denotes
the average error of each interval from the optimum separation.

Multi-hop network
In the project proposal, this metric has been extended for multi-hop networks. In
this case there is still a global ordering on the motes, but it is not clear what the
“correct" metric is. The metric of the proposal is an average of the metric
defined in (1) taken at each mote:

()

∑

∑

=

−

=
+

=

−−=

N

i
i

n

i j
inij

N

n

T
Ttt

j

j

0

1

0
)%1(

1

%

εε

ε
 (2)

Proposed metric
However the metric defined above does not take into account the “importance”
of the nodes and fails under certain conditions. A more suitable metric may be
to weight the error at each node by the degree of the node. In such a metric,
nodes with high degree are deemed more important. This would be appropriate
for example if the algorithm was used to determine TDMA slot times. High
degree nodes would be seen as aggregation centres or perhaps as bottlenecks.
In either case it would be important to optimize the throughput at these nodes,
possibly at the expense of other nodes.

In light of this the metric is modified to include weighting the error by the node
degree.

CS321 Information processing for wireless networks

Final report 7

()

∑

∑

=

−

=
+

=

−−=

N

i
i

i

n

i j
inij

N

n

n

T
Ttt

j

j

0

1

0
)%1(%

εε

ε
 (3)

Consider for example a star configuration with one centre node and four
surrounding nodes (similar to Figure 1). Due to the high number of neighbours
the unweighted error is dominated such the minimum error configuration is as
shown in Figure 2 (a). This is clearly not optimal for a TDMA scenario as all
packets would collide at the centre node. If the weighted metric is used then the
configuration of Figure 2 (b) is obtained where packets sent to the centre node
would not collide.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
1 2

Period
Clique 1
Clique 2
Clique 3
Clique 4

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
1 2

Period
Clique 1
Clique 2
Clique 3
Clique 4

Figure 2 Representation of the beacons in the period: Situation (a) 24.0=ε following metric
(2) 2.1=ε following metric (3). Situation (b) 29.0=ε following metric (2) 81.0=ε following

metric (3).

4.4 Suboptimal approximations
Since an algorithm computing the optimal position explicitly is too expensive for
a sensor network, we studied two suboptimal approximations which try to find
one solution “close” enough to the optimal in a distributed way.

• In the first one, the approximation taken is to include a node’s one-hop
neighbours in its desync message. This provides each node with
information about its two-hop neighbourhood.

CS321 Information processing for wireless networks

Final report 8

• The second one uses the fact that after a desync period each node has
enough information to calculate the exact error of its neighbourhood, and
therefore try to minimize it by changing its own position and influencing
the position of the other neighbours.

In the next two sections we will describe these two approximations:

4.5 Two-hop-neighbourhood data
The idea of this approximation is that most of the information about a network is
contained in a node’s two-hop neighbourhood. If each node can cooperatively
determine its optimal phase for its two hop neighbourhood then the
arrangement may not be globally optimal but it will ensure that collisions are
avoided. Such an algorithm may therefore be most suited for determining TDMA
slots.
The main idea of the algorithm is that at each update step a node uses its two-
hop neighbour information to decide how to shift its phase. It evaluates the error
metric to determine which out of several possibilities will locally produce the
best solution. Note that this approach permits a node to knowingly worsen its
own error if it believes that it will improve the combined error.
The three classes of phase operations are as follows

1. SWAP:- Evaluate swapping phase with a one-hop neighbour. If a
phase swap is determined to have a net reduction in the error metric then
either a specialized swap message can be sent to the node or simply
jump to a time just before the node will be fire, effectively displacing it
from its phase.

2. JUMP:- Evaluate jumping to a new phase. To limit the number of
phase points considered only the midpoints of neighbouring phase points
are considered.

3. DESYNC:- If neither a SWAP or a JUMP is determined to reduce the
net error then adjustment of the phase is performed using the normal
desync algorithm.

This algorithm has the advantage that it easy to implement different error
metrics without affecting the overall algorithm. However, a major disadvantage
is that it requires the continual transmission of two-hop information. Each node
transmits O(d) extra bytes of information (d = degree of node). In most networks
d is relatively small however this is a significant increase in communication.

4.6 Neighbour directed gradient descent algorithm
The main idea of this approximation is that each of the nodes can calculate an
exact error associated to its neighbourhood. Remember that the error
associated to the node j in metrics (2) and (3) was obtained by:

CS321 Information processing for wireless networks

Final report 9

()∑
−

=
+ −−=

1

0

)()(
)%1(%

j

j

n

i j

j
i

j
nij n

T
Tttε

Note the change in the notation to make clear that)(j
it represents the fire time

of the ith node in the neighbourhood of the node j. We can define a new error

jε~ for the node j by squaring the terms of the sum of jε .

()∑
−

=
+

−−=

1

0

2

)()(
)%1(%

2

1~
j

j

n

i j

j
i

j
nij n

T
Tttε

Note that the error evaluates to zero when all the neighbour nodes of j are
equally spaced around the period and that 00~ →⇒→ jj εε . Using the error jε~
a node can construct a gradient function depending on the firing time of each of
the nodes in its neighbourhood:

()

() ()

() ()

−−−

−−=

=

−−−

−−=

=

−−

∂
∂=

∂
∂

+−

+−

−

=
+∑

j

j
k

j
nk

j

j
nk

j
k

j

j
k

j
nk

j

j
nk

j
k

n

i j

j
i

j
ni

kk

j

n

T
Ttt

n

T
Ttt

n

T
Ttt

n

T
Ttt

n

T
Ttt

tt

jj

jj

j

j

%%

%
2

2
%

2

2

%
2

1~

)()(
)%1(

)(
)%1(

)(

)()(
)%1(

)(
)%1(

)(

1

0

2

)()(
)%1(

ε

This discussion suggests a steepest descent algorithm for changing the position
of the node firing a time)(j

kt in order to reduce the contribution to jε~ by the error
of the node j. Since we are interested in reducing the error we will choose the
negative descent direction:

() ()

−−−

−−−+=

=
∂
∂

−+=+

+−
j

j
k

j
nk

j

j
nk

j
k

j
k

k

jj
k

j
k

n

T
Ttt

n

T
TttmtT

t
mtTmt

jj
%%)(

~
)()1(

)()(
)%1(

)(
)%1(

)()(

)()(

α

ε
α

where α represents the step size of the algorithm and)()(mt j
k the firing time for

the desync period number m. Note that these correction quantity to apply in the
node firing at)(j

kt can be easily calculated with the information present in the
node j, since a node knows its number of neighbours and the fire times of each
of them.

CS321 Information processing for wireless networks

Final report 10

Global error minimization
However we pretend to reduce the error on the whole network and not only at
one node. We can write the error for the whole network following the metric (2)
(extension to metric (3) is immediate) as:

∑∑
==

≈=
N

i
i

N

i
i NN 00

~11 εεε

If we consider now the contribution of the position in the period of one node j to
the whole network error we have that

∑∑
== ∂

∂
=

∂
∂≈

∂
∂ N

i j

i
N

i
i

jj tNNtt 00

~1~1 εεε

That is, each node contributes to the global gradient jt∂∂ /ε with a sum of all the
individual gradients ji t∂∂ /~ε with respect to its neighbours. Thus we can write
the global update formula for the node j as:

() ()∑

∑

=
+−

=

−−−

−−−+=

=
∂
∂

−+≈

≈
∂
∂−+=+

j

ii

j

n

i i
j

i
nk

i

i
nkjj

n

i j

i
j

j
jj

n

T
Ttt

n

T
Ttt

N
mtT

tN
mtT

t
mtTmt

1

)(
)%1(

)(
)%1(

1

%%
1

)(

~1
)(

)()1(

α

εα

εα

where k is the position of the node j in the neighbourhood of i; j
i

k tt =)(

Information exchanged
Note that the update formula for the timing of the node j depends on the
corrections calculated in the own node jj t∂∂ /~ε and in the corrections from all
its neighbours i: ji t∂∂ /~ε . Thus, for each iteration of the algorithm a node j has to
share a number of corrections 1−jn addressed to its neighbours.

To avoid this overhead of communication we chose to reduce the number of
neighbours addressed in each iteration to one. Moreover, to avoid flooding the
network with extra messages, the information will be attached to the current
DESYNC message sent by the node. The neighbour to which the gradient is
sent can be chosen by a round robin or a randomized selection procedure. All
the nodes must now keep a table with the last error-reports received from their
neighbours and they keep updating it when they receive a new message
addressed to them. The size of the information exchanged by the algorithm is
described in section 5 which discusses the practical implementation of the
algorithm.

CS321 Information processing for wireless networks

Final report 11

This design decision is however arbitrary and we could choose to send the error
calculated to two or even more nodes. This allows a trade-off between the
overhead introduced by the algorithm, and the velocity of convergence and
stability one convergence is achieved.

Local minima
The gradient function kt∂∂ /ε presents multiple local minima and the algorithm
can get stuck depending on the initial firing times of the motes, on the desync
period and on the topology of the network. That can happen for example when
one node is in the way of one of its neighbour nodes to their optimal position. In
this case the algorithm will stabilise in this local minimum and not evolve
towards the global minimum.

To avoid these situations we propose a series of heuristics that detect when the
algorithm is stuck in one of these local minima, and to jump to a situation where
the algorithm can continue evolving.

To understand the JUMP conditions we must remember the equation controlling
the evolution of each of the nodes:

∑
= ∂

∂−+=+
jn

i j

i
jj tN

mtTmt
1

~1
)()1(

εα

Since we are stuck in a local minimum we have that:

0
~1

1

=
∂
∂≈

∂
∂

∑
=

jn

i j

i

j tNt

εε

And the node will not change its position. We can see this situation as a force
equilibrium since a node is receiving the same force to move in one direction as
the force to move in the opposite direction. Figure 3 shows graphically this
interpretation of the errors received from the neighbours. If the two opposite
forces present in a node are large it means that this node is contributing to the
global error by a large amount and that it does not allow the neighbours to
evolve to their equilibrium position.

CS321 Information processing for wireless networks

Final report 12

1

2

3

1

2

3

Figure 3 Example of the forces applied to node 2 in the case of a
three node full connected network.

The heuristic we propose is that if the force in one direction is larger than the
distance to the closest neighbour in this direction we choose to jump over it with
a small probability. We jump with a small probability to avoid multiple
simultaneous jumps, since in a stuck situation it is possible that several nodes
are with high tension and decide to jump simultaneously. This situation is shown
in the Figure 4.

1

2

3

Figure 4 Example of a local minimum in a multi-hop network. Nodes 1 and 3 can hear all the
nodes on the network while node 2 can only hear nodes 1 and 3. The forces applied to 2 are

bigger than the threshold defined by the positions of its neighbours and therefore would choose
to jump with a small probability.

CS321 Information processing for wireless networks

Final report 13

Robustness of the algorithm
It is interesting to remark that this algorithm makes no assumptions about the
topology of the network, or about the stability of the nodes. If the topology
changes the algorithm adapts itself to the new situation and derives the global
minimum of the new configuration.
Another advantage of using this scheme is the scalability of the solution. Since
the algorithm is totally distributed it could be extended to arbitrary topologies
without limiting the number of nodes.
The result of this simplicity and adaptability is in the convergence speed, which
cannot be the same as in the case of calculating directly the optimal situation
and the transmitting it to the rest of the nodes. Our algorithm needs several
desync periods in order to converge to a stable solution.

4.7 Simulations
The capabilities and performance of the algorithm exposed in 4.6 have been
assessed by computer simulation using Matlab. This event oriented simulator
shows in a diagram the evolution of the different nodes in a period and is able to
perform simulations of homogeneous networks (all the nodes with the same
code) with a specified topology and a certain probability of packet loss.

The simulations of the algorithm showed good behaviour in most of classical
topologies such as star, ring and one hop networks. The algorithm was shown
to be capable of finding a quasi optimal solution for most of the more complex
scenarios studied. In the following points we will show the solutions obtained by
the algorithm for some of this topologies.

Graphical representations used in this section
We chose to present the firing times of the different nodes in a circle
representing the desync period. The nodes are connected by lines of different
colours for different cliques in order to make it easy to see which neighbours
can hear each of the nodes.

Five nodes ring

Figure 5 Topology of a ring of five nodes.

CS321 Information processing for wireless networks

Final report 14

Figure 6 Evolution of the nodes in the period cycle:
(a) Local minima (b) Final solution

CS321 Information processing for wireless networks

Final report 15

5 Algorithm implementation for the platform: imote2
The algorithms described in the sections 4.6 (Neighbour directed gradient
descent algorithm) and 3.1 (Period management) have been implemented for
the imote2 platform and tested for different multi-hop topologies with up to 8
nodes.

To simplify the implementation it has been assumed that the nodes of the
network have address numbers ranging from 0 to 7. This assumption is arbitrary
and the implementation can easily be extended for the more general case
where the space address is bigger. The only assumption of the algorithm
presented in 4.6 is that the two hop neighbours of a node must have different
addresses or identification numbers.

We have chosen to send only three extra bytes during the normal operation of
the algorithm. In each desync period each node randomly chooses one of its
neighbours which will be the receiver of our gradient information. The data sent
is:

• 1 byte for source address
• 1 byte for report receiver address
• 1 byte for the error report

Four additional bytes are attached to the message as necessary to update and
maintain the desync period. This has been described in section 2.1

Another problem in the implementation of the algorithm for the imote2 platform
is the lack of floating point support and that the original algorithm was designed
to work with infinite precision. To minimize the complexity of the compiled code
and to avoid the use of software floating point emulation we decided to use
fixed point arithmetic.

For the implementation of the algorithm further problems had to be solved.
Some of them were the following:

• Estimation of the number of neighbours. For all the calculus present in
the algorithm the number of neighbours has to be known. Since in each
desync period a node can hear the messages of all its neighbours, the
estimation reduces to counting the number of desync packets received.
However, since some packets can get lost we chose to smooth the
variations of the estimation of the number of neighbours, which in the
final version is a fractional number.

• Management of the old information present in each node. Since each
node keeps the last information received from all its neighbours, it has to
decide what to do when the information turns old, or when it already used

CS321 Information processing for wireless networks

Final report 16

the information to correct its position. The solution chosen involves the
progressive attenuation of the old information.

• Compression of the error report to one byte. Internal operations of the
nodes related to the time are performed with 32 bits precision. On the
other hand we chose to send only one byte indicating the error to the
nodes. We had to define a way to map between the two representations.

5.1 Debug and testing
For the debug of the coded protocol we designed a Java application using the
infrastructure provided by the Radiowrapper and the TestDesync available
modules. The Java application is capable to configure the topology of the
network, to send an update period message to one of the nodes and to perform
a query of all the internal timers programmed on the nodes.

Figure 7 Interface of the java application used for debug purposes

CS321 Information processing for wireless networks

Final report 17

Test scenarios:

• Original desync algorithm running in eight of the motes simultaneously in
a fully connected network. Various period management tests as, for
instance, changing the period when a big part of the network is
unconnected before the network is merging again.

• Multi-hop algorithm for a star topology with one central node and five
neighbours. No perfect solution is possible in this case.

• Ring of 5 nodes.
• Ring of 6 nodes. Perfect solution is found in this case.

CS321 Information processing for wireless networks

Final report 18

6 References

[1] DESYNC: Self Organizing Desynchronization and TDMA on Wireless
Sensor Networks
Julius Degesys, Ian Rose, Ankit Patel, Radhika Nagpal
Division of Engineering and Applied Sciences, Harvard University

