IV.15 Error Measure

The surface simplification algorithm measures the er-
ror of an edge contraction as the sum of square dis-
tances of a point from a collection of planes. This
section develops the details of this error measure.

Signed distance. A plane with unit normal vector
v; and offset §; contains all points p whose orthogonal
projection to the line defined by v; is —d; - v;,

hi = {peR|p" v;=-4},

as illustrated in Figure IV.1. The signed distance of
a point z € R? from the plane h; is

Figure IV.1: We use the unit normal vector to define
the signed distance from h; such that v; points from the
negative to the positive side.
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where xT = (27, 1) and vl = (v],4;). In words, the
signed distance in R® can be expressed as a scalar
product in R* as illustrated in Figure IV.2.

Figure IV.2: The 3-dimensional space x4 = 1 is rep-
resented by the horizontal line. It contains point 2 and
plane h;, which in the 1-dimensional representation are
both points.

Fundamental quadric. The sum of square dis-
tances of a point x from a collection of planes H is

Eg(x) = Y d*(z,hi)
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is a symmetric 4-by-4 matrix referred to as the fun-
damental quadric of the map Eg : R® — R. The
sum of square distances is non-negative, so Q is pos-
itive semi-definite. The error of an edge contraction
is obtained from an error function like £ = Eg. Let
xT = (x1,22,23,1) and note that

E(z) = x'-Q-x
= Az} + Exj + Ha)
+ 2(B£L’11‘2 + 01’11'3 + Fl’gl'g)
+ Q(Dl’l + Gl‘g + Il‘g)
+J.
We see that E is a quadratic map that is non-negative

and unbounded. Its graph can only be an elliptic
paraboloid as illustrated in Figure IV.3. In other

Figure IV.3: lllustration of E = Eg in one lower di-
mension. The cross-section at a fixed height € is an
ellipse.

words, the preimage of a constant error value e,
E~1(e), is an ellipsoid. Degenerate ellipsoids are pos-
sible, such as cylinders with elliptic cross-sections and
pairs of planes.



Error. The error of the edge contraction ab — ¢ is
the minimum value of E(z) = Ey(x) over all z € R?,
where H is the set of planes spanned by triangles in
the preimage of the star of the new vertex ¢. The
geometric location of ¢ is the point z that minimizes
E. In the non-degenerate case, this point is unique
and can be computed by setting the gradient VE =
(OE/0x1,0FE [0x2,0E [0x3) to zero. The derivative
with respect to x; is
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= QQ?-X,

where Q7 is the i-th row of Q. The point ¢ € R® that
minimizes E(x) is the solution to the system of three
linear equations @ - x + ¢ = 0, where
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Hence ¢ = Q! - (—¢q), and the sum of square dis-
tances of ¢ from the planes in H is E(c). The equa-
tion for ¢ sheds light on the possible degeneracies. The
non-degenerate case corresponds to rank () = 3, the
case of an elliptic cylinder corresponds to rank ) = 2,
and the case of two parallel planes corresponds to
rank = 1. Rank 0 is not possible because @ is the
non-empty sum of products of unit vectors.

Eigenvalues and eigenvectors. We may translate
the planes by —c such that F attains its minimum at
the origin. In this case D = G = I =0 and J = E(0).
The shape of the ellipsoid E~!(¢) can be described
by the eigenvalues and eigenvectors of (). By defini-
tion, the eigenvectors are unit vectors x that satisfy
@ -z = A-z. The value of A is the corresponding
eigenvalue. The eigenvalues are the roots of the char-
acteristic polynomial of @, which is
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= detQ—X\-dtrQ+ X% -trQ — A3,
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where det (0 is the determinant, dtr @ is the sum of
cofactors of the three diagonal elements, and tr @ is
the trace of ). For symmetric positive semi-definite
matrices, the characteristic polynomial has three non-
negative roots, Ay > A2 > A3 > 0. Once we have an

eigenvalue, we can compute the corresponding eigen-
vector to span the nullspace of the underconstrained
system (@ —A) -z =0.

What is the geometric meaning of eigenvectors and
eigenvalues? For symmetric matrices, the eigenvec-
tors are pairwise orthogonal, or if there are multiple
eigenvalues the eigenvectors can be chosen pairwise
orthogonal. They can thus be viewed as defining an-
other coordinate system for R?. The three symmetry
planes of the ellipsoid E~!(€) coincide with the coor-
dinate planes of this new system, see Figure IV.4. We
can write the error function as

Figure IV.4: The ellipsoid is indicated by drawing the
elliptic cross-sections along the three symmetry planes
spanned by the eigenvectors.
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Since E(z) > 0 for every z € R? this proves that the
three eigenvalues are indeed real and non-negative.
The preimage for a fixed error € > .J is the ellipsoid

with axes of half-lengths /(e — J)/\; for i = 1,2,3.

Bibliographic notes. The idea of using the sum of
square distances from face planes for surface simplifi-
cation is due to Garland and Heckbert [1]. Eigenval-
ues and eigenvectors of matrices are topics in linear
algebra. A very readable introductory text is the book
by Gilbert Strang [2].
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