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1 Comment on Perspective Transformations

The previous class meeting focused upon perspective transformations. The process requires
the following steps:

1. Translate the origin of the given xyz coordinate system to match the viewing coordinate
system pqr.

2. Rotate to align the the xyz with the pqr axes.

3. Apply the perspective transformation matrix.

In handout 11 the rotation matrix was derived using a computation of the coordinates of
the p, q, and r unit vectors. An alternate way to express this rotation is as a product of three
rotations, each about one of the principal axes. Specifically, we can (say) first rotate around the
y axis to bring the r axis onto the yz plane. Then rotate around the x axis to align the r axis with
the z axis. And then rotate about the z axis to align p and q with the x and y axes respectively.

2 Quaternions

The discussion of the rotation matrix for perspective above and in the previous lecture applies
to an arbitrary rotation. The techniques already mentioned allow us to derive the corresponding
transformation matrix quite easily. Such a rotation matrix is always an orthogonal matrix: its
rows (or columns) are mutually perpendicular unit vectors. Any orthogonal matrix has deter-
minant ±1. But a rotation matrix must have determinant +1, because rotations preserve the
orientation of space and conversely—any orthogonal matrix of determinant +1 represents a ro-
tation. An orthogonal matrix of determinant −1 reverses orientation. Such matrices correspond
to reflections around a plane through the origin.

A transformation matrix is, unfortunately, not a very intuitive way of understanding a ro-
tation. One cannot determine by inspection of the matrix what the geometric significance of
the rotation is. Below we introduce another representation of rotations based on quaternions.
Quaternions, as we will see, can be used to represent rotations in a more perspicuous manner.

Before discussing quaternions, one should note some characteristics of rotations. The com-
position of rotations is order specific. Rotation θ followed by rotation φ gives a different result
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from rotation φ followed by rotation θ . The composition of rotations is not intuitively obvious.
For instance, a 90 degree rotation of a cube about the x-axis followed by a 90 degree rotation
about the y-axis is equivalent to a 120 degree rotation about one of the cube’s major diagonals.
The product of the rotations in the opposite order is a 120 degree rotation about another major
diagonals

Quaternions are a mathematical formalism which are somewhat like complex numbers.
Numbers are expressed as an expression combing four terms, three of them the product of a
scalar and the three special numbers designated by I, J, and K. Thus the representation has the
form a+bI + cJ +dK.

The resulting quaternions may be added together, or multiplied with other quaternions.
Quaternion multiplication follows the following rules:

I2 = J2 = K2 = IJK = −1,

IJ = K,

JK = I,

KI = J,

JI = −K,

KJ = −I,

IK = −J.

Obviously, quaternion multiplication is not commutative.
Consider a quaternion q, q = a + bI + cJ + dK. The norm of q is defined as ‖ q ‖=√

a2 +b2 + c2 +d2. The conjugate of q is defined as q̄ := a− bI − cJ − dK. Multiplying by
the conjugate gives us: qq̄ = a2 +b2 + c2 +d2 =‖ q ‖2=‖ q̄ ‖2 .

So, as long as ‖ q ‖ is non-zero, q̄/ |q|2 is the multiplicative inverse of q. If we know pq,
we can quickly get the inverse (pq)−1 by the following trivial identity: (pq)−1 = q−1p−1.

Quaternion conjugation by q, denoted by Cq, maps quaternion p to qpq̄. This can also
be expressed as: Cq(p) = qpq̄ = ‖ q ‖2qpq−1. If we conjugate twice, first by q then by r, we
get: CrCq(p) = rqpq̄r̄ = (rq)p(r̄q). Conjugating a sum is the same as summing the conjugates.
Conjugating a scalar product is the same as scaling the conjugate.

Thus conjugation on quaternions acts as a linear map on the corresponding four-tuplets of
coefficients. If we consider the corresponding matrix M for this transformation Cq, we can start
to see the connection between quaternions and rotations.

M(q) = M(aI +bJ + cK +d) =⎛
⎜⎜⎝

a2+b2+c2+d2 0 0 0
0 a2 +b2 − c2 −d2 2bc−2ad 2bd +2ac
0 2bc+2ad a2 −b2 + c2 −d2 2cd −2ab
0 2bd−2ac 2cd +2ab a2 −b2 − c2 +d2

⎞
⎟⎟⎠ .

If we take the sum of the squares of the entries in any row or column of the matrix, we
get (a2 +b2 + c2 +d2)2. Furthermore, we can check that any two rows, or any two columns,
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are orthogonal to each other (their dot product is zero). Further, the determinant of M is also
(a2 +b2 + c2 +d2)4.

If q is a unit norm quaternion (‖ q ‖= 1), then the all rows and columns of M become unit
vectors, and its determinant is +1, so it looks like a rotation matrix. It takes three parameters to
represent rotations. The matrix has 9 variables, but 6 constraints, which gives us the requisite
3 degrees of freedom.

The question remains “How is this an easier way to represent rotations?” Consider a unit
quaternion q, q = a + bI + cJ + dK. There is an intuitive description of what this quaternion
represents. It is the rotation whose axis is the line connecting (1;0,0,0) to (0;b,c,d), (the ori-
gin to the point at infinity in direction (b,c,d). The angle of rotation is given by the (equivalent)
relations a = cosθ/2, or

√
b2 + c2 +d2 = sinθ/2.

It would be nice if this was a one-to-one to mapping between unit quaternions and rotations
but, unfortunately it is not: both q and −q represent the same rotation. So this mapping is ex-
actly two-to-one. We can get a one-to-one relationship by using the concept of super-rotations.
Super-rotations are just like rotations, except we only equate rotations up to multiples of 720
degrees (not 360). So, 180 degrees equals 900 degrees, but not 540 degrees.

If q represents a rotation, q−1 represents the inverse rotation.
For more information on complex quaternions, consult handout 12.

3 Curves and Surfaces

The next major section of the course will explore curves and surfaces.
There are a number of strategies for representing curves. The first one is to use a polynomial

expression, such as
p(x) = a0xn +b1xn−1 + ...+an−1x+an.

This method can be very useful for modeling. One need only store the coefficients in order to
store the whole polynomial.

Another representation is to provide the roots, such as in the following:

P(x) = s(x− r1)(x− r2)...(x− rn),

where s is the scaling factor.
The third way is to be give some specific values of the polynomial:

P(x0) = y0,

P(x1) = y1,

· · · ,

P(xn) = yn.

Converting among these three representations is a classical problem. To convert from coef-
ficients to points, of course, just substitute the appropriate values of x. To convert from coeffi-
cients to roots is an old problem in algebra. Finally, to convert from points to coefficients, one
must use interpolation—a technique to be covered in the next lecture.


