
CS321 Project extension:
The TANGO Desynchronisation algorithm

Eric Choi, John Jersin, Harry Robertson
(<iechoi, jjersin, harryrob> @stanford.edu)

1 Principles of TANGO

1.1 Randomization
The Desync algorithm does not extend naturally to multi-
hop networks. To overcome this we have modified the
algorithm to randomize time slot selection. Instead of de-
terministically drifting towards the center of the time in-
terval between its predecessor and successor as in Desync,
a node now simply chooses a random new firing time if it
is firing too close to a 1-hop or 2-hop neighbor.

1.2 Toe stepping
A node can detect if it is firing too close to a neighbor,
as it can hear that neighbor’s messages. However, in the
network configuration A-B-C (where B can hear A and
C, but A and C cannot hear each other), if A and C are
"toe-stepping" (emitting too close to each other) then they
cannot detect this directly.

To avoid this problem, if a node B hears A and C toe-
stepping, it sends a toe-step packet to one of them to tell
it to re-allocate. If a node receives a toe-step packet, it
randomly chooses a new firing time.

1.3 "Too close"
If node A observes nodes B and C emit at tB and tC , it
decides they are too close iff:

(|tC − tB |%T) ≤ εT

n+ 1

(where T is the period, n is the number of A’s neigh-
bors, and ε is a constant).

This definition intrinsically gives us a lower bound on
the time slot spacing metric for the network. Our perfor-
mance on the metric can be adjusted by modifying ε.

1.4 Enhancements

When a node has to choose a new firing time, the most
basic approach would be to choose it perfectly randomly.
However, if the new firing time is too close to another
node’s firing time, one or the other will have to re-allocate,
and so on. This leads to many useless re-allocations, and
poor convergence time. To improve this situation, each
node records its neighbor’s firing times, and only chooses
a new firing time which is not too close to those.

This does not take into account conflicts with 2-hop
neighbors. To avoid these, we include neighbor informa-
tion in the toe-step packets: when A sends B a toe-step
packet, it includes it’s neighbor’s firing times. This way B
can avoid emitting too close to those (2-hop) neighbors.

2 Algorithm statement
Each node N basically operates in the following manner:

• store the period, our next firing time and our neigh-
bor’s IDs and most recent firing times

• pick a random intial firing time

• if two neighbors N1 and N2 emit too close to
one another: send a toe-step packet to N1 (where
ID(N1) < ID(N2))

• if N ′ emits too close to us:

1

– if ID(N ′) > ID(N) : randomly pick a new
firing time which is not too close to our neigh-
bors’

– if ID(N ′) < ID(N) : continue as is

• if we receive a toe-step packet:

– if we have recently changed firing time: con-
tinue and ignore duplicate toe-step packets

– otherwise: randomly pick a new firing time
which is not too close to our neighbors’ OR to
the nodes contained in the toe-step packet

3 Performance

3.1 Time slot spacing
Once the algorithm has converged (i.e. no node see any
two nodes as "too close"), we have by definition of the
property "too close":
∀ node A, ∀ A’s neighbors B,C

(|tC − tB |%T) >
εT

n+ 1

Using the metric presentation paper’s notations, we
have for the node Nj and its neighbors:

∀i ≤ nj , (t(i+1)%nj
− ti)%T >

εT

nj

These differences naturally sum to T , so we also have:

∀i ≤ nj , (t(i+1)%nj
− ti)%T ≤ T − εT

nj − 1
nj

So ∀i ≤ nj , ∣∣∣∣t(i+1)%nj
− ti)%T −

T

nj

∣∣∣∣
≤ max(εT − T

nj
, T − εT nj − 1

nj
− T

nj
)

≤ T − T ε(nj − 1) + 1
nj

In particular if ε ≈ 1 (and ε < 1), then

∀i ≤ nj ,

∣∣∣∣t(i+1)%nj
− ti)%T −

T

nj

∣∣∣∣ ≈ 0

Thus by making ε approach 1, we can obtain arbitrarily
low values of the time slot spacing error described in the
metric paper.

3.2 Convergence time

Without information in toe-step packets about timing of
2-hop neighbors, our convergence time is unbounded in
any case with nodes that have at least one 2-hop neigh-
bor. This is due to the fact that a node can randomly but
repeatedly choose a time that will collide with the 2-hop
neighbor. In this version of the algorithm the probability
of converging quickly decreases with the number of 2-hop
neighbors. The worst case is a star network (a tree with
many leaves, all at depth 1).

Adding information about 2-hop neighbors into toe-
step packets provides an upper bound on the number of
periods it takes to converge for star networks which is lin-
ear in the number of nodes in the neighborhood of the root
(all nodes in the star). This is a huge improvement, from a
possibly infinite convergence to a linear convergence time
for what was the worst case.

A proof by induction of linear convergence time for star
networks follows.

Definitions We define settled to mean a node will not
change its timing again until the network has converged.

We define converged to mean a set of nodes which are
settled and such that no other node fires too close to any
of them.

We order the nodes according to decreasing ID num-
bers.

All collisions between pairs of nodes will be resolved
by re-randomizing the firing time of the node with the
lower ID.

Base case The first node will not need to change its tim-
ing (as it has the highest ID) and we consider it settled.

• If the root node is the first node, then all nodes will
be able to detect if they are too close to it and reran-
domize so that they are not longer too close.

• If the first node is a child of the root node and the
root node is too close to the first node, the root will

2

detect this and re-randomize its own timing so that it
no longer collides with the first node.

• If the first node is a child of the root node, the root
will detect collisions between the first node and any
of its children. Toe-step packets will be sent to all
nodes that collides with the first node and they will
re-randomize such that they no longer fire too close
to the first node.

Therefore after period 1, the first 1 node will have con-
verged. Our inductive step is to show that after period N
the first N nodes will have converged.

Inductive step We assume that for period N the first N-
1 nodes have converged.

The Nth node will not be firing too close the any nodes
before it in the ordering by definition of convergence.

Therefore all nodes which may be firing too close to the
Nth node will have lower ID than it, and the Nth node will
be settled.

All collisions with the Nth node will be settled as they
were for the first node above. When nodes re-randomize,
they avoid collisions with any neighbors or 2-hop neigh-
bors that they know about, therefore they will not collide
with any of the first N-1 nodes in the process of moving
away from the Nth node.

Therefore after the Nth period, the first N nodes will
have converged.

Therefore convergence time is linear in the number of
nodes for the star network.

4 Conclusion and Future work
Our current implementation of the algorithm shows fast
convergence time and reasonable (though not optimal)
time slot spacing performance.

Ideas for future work include:

• Currently if two nodes emit so close to one another
that their packets collide, and there are no third par-
ties observing this, then the two nodes will not notice
each other1. To avoid this we could add a slight ran-

1Actually the nodes will eventually fall apart due to clock drift, so
this is not a pathological case in practise.

dom "wobble" to each firing time, so that firings can
never systematically collide.

• We have a bounded convergence time only when
each node has at most one neighbor which could
send it a toe-step packet. By remembering (and ag-
ing) the information contained in toe-step packets
from all neighbors, we should be able to bound con-
vergence time in all cases.

• Make the algorithm independent of node IDs (i.e.
use a different way of deciding which of two toe-
stepping nodes should re-allocate).

3

