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1. Introduction 

There exist many applications in sensor networks that use time synchronization to 

distribute their processing over time intervals. This appears to be a contradictory method 

of achieving the inherent mechanism of interleaving processes, especially when time 

synchronization algorithms are expensive in terms of communication power and suffer 

many hardware issues. In their paper DESYNC: Self-Organizing Desynchronization and 

TDMA on Wireless Sensor Networks, Degesys, Rose, Patel and Nagpal aim to achieve 

this primitive via a biologically-inspired self-maintaining algorithm for a single-hop 

network.  

Our work achieves an accurate implementation of the single-hop algorithm and 

aims to expand the algorithm to a multi-hop network by desynchronizing with two-hop 

neighbors. In this report we introduce implementation details for the single-hop 

algorithm, the enhancements in our application, testing strategy and results for the 

algorithm, multiple-hop algorithm including, implementation details, and evaluation. 

 

2. Features and Implementation Details 

The algorithm aims to desynchronize the nodes by scheduling the current node’s next 

transmission time to fall midway between the measured transmission times of nodes that 

immediately preceded and succeeded its own transmission. A node achieves this by 

broadcasting Desync Messages on a periodic basis and listening to triggered events of 

other nodes to adjust its period offset. Below is a basic outline of a node’s states:- 

1. At startup a node initializes its period to a preset value sets up a timer to fire at 

regular intervals based on the period. If a separate period packet is received, the 

period packet is forwarded with a sequence number to all other nodes in the 

network. 

2. Once the timer fires, a node broadcasts a Desync packet that contains its node ID 

and timing information of every one-hop neighbor.  For a single hop network, this 

timing information is ignored. It then waits to record the incoming time of the 
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packet immediately after to schedule its next transmission time. This it done using 

the following formula: 

Next Fire Time = Time Period + (1-α) Previous Fire Time  

             + α x Avg. (Firing Time of Last Node, Firing Time of Next Node) 

 ± a small random interval 

We use the same value of α = 0.95 as used by the authors of the paper, in 

combination with the random interval to account for errors. We make sure for 

now that the goal time is in the future. 

3. Other nodes on hearing the message update their periods (if they are old, by 

comparing sequence number) and record the incoming packet time. The schedule 

their next transmissions if they were the last nodes to fire. 

 

To achieve the above we have certain provisions in our implementation to take care of 

the boundary cases as well as improve the performance. Below are the salient features:- 

1. Randomized firing time improvements – There is a high possibility as period 

decreases and number of nodes in the connected graph increase, for two nodes to 

fire at the exact same time. This is especially true in the case when all nodes listen 

to the same initial period message and schedule the next trigger at the exact same 

time. Adding a small random value mitigates this risk, speeds up the convergence 

to steady state values and dampens wild fluctuations in future firing times. We 

add randomness by either adding or subtracting a 5 bit random number from the 

calculated packet time. This is accomplished by first subtracting 2^5 from the 

packet time, then adding a uniformly distributed random number from 0 to 2^10.    

2. Period message propagation – Our implementation ensures the case that at least 

one node listens to the period message. Our implementation piggybacks on the 

Desync messages to propagate these messages. We also transmit 8 bit period 

sequence numbers to identify the latest period value in the network. A new period 

broadcast from the base station always increases our sequence number. If a node 

hears a Desync message containing an updated period value, it will change its 

period to that value as well as the sequence number to the new one. Nodes will 

ignore period updates with a smaller sequence number. This ensures that the 
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period propagates in the network even if just one node listens to the broadcast. 

This algorithm also does not differentiate whether the period value was 

transmitted at the beginning of the process or during the Desync process, hence 

giving us the flexibility to change the period value anytime.  

3. Counters and floating point operations – Currently we use 32 byte unsigned 

integers and fixed point arithmetic to store and calculate the trigger times of 

various nodes. This is a problem when we have to do floating point operations as 

64 bits are not supported in TinyOS 1.x. To avoid overflows on any of the 

intermediate arithmetic operations involved in calculating the proper transmission 

time, we had to reorder many operations.  For example, we perform division 

operations before multiplication so the intermediate results will not exceed a 32bit 

number’s range of expression. Initially, we had issues where the Desync 

calculations would fail after the local time of each node exceeded 2^30, since we 

multiplied by 95 and then divided by 100 to calculate a floating point 

multiplication of .95.    

4. Period timeout retransmission – The main idea behind case is that if a node 

does not hear any transmission for more than one period, it defaults to a backup 

firing mechanism. This takes care of the degenerate case of a single node and also 

makes the algorithm robust to sudden large scale failures.  

5. TOS Changes – We changed the size of the of the data length for iMote2 to 

include more data in our Desync packets. More specifically at path 

beta/platform/imote2/AM.h we changed the TOSH_DATA_LENGTH from 28 to 

30. The original TinyOS 1.x default was 29, but the iMote2 requires and even 

byte count to achieve word aligned radio buffers, indicating that it is a 16-bit 

architecture. 

 

3. Testing and evaluation 

While evaluating our implementation we considered its accuracy, robustness and 

scalability. To ease our process we wrote a Java application to test the above 

implementation. The application was written on the lines of combining the AntiTheft.java 
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application and TestDesyncM.nc. We can use this application to transmit a new period 

value to a particular node or broadcast it, change the RadioWrapper masks to test various 

topologies, send queries to the nodes to verify accuracy of our application as well as 

process incoming messages to calculate metrics. The implementation of this application 

is in the /MainProject_*/java folders in the submission. Below is a screenshot of the 

application.  

 

Figure 1: Screen shot of testing GUI.   

 

We conducted the following tests in series to ensure that our implementation is stable:  

1. We started with a fully connected graph of 3 motes with T = 3 sec. After 

desyncing the motes settled to transmitting approximately every second. 

2. We then switched off one mote and the other two motes settled to 1.5 seconds. 

3. After switching off another one, the only node remaining fell back upon default 

firing times of 3 second in the absence of any other messages.  

4. We then added back another mote back to reach the steady state in 2. 
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5. We then changes the time period to 5 seconds and added two more motes to 

observe that all motes were switching on at approximately 1.25 seconds and that 

hence period had propagated to nodes that hadn’t heard it before.  

6. We then increased the number of motes to 8 at once and saw the system stabilize; 

same for removing 4 nodes at one go. 

 

To evaluate the application we aimed to minimize the error in the system that is given by: 
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To calculate the metrics for a fully connected network we used the T = 2 seconds and 

vary the number of motes. Although our algorithm converges in a matter of seconds, we 

let the systems stabilize for 3 minutes before taking the readings: 

1. For 3 motes we calculated the average error to be .008687 seconds = 0.43% of the 

time period, this can be easily accounted by clock drifts.  

2. For 5 motes the average error was 0.0648615 seconds = 3.23%. 

3. For 6 motes the error was 0.006502 seconds = 0.3251% 

Convergence: We used the Java application to record the firing times of motes at the end 

of every time period. Over the above 3 experiments (each repeated multiple times) the 

nodes took an average of 15 time periods or an average of 30 seconds to reach the steady 

state. 

Varying Time Periods – Reducing the period time will decrease the settling time, 

because nodes transmit more often. It will although raise the absolute error because of the 

timing inconsistencies. But because they settle soon we expect this to compensate. 

Increasing the time period should make the convergence proportional to the number of 

nodes, as how often I hear transmissions messages affects how fast I converge. 

 

4. Multi-hop Desync 

For a fully connected network, desynchronization works quite well as all nodes can hear 

each other and select an appropriate time to transmit between two other nodes.  However, 

once we have multi-hop networks, nodes cannot hear all other members of the network, 
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which can lead to hidden terminals and general difficulty in maintaining a perfect 

desynchronization.  The regular desync algorithm would probably work adequately for 

some topologies, but for the case of a three node linear topology, the nodes could never 

settle on a set transmission schedule because the two outer nodes would always collide 

with the center node.  Thus we decided that we should attempt to desync with all two hop 

neighbors, since beyond two hops, we are unlikely to cause interference and hidden 

terminal issues with the neighboring nodes.  In effect, this approach attempts to simulate 

a fully connected graph for topologies with a diameter of 2.   

Our algorithm approaches the problem by calculating optimal transmission times 

for each node, thus creating certain overlapping clusters. We discuss the algorithm in the 

next sub-section, then compare it with other algorithms and finally give some 

experimental results of implementation on iMote2 motes.  

 

 4.1 Algorithm 

 

Below are the enhancements to the single-hop version that we have implemented: 

1. When a node fires, it includes previous transmissions times of its one hop 

neighbors relative to the current time, in the Desync message. In our 

implementation we include 32 bit delta information from each of our neighbors to 

schedule our transmission time. The only extra information transferred is a table 

of firing times for all one hop neighbors that the node can hear. No time 

synchronization is required as all times transferred are relative values from 

current transmission time.  This also makes the system robust by accounting for 

nodes that are currently up rather than track who joined and who left. 

2. The transmission timing information is only forwarded to one hop neighbors. This 

limits our information transfer.  

3. To schedule its next transmission time a node searches through information of the 

fire times and locates the times of nodes that fired just before it and just after it. 

4. If a node dies, its delta will continue to increase until it is no longer considered by 

our algorithm.  
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4.2 Comparison with other algorithms  

 

Our algorithm does not involve complete randomness, nor does it attempt to create a 

global structure. While creating a sub-network of two hop neighbors our algorithm 

creates overlapping pseudo-connected clusters (as nodes don’t really hear each other but 

still know the transmission times). This is somewhat similar to creating maximal cliques, 

but not the same and we discuss the differences below: 

1. Randomized algorithm is highly inefficient as they can lead to high fluctuations in 

firing times.  

2. Creating a fully connected graph requires re-broadcasting transmission times 

across the network. Essentially, each node forwards any transmission time data it 

gets to all its neighbors leading to redundant packet transmissions and lowering 

the capacity of the network. This is highly inefficient especially when two nodes 

that don’t affect each other in any way could schedule same alarm firing time. 

Hence, we include transmission time information that is directly relevant to us 

and leave the others out. A simulated fully connected graph is not a scalable 

option either, as synchronization overheads lead to barrage of messages when 

nodes frequently join or leave the network. 

3. Creating maximal cliques also leads to a graph setup delay including meta-

information including node-ID’s being transferred. On the other hand it can also 

lead to wildly fluctuating firing times at particular nodes at the confluence of two 

cliques. These nodes would have to employ certain metrics like probabilistic 

weights to decide when to fire, especially when two cliques have huge difference 

in the number of nodes.  For example, in Figure 2 assuming a Time Period of 1 

second, there will be a node firing every 1/10 second in the right clique once 

every 1/3 seconds in the left clique. We overcome this problem by including 2-

hop neighbor information and further simplify the NP-hard problem by not 

requiring any other kind of setup. 
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Figure 2 

 

4.3 Experimental Results 

 

We base our evaluation on the same metrics as the single-hop case except we do it on a 

per node basis.  So for ( )
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neighbors of a particular node. We evaluate our algorithm on a number of topologies 

representing special and general cases.  For all the cases we use T = 2 seconds. 

 

1. One of the degenerate cases that we tested was the linear 3 topology. This should in 

effect behave like fully connected graph according to our algorithm. 

                                                                      

With T = 2 seconds, the average error of the central node was 0.098878 seconds and at 

end points was 0.34139seconds and 0.33834seconds. The global average error of the 

system was .259536 seconds or about 12% of T. This is due to the bias because of the end 

nodes that did not know the structure of the whole system. But for the central node that 

actually had the complete picture the error went down to 4%. 

2. We then calculated a Y topology with 5 motes, as in the diagram below  
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The average global error was 0.14021 seconds and at nodes 0 to 4 were 0.36217 seconds, 

0.054459 seconds, 0.075264 seconds, 0.46329 seconds and 0.46329 seconds respectively. 

The same observation about the metric accuracy can be made here with errors from nodes 

1 and 2 being much lower. 

 

3. In a star topology with one central and 5 star nodes we tested the possible case when 

one node is a member of many cliques (in this case 5). While the central node has an 

error of 0.0082164 seconds the average error for the end nodes is .40783 seconds. Steady 

state for this situation is when central node goes off once and after a second all the end-

point nodes transmit together. But it takes almost infinity to reach that state, during which 

the node assumes almost perfect synchronization with the end-points as shown by its 

error. 

 

4. We used the following very generalized topology 

 

 

The global error is 0.13255 seconds or 6.63% of the time period and at nodes 0 to 5 are  

0.21835 seconds, 0.21835 seconds, 0.16553 seconds, 0.16553 seconds, 0.19392 seconds 

and 0.21291 seconds respectively. 

 

5.  We use the following topology  
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The error at 0 is 0.017195 seconds, average error of nodes 1 to 4 is 0.10771 seconds 

And, at node 5 it is 0.6418seconds 

 

4.4 Conclusion 

 

Our solution for multi-hop appears to work for small number of nodes but we did not test 

or simulate for a large number of nodes hence we cannot conclude about its scalability 

and robustness. Although we are convinced that since the algorithm does not require any 

large scale information transfer and all events are localized, that it will scale well. As 

time period increases, the average settling time would depend upon the number of nodes 

as more nodes will have more transmissions and we will be able to calculate our 

transmission time. The above implementation is a more efficient, and practical solution 

for desynchronization is multi-hop networks as discussed in section 4.2, with minimal 

error rates. 


