
IV.15 Error Measure

The surface simpli�cation algorithm measures the er-

ror of an edge contraction as the sum of square dis-

tances of a point from a collection of planes. This

section develops the details of this error measure.

Signed distance. A plane with unit normal vector

vi and o�set Æi contains all points p whose orthogonal

projection to the line de�ned by vi is �Æi � vi,

hi = fp 2 R
3
j p

T
� vi = �Æig;

as illustrated in Figure IV.1. The signed distance of

a point x 2 R3 from the plane hi is
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Figure IV.1: We use the unit normal vector to de�ne

the signed distance from hi such that vi points from the

negative to the positive side.

d(x; hi) = (x� p)T � vi

= x
T
� vi + Æi

= xT � vi;

where xT = (xT ; 1) and vT
i
= (vT

i
; Æi). In words, the

signed distance in R
3 can be expressed as a scalar

product in R4 as illustrated in Figure IV.2.
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Figure IV.2: The 3-dimensional space x4 = 1 is rep-

resented by the horizontal line. It contains point x and

plane hi, which in the 1-dimensional representation are

both points.

Fundamental quadric. The sum of square dis-

tances of a point x from a collection of planes H is
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X
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is a symmetric 4-by-4 matrix referred to as the fun-

damental quadric of the map EH : R3 ! R. The

sum of square distances is non-negative, so Q is pos-

itive semi-de�nite. The error of an edge contraction

is obtained from an error function like E = EH . Let

xT = (x1; x2; x3; 1) and note that

E(x) = xT �Q � x

= Ax
2
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+ 2(Bx1x2 + Cx1x3 + Fx2x3)

+ 2(Dx1 +Gx2 + Ix3)

+ J:

We see that E is a quadratic map that is non-negative

and unbounded. Its graph can only be an elliptic

paraboloid as illustrated in Figure IV.3. In other

c

Figure IV.3: Illustration of E = EH in one lower di-

mension. The cross-section at a �xed height � is an

ellipse.

words, the preimage of a constant error value �,

E
�1(�), is an ellipsoid. Degenerate ellipsoids are pos-

sible, such as cylinders with elliptic cross-sections and

pairs of planes.

1



Error. The error of the edge contraction ab! c is

the minimum value of E(x) = EH (x) over all x 2 R
3 ,

where H is the set of planes spanned by triangles in

the preimage of the star of the new vertex c. The

geometric location of c is the point x that minimizes

E. In the non-degenerate case, this point is unique

and can be computed by setting the gradient rE =

(@E=@x1; @E=@x2; @E=@x3) to zero. The derivative

with respect to xi is

@E

@xi
(x) =

@xT

@xi
�Q � x+ xT �Q �

@x
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= QT

i
� x+ xT �Qi

= 2QT

i
� x;

where QT

i
is the i-th row of Q. The point c 2 R3 that

minimizes E(x) is the solution to the system of three

linear equations Q � x+ q = 0, where

Q =

0
@

A B C

B E F

C F H

1
A and q =

0
@

D

G

I

1
A :

Hence c = Q
�1

� (�q), and the sum of square dis-

tances of c from the planes in H is E(c). The equa-

tion for c sheds light on the possible degeneracies. The

non-degenerate case corresponds to rankQ = 3, the

case of an elliptic cylinder corresponds to rankQ = 2,

and the case of two parallel planes corresponds to

rankQ = 1. Rank 0 is not possible because Q is the

non-empty sum of products of unit vectors.

Eigenvalues and eigenvectors. Wemay translate

the planes by �c such that E attains its minimum at

the origin. In this case D = G = I = 0 and J = E(0).

The shape of the ellipsoid E
�1(�) can be described

by the eigenvalues and eigenvectors of Q. By de�ni-

tion, the eigenvectors are unit vectors x that satisfy

Q � x = � � x. The value of � is the corresponding

eigenvalue. The eigenvalues are the roots of the char-

acteristic polynomial of Q, which is

P (�) = det
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where detQ is the determinant, dtrQ is the sum of

cofactors of the three diagonal elements, and trQ is

the trace of Q. For symmetric positive semi-de�nite

matrices, the characteristic polynomial has three non-

negative roots, �1 � �2 � �3 � 0. Once we have an

eigenvalue, we can compute the corresponding eigen-

vector to span the nullspace of the underconstrained

system (Q� �) � x = 0.

What is the geometric meaning of eigenvectors and

eigenvalues? For symmetric matrices, the eigenvec-

tors are pairwise orthogonal, or if there are multiple

eigenvalues the eigenvectors can be chosen pairwise

orthogonal. They can thus be viewed as de�ning an-

other coordinate system for R3 . The three symmetry

planes of the ellipsoid E
�1(�) coincide with the coor-

dinate planes of this new system, see Figure IV.4. We

can write the error function as

Figure IV.4: The ellipsoid is indicated by drawing the

elliptic cross-sections along the three symmetry planes

spanned by the eigenvectors.
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Since E(x) � 0 for every x 2 R
3 this proves that the

three eigenvalues are indeed real and non-negative.

The preimage for a �xed error � > J is the ellipsoid

with axes of half-lengths
p
(�� J)=�i for i = 1; 2; 3.

Bibliographic notes. The idea of using the sum of

square distances from face planes for surface simpli�-

cation is due to Garland and Heckbert [1]. Eigenval-

ues and eigenvectors of matrices are topics in linear

algebra. A very readable introductory text is the book

by Gilbert Strang [2].
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