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Topics: The Polar Forms of Polynomial Curves

Scribe: from your lecturers

These notes are about blossoming, which is the application of polar forms to spline meth-
ods in computer-aided geometric design (CAGD). In these notes, we consider one polynomial
parametric curve in isolation and we study the properties of its polar form. Later notes will go
on to consider the polar forms of spline curves and surfaces.

The polar approach to the theory of splines emerged in rather different guises in three inde-
pendent research efforts: Paul de Faget de Casteljau called it ‘shapes through poles’ [7, 8]; Carl
de Boor called it ‘B-splines without divided differences’ [5, 6, 12]; and I called it ‘blossoming’
[13, 14, 15]. More recently, it has been extended and applied by various researchers.

If one picture is worth a thousand words, that picture—in the case of blossoming—is Fig-
ure 1. The dots and lines show the de Casteljau Algorithm computing a point F(¢) on a planar,
cubic, parametric curve F, starting from the four Bézier points of the segment F ([0 .. 1]). That
part of the picture is just like in any standard text on CAGD. What’s new in blossoming is the
labels on the points. In particular, the function f of three arguments that appears in those labels
is the polar form or blossom of the curve F.

Before we say more about Figure 1 and polar forms, let’s review some basics, to make sure
that we all start out on the same wavelength.

1 Modeling curved shapes

Suppose that we want to build a mathematical model for a smooth curve or surface S that we
are designing. That is, we want to find certain systems of equations that somehow determine
which points lie on S and which points do not. There are various questions to address.
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Figure 1: The de Casteljau Algorithm manipulating polar values
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One piece or many? We might choose to model the entire shape S via a single system of
equations. That works fine for very simple shapes. But designers of more complicated
shapes want to be able to modify one region of their design without affecting the rest
of it. The usual way to make this possible is to break up the shape § into pieces. We
model each piece by its own system of equations, and we guarantee that the pieces join
smoothly by enforcing certain constraints on the systems of equations that determine the
joining pieces. The word ‘spline’, in its most general sense, means a piecewise model of
a shape in which the pieces have been constrained to join with some level of smoothness.

Parametric or implicit? What a system of equations does, mathematically, is to specify a
function. Given an input point in a space of some dimension, such a function determines
an output point in a space of some—possibly different—dimension. There are two stan-
dard ways to use such functions to model shapes: parametric models and implicit models.

Our curved shape S lies in some larger, flat, ambient space, which we will call Q and
refer to as the object space. Let s denote the dimension of the shape S and g denote the
dimension of the object space Q. The two types of models are distinguished by whether
the modeling function goes from some other space into Q (parametric) or from Q into
some other space (implicit).

In parametric models, the shape S is defined as the range F(P) of a function F: P —
Q, where P is an auxiliary, s-dimensional space called parameter space. Thus, for a
parametric model, the input to the modeling function is a point in parameter space—that
is, values for the s parameters—and the output of the modeling function is a point on the
shape S.

In implicit models, on the other hand, the shape S is defined by the formula S := F~1((0, ...
where F': Q — R is a function from the object space Q to an auxiliary space R of dimen-
sion ¢ — s. The auxiliary space R doesn’t have a standard name; gauge space might be
good choice. For an implicit model, the input to the modeling function is a point in the
object space, while the output of the modeling function is a point in gauge space—that
is, values for the g — s gauges.

For example, consider the first parabola that everyone learns about: the graph of the
function y = x2. This shape is a smooth curve in the plane Q = IR?, so s = 1 and g = 2.

The function G: IR — IR? given by G(¢) := (¢,%) is a parametric model for that parabola.
The variable ¢ here denotes a parameter value. The parameter space P = IR of a curve
is one-dimensional, so it is convenient to think of the parameter as time. The modeling
function G: P — Q maps times to points on the curve S.

The function H: IR? — IR given by H(z) = H((x,y)) := y — x? is an implicit model for
that same parabola. The variable z here denotes an arbitrary point in the object plane.
The corresponding gauge value H(z) is positive, zero, or negative according as the point
z lies above, on, or below the curve S.

Note that both parametric and implicit models of shapes encode some extra information,
over and above the shape S itself. A parametric model, in addition to determining the
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shape S, also provides a sort of roadmap to S—a way to name each point of § with a
simple name. An implicit model, in addition to determining S, also associates gauge
values with all of the other points in the object space. Both types of extra information
sometimes come in handy.

What class of functions? A third decision that faces us is what class of functions to select
from when choosing a function to model our shape S, either parametrically or implicitly.

The simplest functions are the polynomial functions, the functions F for which each
(Cartesian) coordinate of the output point F(p) can be written as a polynomial in the
(Cartesian) coordinates of the input point p. Both the parametric model G(¢) = (¢,#%) and
the implicit model H({(x,y)) = y — x? of the parabola above are polynomial functions.
Note that polynomial functions can be built up using only addition, subtraction, and
multiplication.

If we add division to the set of legal operations, we get the rational functions, where each
coordinate of the output point can be written as the quotient of two polynomials in the
coordinates of the input point. For example, the function

. 1—-12 2t
H [ _
1+72" 1412
is a rational function from the line to the plane. That particular function, in fact, happens
to be a rational parametric model of the unit circle in the plane, as we can verify by

noting that the two coordinates x(z) = (1 —¢2)/(1+¢2) and y(t) = 2t/ (1 41?) satisfy the
identity x> +y? = 1.

A note on nomenclature: Everyone agrees on the name ‘rational function’, but there
is much less agreement about the name ‘polynomial function’. Some people use the
name ‘integral function’ instead, by analogy with the situation for numbers: Since a
rational number with denominator 1 is an integer, they argue that a rational function
whose denominators are all 1 should be called an ‘integral function’. Other people use
the name ‘non-rational function’—but I find it awfully confusing to refer to a polynomial
function as ‘non-rational’, given that the set of polynomial functions is a subset of the
set of rational functions.

Polynomial functions and rational functions are the functions to which the technique of
blossoming applies, so they are the two classes of functions that are most relevant to
this course. But there are more complicated classes of functions, and they are worth
mentioning briefly.

The next step up the ladder of complexity after allowing division is to allow the operation
of taking square roots or, more generally, of solving polynomial equations of any degree.
The resulting functions are called algebraic.

The next step after that is to allow the operation of summing an absolutely convergent,
infinite series. The resulting functions are called analytic (or, to avoid confusion with
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complex functions of a complex variable, real analytic). For example, the function ¢ —
(cos(t),sin(t)) is an analytic, parametric model for the unit circle in the plane.

The ladder goes even higher—there exist smooth (that is, C™) functions that are not
analytic. But discussing such things would take us too far afield.

What degree? If we choose to use modeling functions that are either polynomial or rational,
we can further control how complicated we allow them to be by putting bounds on the
degrees of the polynomials involved.

In piecewise methods, there is a tradeoff between the number of pieces and the complex-
ity of each piece. At one extreme are models that use a large number of simple pieces;
for example, we might use a polyline with hundreds of segments to model the outline of
a character in a printing font. At the other extreme are models that use only a few pieces,
but in which the degree of each piece is relatively high.

What answers to those questions are relevant for these notes?

In current practice, models for all but the simplest shapes are piecewise in nature. In these
notes, we will restrict ourselves to single pieces in isolation. Later, we will assemble those
pieces into splines.

Curves are important in their own right, and they are mathematically simpler than surfaces.
Furthermore, one of the most important classes of surfaces—the tensor-product surfaces—are
best understood as curves of curves. Hence, we will be studying curves to start off with. Later,
we will consider the generalizations to surfaces.

Curves in the plane can be conveniently modeled either parametrically or implicitly, and
we will say a little bit about both types of models. But we will focus most of our attention
on parametric models. While our examples will often be parametric curves in the plane, the
methods apply equally well to parametric curves in object spaces of any dimension.

In these notes, we will restrict our attention to polynomial modeling functions. Another
topic for later is the generalization from the polynomial to the rational case.

So, in these notes, we are going to be considering one-piece, polynomial, parametric mod-
els of curves in the plane.

2 Bézier points and the de Casteljau Algorithm

Suppose that we want to implement a computer package for drawing segments of planar, poly-
nomial, parametric curves of degree at most n. What is a good design for the interface to our
package? That is, in what format should we ask our clients to specify to us which segment of
which curve they would like us to draw?

The follow-your-nose approach is as follows. Every planar, polynomial, parametric curve
of degree at most n can be written in the form F(7) = (x(t),y(¢)), where

x(t) = apt"+---+at+ag
y(t) = buyt"+---+bit+bg
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Figure 2: The de Casteljau Algorithm in the case n = 1

for some real coefficients ag through a, and by through b,. We ask our clients to tell us those
2n + 2 coefficients and to tell us also the end-points r and s of the interval [r..s| in parameter
space corresponding to the segment of the bi-infinite curve F that they want drawn. Given this
information, we can draw for them the segment F([r..s]).

A nit-picking note: We said ‘of degree at most n° when defining F' above because we want
to include the special case where both of the high-order coefficients a, and b, happen to be
zero, causing the degree of F' (which is the maximum of the degrees of its two coordinate poly-
nomials) to be strictly less than n. In what follows, we shall interpret the adjectives ‘quadratic’,
‘cubic’, and the like in that same inclusive fashion. For example, we interpret the phrase ‘a
cubic function’ to mean a function whose degree is at most 3, as opposed to precisely 3.

2.1 Thecasen=1

For n = 1, the curve segments that we are volunteering to draw are line segments, so there is
clearly a better interface to our drawing package than the one that comes from following your
nose. Instead of having our clients tell us the six numbers ag, ai, b, by, r, and s, we have them
tell us simply the x and y coordinates of the starting point F(r) = (ajr+ ao,b1r + bp) and the
ending point F(s) = (a5 + ag,bys + by) of the line segment F([r..s]) that they want drawn.

This endpoint-based scheme is an improvement in many ways: It involves only four num-
bers, instead of six. It makes it easy to arrange that one line segment starts precisely where the
previous one stopped; in fact, we can save two additional numbers for each such joint. Also, the
numbers used in the endpoint-based scheme are the coordinates of graphically relevant points,
so it is easy to see how precisely they need to be stated.

Let ¢ be some parameter value in the interval [r..s|. Once we know the endpoints F (r) and
F(s), we can locate F(t) using linear interpolation, as shown in Figure 2. Each coordinate of
the point F(¢) is (t —r) /(s — r) of the way from that coordinate of F(r) to that coordinate of
F(s). Real simple.

But suppose that the degree n is greater than 1. Can we devise a scheme for the n-ic case
that has the same simplicity and good features as specifying the endpoints has in the linear
case?
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2.2 Thecasen=2

When n = 2, what curves are we volunteering to draw? Answer: Segments of parabolas. That
is, if x(z) and y(z) are quadratic polynomials in the parameter ¢, the point F'(z) := (x(z),y(¢))
varies along a parabola.

Proving this in detail would take us too far afield, but here is a rough sketch: Eliminating
t from the two quadratic equations x = ayt? 4 ait +ag and y = byt? + byt + by will give us
a polynomial equation G(x,y) = 0 of total degree certainly no worse than 4. The function G
models implicitly the same curve that the function /' models parametrically, so the process of
going from F to G is called implicitization [10]. In our current case, the total degree of G turns
out to be only 2. One way to verify that is to calculate G in gory detail:

G(x,y) = b3 —2arbrxy+a3y’
+ (b] (a1b2 — azbl) — 2b2(a0b2 — azbo))x
— (a1 (a1b2 — azbl) — 2a2(a0b2 — azbo))y
+ (a0b2 - azbo)z - (aob1 - albo) (a1b2 - azbl).

A neater way is to observe that the curve modeled by F' cannot intersect any line at more than
two points, since, if the line is given by the implicit equation cx + dy + e = 0, the parameter
value 7 of any intersection point must be a root of the quadratic equation cx(¢) +dy(t) + e = 0.
Since the curve intersects an arbitrary line at most twice, the degree of its implicit model G is at
most 2, hence the curve is some kind of conic section. But ' cannot model an ellipse, since the
point F(t) goes off to infinity as ¢ goes to infinity, while an ellipse is bounded. Furthermore,
at 7 goes to infinity, the ratio of the x and y coordinates of the point F(¢) approaches the single
limiting ratio a; : bp. Thus, F' cannot model a hyperbola either, since hyperbolas go off to
infinity with two different limiting ratios. So the curve that F models must be a parabola.

Our clients have to tell us which segment of which parabola they want drawn. The x and
y coordinates of the two endpoints of the parabolic segment seem like good candidates for
four of the six numbers that we need. But which other two numbers should we ask for? The
winning idea is to ask for the x and y coordinates of the point where the starting and ending
tangent lines to the parabolic segment intersect. The resulting three points—the starting point,
the intersection of the starting and ending tangents, and the ending point—are called the Bézier
points of the parabolic segment; Figure 3 shows an example.

Specifying a parabolic segment by giving the coordinates of its three Bézier points has lots
of attractive properties. Six is the right number of numbers to be specifying. The six specified
numbers all have geometric immediacy. It is easy to arrange that one parabolic segment will
start precisely where the last one ended. It is even fairly easy to arrange that two joining
segments will have the same tangent line at the joint: Make the last two Bézier points of the
incoming segment collinear with the first two Bézier points of the outgoing segment.

There is another, less obvious advantage to using Bézier points. Suppose that we know the
three Bézier points of a parabolic segment F([r..s|) and that we want to compute the location
of the point F(¢), for some ¢ in the interval [r..s]. It turns out that we can locate F(¢) using
three linear interpolations, all with the same ratio (¢ —r) /(s —r) that appeared in the linear case.
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Figure 3: The three Bézier points of a parabolic segment

f(r;s)

Figure 4: The de Casteljau Algorithm in the case n = 2

This process is called the de Casteljau Algorithm, and is illustrated in Figure 4. The points in
Figure 4 are labeled as the values of a two-argument function f that we will get around to
defining in just a moment.

The points f(r,r), f(r,s), and f(s,s) are the input data, the three Bézier points of the
parabolic segment F([r..s]). In the first linear interpolation, we go (t —r)/(s — r) of the way
from f(r,r) to f(r,s), and we call the resulting point f(r,7). In the second interpolation, we go
(t —r)/(s —r) of the way from f(r,s) to f(s,s), and we call the resulting point f(z,s). In the
final linear interpolation, we go (r —r) /(s — r) of the way from f(r,¢) to f(¢,s), and we claim
that the resulting point f(z,7) is, in fact, F(z).

But what is the function f that appears in these labels? Here is a geometric definition: For
any two distinct parameter values u and v, the point f(u,v) is the intersection of the tangents
to the parabola F at the points F(u) and F(v). To handle the special case where the two
arguments of f are equal, we define f(u,u) to be simply F(u). Since f(u,v) approaches F(u)
as v approaches u, we have to define f(u,u) to be F(u) if we want f to be continuous. The
resulting function f satisfies the identity f(u,v) = f(v,u), since intersection is a symmetric
operation. For example, the middle Bézier point of the segment F([r..s]|) can be equally
well labeled f(r,s) or f(s,r). In Figure 4, the issue of whether to write f(u,v) or f(v,u)
was resolved, in each case, by putting the two arguments in increasing numeric order, where
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r<t<s.

The first linear interpolation in Figure 4 locates f(r,¢) along the line joining f(r,7) to f(r,s).
The first argument to the function f is staying fixed at r in this interpolation, while the second
argument varies. Note that, as ¢ varies, the point f(r,#) moves at a constant rate along the line
joining f(r,r) to f(r,s). The second interpolation locates f(t,s) along the line joining f(r,s) to
f(s,5). In this case, the second argument is staying fixed at s, while the first argument varies.
The third interpolation locates f(z,¢) along the line joining f(r,¢) to f(z,s). Stated in this form,
we can’t think of the third interpolation as having one argument that stays fixed while the other
varies. But remember that f is a symmetric function. Hence, we could equally well rewrite the
left end-point f(r,¢) as f(t,r), in which case the first argument would stay fixed at 7.

Note that the left subsegment F([r..¢]) is a parabolic segment in its own right, as is the
right subsegment F'([z..s|). From Figure 4, we can see that the Bézier points of the subsegment
F([r..t]) are f(r,r), f(r,t),and f(¢,7). No surprise here: The subsegment F ([r..z]) has exactly
the same relationship to its Bézier points as the original segment F([r..s|) does. This means
that, in the process of computing the point F(z), we have also computed all three Bézier points
of both of the subsegments F([r..t]) and F([z..s]). Hence, the de Casteljau Algorithm can be
used as the core of a divide-and-conquer rendering algorithm for segments of parabolas. When
used in this way, it is common to choose 7 to be (r+ ) /2, so that the only arithmetic operations
necessary are addition and division by 2, the latter of which can be implemented with a right
shift.

The heart of the de Casteljau Algorithm in the case n = 2 is the fact that, as we vary ¢,
the tangent line to a parabola F at F(¢) intersects any fixed tangent line in a point that moves
along that fixed tangent line at a constant rate of speed. We haven’t proved that fact yet, but
carpenters have exploited it for a long time, as shown in Figure 5. When cutting out a kitchen
countertop, they round off the corners using the following rule: Choose a distance d. Mark
the points at distance d, 2d, and 3d from the original, right-angled corner along each edge.
Connect the two points at distance 2d to each other, and cross-connect the point at distance d
along one edge to the point at distance 3d along the other edge and vice versa. Cut along the
three resulting lines and file off the four remaining blunt corners. The resulting boundary curve
is a parabolic segment that has the original corner as its middle Bézier point and the points at
distance 4d from that corner along each edge as its first and last Bézier points. In Figure 5, the
points are labeled assuming that this parabolic segment—call it F—has been parameterized
from ¢ = 0 at the upper left to # = 4 at the lower right; that is, the segment is F([0..4]). Note
that each of the five tangent lines is divided into four segments of equal length. (Note also that
rounding the corner off with a quarter-circle of radius 4d, as shown dotted in Figure 5, would
result in a smaller countertop.)

The easiest way to prove that the de Casteljau Algorithm works as advertised is to write
down an explicit, algebraic formula for the bivariate function f:

u+v u+v
flu,v) = <a2uv+a1 5 +agp, bouv+ by 5 +bo>. (D

The function f thus defined is clearly symmetric; thatis, f(u,v) = f(v,u). If we evaluate f(z,7),
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Figure 5: de Casteljau’s kitchen counter

we get f(t,t) = (axt> +ayt + ag, byt*> + byt +by), so f satisfies the identity f(z,#) = F(¢). And
f has the property that, if we hold one argument fixed and vary the other, the resulting point
moves along a straight line at a constant rate of speed. Those three properties are enough to
justify everything that we did during the de Casteljau Algorithm. That is, assuming that f(r,r),
f(r,s), and f(s,s) are the points so labeled in Figure 4, those three properties are enough to
imply that F(¢) = f(z,t) is the result of the three linear interpolations shown in that figure.

The one property of the function f that isn’t obvious from the algebraic formula in equa-
tion (1) is the geometric fact by which we originally defined f: The point f(u,v) is the in-
tersection of the tangent lines to the parabola F at the points F(u) and F(v). To verify that
relationship between the geometry and the algebra, we would have to study the relationship
between f and the derivatives of F, which we won’t get to in these notes.
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flrm,s) f(r;s,s)

Figure 6: The four Bézier points of a cubic segment

2.3 Thecasen=3

The same tricks that worked for n = 2 work, in pretty much the same way, for n = 3. One
difference is that the polynomial parametric cubics are a less well-known class of curves than
the parabolas. Another difference is that we need six linear interpolations in the de Casteljau
Algorithm when n = 3.

Let F([r..s]) be a segment of a planar, cubic, polynomial, parametric curve. That is, the x
and y coordinates of F (1) = (x(¢),y(t)) are given by cubic polynomials in ¢:

x(t) = a3t3+a2t2+a1t+ao
y(t) = b3t3+b2t2—|—b1t+bo.

The cubic segment F([r..s|) has four Bézier points, which—in the blossoming approach—are
labeled f(r,r,r), f(r,1,s), f(r,s,s), and f(s,s,s), as shown in Figure 6. Note that the segment
F([r..s]) starts out at F(r) = f(r,r,r), heading towards f(r,r,s). It ends at F(s) = f(s,s,s),
coming from f(r,s,s).

The labeling function f has three arguments this time, because we are dealing with cubics.
It is a symmetric function of its three arguments; it satisfies the identity f(¢,z,¢) = F(t); and
it has the property that, if we hold two arguments fixed and vary the third, the resulting value
moves along a straight line at a constant rate. Those three properties are easy to verify, working
from the algebraic formula for f, which is as follows: f(u,v,w) = (x(u,v,w),y(u,v,w)), where

uv + uw +vw ut+v+w

x(u,v,w) := azuvw +a ai +ag
3 3 2)
y(u,v,w) := b3ww+b2uv+u;v+vw + by u+;+w + by.

Given the four Bézier points of the segment F([r..s]), we can compute the point F (1) =
f(z,t,1) by performing six linear interpolations, as shown in Figure 7—the cubic case of the
de Casteljau Algorithm. All six interpolations are controlled by the same ratio (t —r)/(s —r).
The effect of the interpolations is to bring more and more copies of ¢, the desired parameter
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f(r,rs) f(rts) f(r,5,3)

f(r7 T? t)

Figure 7: The de Casteljau Algorithm in the case n = 3

value, into the list of arguments to f. The following triangular array records the progress of the
de Casteljau Algorithm symbolically:

f(r7 r? r) f(r7 r? S) f(r7 S? S) f(s7 S? S)
( 3)

The four points in the top row are the input. Each remaining point is computed by linearly
interpolating between the two points diagonally above it.

In the process of computing the point F(¢) = f(z,z,t), note that we also compute all four
Bézier points of each of the two subsegments F([r..t]) and F([f..s]), just as happened in
the quadratic case. The Bézier points of the left subsegment F([r..t]) are f(r,r,r), f(r,1t),
f(rt,t), and f(z,t,t), which are the four points on the lower-left side of array (3), while the
Bézier points of F ([t .. s]) form the lower-right side.

One thing that is missing in the cubic case is a geometric way of defining the labeling
function f, that is, a rule analogous to the intersect-the-two-tangents rule in the quadratic case.
Without such a rule, it isn’t obvious—when given a cubic segment such as the one in Figure 6—
how far out along the tangent line at F (r) the second Bézier point f(r,r,s) belongs. It turns out
that there is such a geometric rule for twisted cubics, but not for planar cubics.

The four Bézier points f(r,r,r), f(r,r,s), f(r,s,s), and f(s,s,s) in Figure 6 happen to be
coplanar. If we perturbed them to destroy this coincidence by moving them up out of the paper
or down through it, the de Casteljau Algorithm would continue to work with no difficulty, but
the resulting curve F would be a twisted cubic in 3-space. For a twisted cubic F, the point
f(u,v,w) can be defined geometrically as the intersection of the osculating planes to F at the
three points F(u), F(v), and F(w). (The osculating plane to a space curve at a point is the
plane through that point which comes closest to containing the curve locally; it is spanned by
the velocity and acceleration vectors.) Note that, by this rule, the second Bézier point f(r,r,s)
in Figure 6 should be in the osculating plane to F' at F(r) twice, which—it turns out—means
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£(0)

Figure 8: Computing F(2) and F(4) on the cubic segment F([0..7])

that f(r,r,s) should be on the tangent line to F at F(r). The point f(r,r,s) should also be in the
osculating plane to F at F(s) once. Thus, the second Bézier point f(r,r,s) is the point where
the tangent line at F (r) intersects the osculating plane at F'(s).

Unfortunately, trying to apply this osculating-plane rule to a planar cubic leads to a degen-
erate situation, because all of the osculating planes of a planar cubic coincide. Fortunately, the
algebraic formula for f in equation (2) and the algebraic properties of f that follow from that
formula are all that we really need. A geometric definition of f in the planar case would be
nice, but we can get along perfectly well without it.

Recall that the carpenter’s technique for rounding off a kitchen countertop corresponds, in
our context, to applying the de Casteljau Algorithm repeatedly to the same parabolic segment.
Doing the analogous thing for cubic segments is a bit more complicated. Figure 8 shows an
example, in which we compute both the points F'(2) and F(4) on the cubic segment F([0..7]).
As an exercise, label each of the twenty distinguished points in Figure 8 with a label of the
form f(u,v,w), where u, v, and w are three numbers drawn from the set {0,2,4,7}. Since
we consider two labels to be the same if they differ only in the order of the three arguments
to f, there are precisely twenty such labels, which is just enough. When you are done, the
four points along any one of the ten lines should have labels of the form f(0,u,v), f(2,u,v),
f(4,u,v), and f(7,u,v), for some u and v drawn from the set {0,2,4,7}.

There are two intersections of line segments in Figure 8 that aren’t distinguished by little
dots. Those two intersections are artifacts of a degeneracy: namely, the planarity of F. If we
perturbed the Bézier points in Figure 8 up or down, thus converting F into a twisted cubic, those
two intersections would disappear—that is, the two lines in each of those two intersecting pairs
would become skew. (If we redrew Figure 8 with full lines, rather than line segments, those
two unstable intersections would be joined by 19 more. The points distinguished in Figure 8
are precisely the intersections that are stable under vertical perturbations of the Bézier points.)



CS348a: Handout #19 13

3 The polar forms of univariate polynomials

It is time to back up all this geometry with some algebra.

In Section 2, we started with a polynomial, parametric curve F of degree n and found that,
in labeling the resulting diagrams, it was helpful to consider a function f that takes n different
parameter values as its arguments. The correspondence between F and f is one instance of the
general, algebraic principle of polar forms: that is, f is the polar form of F. In essence, the
principle of polar forms says that we can trade one parameter of degree n, such as the parameter
t in the expression F'(¢), for n symmetric parameters, each of degree 1, such as the parameters
uj through u, in the expression f(uy,...,u,). Before we discuss how to perform this trade,
we first pause to clarify our nomenclature for the concept ‘of degree 1°; in particular, we must
distinguish between the adjectives ‘linear’ and ‘affine’.

The adjective ‘linear’ is used inconsistently in mathematics, in that it sometimes implies
homogeneity and sometimes doesn’t. A univariate polynomial F(x) is called linear if it has
the form F(x) = ax+ b, where b # 0 is usually allowed. If we reinterpret F: IR — IR as a
transformation of the 1-dimensional vector space IR, however, we must have » = 0 in order for
F to be called a linear transformation; that is, F must also be homogeneous. To avoid confusion
in what follows, we make the convention that, for the rest of these notes, the word ‘linear’ will
mean ‘of degree 1 and homogeneous’, while the word ‘affine’ will mean ‘of degree 1, but not
necessarily homogeneous’. For example, the polynomial F(x) = x+ 1 is not linear, but it is
affine. (Will this convention eventually take over all of mathematics? Note that, under this
convention, the problems that the simplex algorithm solves are affine programming problem:s,
not linear programming problems.)

A linear function is a function F' that commutes with linear combinations; thatis, F (3; Aix;) =
Y. AiF (x;). An affine function can be defined in two ways: Either it is the sum of a linear func-
tion and a constant, or it is a function F' that commutes with affine combinations, where an
affine combination is a linear combination whose scalar coefficients A; sum to 1. That is, for an
affine function F, we have F(3; Aix;) = X; L;F (x;) whenever X; A; = 1, but not necessarily oth-
erwise. Note that the linear combinations that occur in the de Casteljau Algorithm are actually
affine combinations. For example, the linear combination

I t t—r

F(r)=—F(+ —

F(s)

shown in Figure 2 is an affine combination, because (s —¢)/(s—r)+ (t—r)/(s—r) = 1.

For future reference, an affine space (or flat) is a set of points that is closed under the
operation of taking affine combinations. An affine frame for an affine space P is a set of points
in P that are affinely independent and whose affine span is all of P; that is, an affine frame is
the analog of a linear basis. Every affine frame for a d-dimensional space contains precisely
d + 1 points.

The word ‘affine’ is helpful in describing the algebraic properties of polar forms—that is,
of the labeling functions f that we used in Section 2. For example, the polar form f of the
parametric, cubic curve F in Figure 7 has the property that, if we hold # and v fixed and vary
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w, the point f(u,v,w) moves along a straight line at a constant rate. We can restate that same
property more concisely by saying that, for any fixed u and v, the point f(u,v,w) is an affine
function of w. (In order for it to be a linear function of w, we would have to have f(u,v,0) =0
as well—which isn’t true, in general.)

Let’s call a function f of n arguments multiaffine or n-affine if the value f(uy,...,u,) is an
affine function of each argument u; whenever the other arguments are held fixed at arbitrary
values. If F(¢) is a univariate polynomial of degree at most n, a polar form of F is an n-variate
polynomial f(uy,...,u,) with the following three properties:

e fisn-affine; thatis, f(uy,...,u,) is an affine function of each variable u; when the others
are treated as constants;

e f is symmetric; that is, f(uy,us,us,...,u,) = f(uz,u1,u3,...,u,) and so forth for all
permutations of the n variables u; through u,;

e f satisfies the correspondence identity f(z,...,t) = F(t).

Our next goal is to prove that a polar form always exist and that it is unique. For notational
convenience, we will carry out that proof first for a particular, example—the cubic polyno-
mial G(¢) := 1> +3t> — 6t — 8. The proof generalizes without difficulty to arbitrary univariate
polynomials F and to arbitrary values of the degree bound 7.

From the definition above, a polar form g for G—if one exists—is a symmetric, triaffine
polynomial g(u,v,w) that satisfies the identity g(¢,#,7) = G(¢). In order for a trivariate polyno-
mial g to be triaffine, it must have the form

g(u,v,w) = cruvw + couv + c3uw + c4vw + s+ cgv + 7w + ¢g

for some real constants ¢ through cg. That is, no term in g can include any variable raised to
any power higher than 1, or else g would not be an affine function of that variable. To make the
correspondence identity g(z,7,¢) = G(t) hold, we must arrange that ¢; = 1, ¢ + ¢3 + ¢4 = 3,
¢5+ce+c7=—6, and cg = —8. To make g(u,v,w) a symmetric function of its three arguments,
we must have ¢, = ¢3 = ¢4 and ¢5 = cg = ¢7. We are left with the unique choice

g(u,v,w) = uvw +uv+uw+vw —2u —2v — 2w — 8.

Thus, our example cubic polynomial G has this trivariate polynomial g as its unique polar form.

Going from G to g is the hard direction; note that it is easy to go the other way. If we
are given the trivariate polynomial g(u,v,w) := uvw + uv + uw + vw — 2u — 2v — 2w — 8, the
correspondence identity G(¢z) = g(t,7,t) trivially determines a unique cubic polynomial G: We
simply substitute ¢ for each of u, v, and w, getting G(t) = 13 4 3t> — 61 — 8.

From these observations, we deduce that the two polynomials G(¢) and g(u,v,w) are ac-
tually two different aspects of the same entity. That entity can be viewed either as a cubic
function of the single parameter ¢ or as a symmetric, triaffine function of the three parameters
u, v, and w. The quantity G(¢) = g(¢,7,t) varies cubically as a function of ¢ because, when #
varies, all three of u, v, and w are varying in parallel.
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The same arguments apply to an arbitrary, univariate polynomial F' of degree at most n.
We can always expand such a polynomial F(¢) as a linear combination of powers of z: F(t) =
Yraxt*. The only way to get a polar form f(u1,...,u,) for F is to replace ¢X in this linear
combination, for each k from O to n, by the arithmetic average of all possible products of
precisely k of the variables u; through u,. For example, when n = 4, we must replace ¢ by

ULUY + UTU3 + UTU4 + UpU3 + UpU4 + U3 U4
¢ .

And, of course, going backward from f to F' is easy.
We restate these results more formally in the following theorem, which is the nonhomoge-
neous, univariate version of the principle of polar forms.

Theorem 1. Univariate polynomials F(t) of degree at most n are equivalent to symmetric,
n-affine polynomials f(uy,...,u,) in the sense that, given a polynomial of either type, there
exists a unique polynomial of the other type that satisfies the correspondence identity F (t) =

ft,...0).

Definition 2. If F(¢) is a polynomial of degree at most n, the polar form of F (or the n-polar
form, if the intended degree bound n isn’t obvious from the context) is the unique symmetric,
n-affine polynomial f(uy,...,uy) that corresponds to F via the identity F(t) = f(t,...,1). A
value f(uy,...,u,) of the polar form is a polar value of F, and each u; that helps to determine
such a value is a polar argument to F. In contrast, F itself is the diagonal form of F; a value
F (1) is a diagonal value of F; and the t that determines such a value is a diagonal argument to
F. Note that diagonal values are a special case of polar values, the case in which all n of the
polar arguments are equal.

Multivariate polynomials F also have polar forms, but the concept of a degree bound is
more complicated in the multivariate case. We can either bound the total degree in all of the
variables or bound the degree in each variable separately. Those different ways of bounding
the degree give rise to different polar forms, as we will see in later notes about surfaces.

In Theorem 1, neither F nor f is assumed homogeneous. When the diagonal form F
is homogeneous, the corresponding polar form f turns out to be multilinear, as opposed to
merely multiaffine. Conversely, when the polar form f is multilinear, the diagonal form is ho-
mogeneous. This homogeneous version of the principle of polar forms isn’t very interesting,
however, until we generalize to consider multivariate diagonal polynomials F, because a uni-
variate polynomial F(¢) must be a scalar multiple of #” in order to be homogeneous of degree
n. The n-polar form of the homogeneous n-ic F(t) = " is, of course, the n-linear monomial
flug, ... up) =up---up.

While polar forms are new to CAGD, their use has long been standard in other areas of
mathematics. For example, consider quadratic forms and bilinear forms in linear algebra. It
1s well known that, for each quadratic form F': V — IR on a vector space V, there is a unique
symmetric, bilinear form f: V x V — IR that satisfies the identity F(v) = f(v,v). That fact
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is precisely the analog of Theorem 1 for multivariate polynomials F' that are homogeneous of
total degree 2.

Even though many areas of mathematics use polar forms, the terminology based on the
word ‘polar’ has fallen out of favor in the last half-century. While algebra books up through
van der Waerden [19] generally used the name ‘polar form’, more recent books often leave
the correspondence of Theorem 1 nameless. Because I started out unaware of the name ‘polar
form’, I proposed an alternative system of nomenclature in which f was called the ‘blossom’
of F [13, 14]. One advantage of that proposal was that the word ‘blossoming’ suggests the
revealing of hidden structure, which describes rather well what happens when we convert from
F to f. Before converting, all that we can do is to evaluate F (¢) for various ¢, which corresponds
to computing various diagonal values f(¢,7,¢). After converting, we are free to let the three
polar arguments take on different values, thus computing arbitrary polar values f(u,v,w). We
have thus revealed more of the structure that was hidden in F. The word ‘polarization’, on the
other hand, suggests concentration into opposing extremes, which is not at all the right idea.

While ‘blossoming’ is a nicer name than ‘polarization’ for the process of converting from
F to f, I like ‘polar form’ better than ‘blossom’ as a name for the function f itself, because it
suggests a closer connection between F and f. ‘The diagonal form F’ and ‘the polar form f’
sound like two different aspects of the same underlying entity, which—in my opinion—is the
proper point of view. ‘A polynomial F’ and ‘its blossom f”, on the other hand, sound like two
different things. Note also that the phrase ‘a polar value of F’ is shorter and simpler than ‘a
value of the blossom of F”.

The words ‘pole’ and ‘polar’ have various uses in mathematics that are unrelated to The-
orem 1: the poles of a sphere, polar coordinate systems, and the poles of a complex analytic
function. ‘Pole’ and ‘polar’ are also used in projective geometry, when discussing conic sec-
tions and quadric surfaces. Those uses are related to Theorem 1; in particular, they arise from
considering the polar forms of the implicit models of conics and quadrics, as we will discuss
briefly in Section 4.2.

4 The polar forms of curves

4.1 The parametric case

If F is a polynomial parametric curve, each coordinate of the varying point F(¢) is given by a
polynomial in the parameter . To compute the polar form f of the curve F, we compute the
polar forms of each coordinate polynomial separately. The resulting function f is precisely the
type of labeling function that we first met in Section 2.

Let’s consider a simple example of this process in algebraic detail. As our example curve,
we will take the standard parabola in the plane, modeled parametrically by F(¢) := (t,¢?). The
polar form of this parabola is, by definition, the unique symmetric, biaffine function f(u,v)
that satisfies f(z,¢) = F(¢). Computing as in the proof of Theorem 1, we find that the polar
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£(0,0) f(0,1)

Figure 9: The segment F([0.. 1]) of the parabola F(t) = (¢,1%)

form f is given by

Flu,v) = <”;V,uv>. )

Given this formula for f, various questions become easy to answer.

For example, suppose that we were interested in the Bézier points of some segment of the
parabola, say the segment F([0.. 1]). The three Bézier points of that segment are simply the
following three polar values of F: f(0,0) = (0,0), £(0,1) = (1/2,0), and f(1,1) = (1,1), as
shown in Figure 9.

The parabola F is a quadratic curve, but we can—if we choose—view it as a degenerate
example of a cubic. The polar form f given in equation (4) is the 2-polar form of F, that is, the
polar form of F interpreted as a quadratic. When we view F as a degenerate cubic, its polar
form is the unique symmetric, triaffine function g that satisfies the identity g(z,¢,7) = F ().
Computing once again as in Theorem 1, we find that the 3-polar form g of the parabola F is
given by

ut+v+w uwv+uw+vw
>. 5

R

Suppose that we wanted to know the Bézier points of the segment F([0.. 1]), viewed as a
degenerate cubic segment. We can find them by plugging 0 and 1, in all possible ways, into the
3-polar form g, as follows:

2(0,0,0) = (0,0)
(0,0,1) (3,0)
g(()?lvl) = <%’%>
g(1,1,1) = (1,1).

See Figure 10.
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9(0,0,0)]  ¢(0,0,1)

Figure 10: The same segment F([0.. 1]) viewed as a degenerate cubic

Viewing an n-ic curve as a degenerate example of a curve of degree n+ 1 in this way
is called degree raising. To study degree raising via blossoming, we want to determine the
relationship between the n-polar form and (n + 1)-polar form of the same n-ic curve. For
example, let F' be a quadratic curve and let f be its 2-polar form. The 3-polar form g of F
always satisfies

sl = LD TS 2/ 0) ©
To verify this formula, it is enough to observe three things about the expression on the right-
hand side: It is symmetric in the three variables u, v, and w; it is an affine function of each of
those three variables when the other two are held fixed; and it simplifies to F(¢) in the diagonal
case u = v =w = t. Those three conditions mean that the expression on the right-hand side is
a 3-polar form of F, and polar forms are unique.

From equation (6), we can easily derive the rules for degree raising in terms of Bézier
points. For example, as shown in Figure 10 for the case r = 0 and s = 1, the second Bézier

point g(r, r,s) of the (degenerate) cubic segment F([r..s]) is given by

flrr) +2f(rs),
3 ;

g(r,rs) =

that is, g(r,r,s) is two-thirds of the way from f(r,r) to f(r,s).

4.2 The implicit case

Just as polar forms are helpful when analyzing polynomial parametric models of shapes, they
are also helpful when analyzing polynomial implicit models. In the next few paragraphs, we
will consider the implicit case briefly.

As our example, we will take the function H(z) = H((x,y)) := y — x2, which is an implicit
model for the same standard parabola that the function F(¢) = (¢,#%) above models parametri-
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Figure 11: Pole points and polar lines of the parabola H (x,y) =y — x°.

cally. Note that H is a multivariate polynomial of total degree 2. Theorem 1 doesn’t cover the
multivariate case, but the polar form 4 of H that corresponds to a bound of 2 on the total degree
turns out to be given by

h(z1,22) = h({x1,1), (x2,32)) == —X1X2. (7)
The function % is a symmetric, biaffine function from the plane to the line that satisfies the
correspondence identity h(z,z) = H(z).

By the way, in order for h(z;,2;) to be an affine function of the point z; when z; is held
fixed, each term in & can contain either a factor of x| or a factor of y; or neither of them, but
cannot contain both. In the case of H, there was no temptation to include both x; and y; in the
same term of the polar form, since no term of H included both x and y. For a more instructive
example on this point, consider the bivariate polynomial K(z) = K((x,y)) = xy — 1, which
implicitly models the standard rectangular hyperbola. The polar form & of K is given by

k(z1,22) = k({x1,51), (x2,¥2)) := w -1

Returning to the parabolic example of H and s, what characteristics of the functions H and
h are we interested in? The implicit model H associates a gauge value H(z) with each point z
in the plane. This gauge value varies quadratically as the point z varies, and the parabola itself
is the set of all points whose associated gauge value is zero. The polar form 4 of H associates
gauge values with unordered pairs of points (z;,z;). Which pairs (z1,2,) have the property
that i(z,2p) = 0?

If we fix z,, the equation /(z;,z;) = 0 constrains z; to lie on some line, call it /1 := {z; |
h(zy,z2) = 0}. Figure 11 shows three examples. If z, is outside the parabola, as on the left,
then ¢; is the line joining the two points where lines through z, are tangent to the parabola.
Note the similarity between this diagram and Figure 9. If z; lies on the parabola, as in the
middle of Figure 11, then /¢; is the tangent line through z;. And if z; is inside the parabola,
as on the right, then /; lies entirely outside it. (Actually, the right-hand case is just like the
left-hand case, except that, on the right, the two tangents to the parabola from the point z;
touch the parabola at a pair of conjugate, complex points, which don’t appear in our all-real
diagram.) The correspondence between z; and /; is a duality between points and lines called
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the polarity of the conic. Of the dual pair z, and ¢, the point z; is called the pole and the line
¢y is called the polar [18].

Going up by 1 in dimension, an implicit model of a quadric surface in 3-space defines a
duality between pole points and polar planes in a similar way [2].

Going up in degree instead of in dimension, suppose that F : IR? — IR is an implicit model
of an algebraic plane curve C of degree n, for n > 2. The polar form f of F is a symmetric,
n-affine map F: (IR?)" — IR. If we fix k of the polar arguments of f at w; through wy, the
remaining function

(Zks 1y yZn) = f(WLy oo Wi Zpi 1y ooy 2)
is symmetric and (n — k)-affine, and it is hence the polar form of an implicit model of an
algebraic plane curve D of degree n — k. When w| = - - - = w; = w, the curve D is called the k™

polar curve of the pole point w with respect to C; an (n —2)" polar is a conic and an (n — 1)

polar is a line [16]. (I mention this situation partially because I wanted these notes to include at
least one reference to a work from the heyday of polar forms: the late nineteenth century. The
date on reference [16] is 1879.)

One intriguing open question in the field of blossoming is to study the relationships between
the polar forms of parametric and implicit models of the same shape. For an example of
such a relationship, the identity a(f(u,u), f(u,v)) = O relates the polar forms f and & of the
parametric and implicit models of the parabola, given in equations (4) and (7). Note that we
must constrain the universe of possible shapes somewhat if we want each shape to have both a
simple parametric model and a simple implicit model. For example, for curves: A curve must
be rational, that is, of genus zero, in order to have a rational parametric model. It must be planar
in order to be implicitly modeled by a single polynomial—that is, a single gauge value—rather
than by some non-principal ideal.

5 Generalizing the de Casteljau Algorithm

We studied the de Casteljau Algorithm briefly back in Section 2. Given the n+ 1 Bézier points
of a segment F([r..s]) of an n-ic, parametric curve F and given a desired parameter value ¢, the
de Casteljau Algorithm computes the diagonal value F(z) by performing a total of (’;) affine
interpolations, in n successive stages. All of the points that arise during this process are polar
values of the curve F'. For example, in the cubic case, as shown back in Figure 7, we compute
the successive rows of the triangular array:

frnr)  f(nrs) f(rss) f(s,s,s)
frnt)  f(rs,t) f(s,s,1)
flret)  f(s,t,t)
f(e,t,1)
The only difference between this array and the similar array (3) in Section 2 is that, in this

version, the polar arguments appear sorted in alphabetical order, rather than in the numerical
order r <t <s.

8)
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9(0,6,6)

9(6,6,2)

9(0,6,2)

9(0,0,6)

9(0,0,2)

9(0,0,0) 9(0,0,0)

Figure 12: Computing the polar value g(2,3,4) in two different ways

The de Casteljau Algorithm generalizes in several important ways.

First, the new parameter value ¢ can lie outside the interval [r..s], just as well as inside.
When ¢ lies outside [r .. s], the affine interpolations in the de Casteljau Algorithm are actually
affine extrapolations—that is, we must extend the segment joining the two input points, on one
side or the other, in order to locate the output point. For an example, note that we can reinterpret
Figure 7 to be the result of running the de Casteljau Algorithm to compute F(s), starting
from the four Bézier points of the left-hand subsegment F([r..¢]). In this new interpretation,
precisely the same points and lines get drawn, but in a different order.

Second, we can use the de Casteljau Algorithm to compute polar values, just as easily as
diagonal values. Let’s consider the cubic case, for simplicity of notation. Suppose that we are
given the four Bézier points of the cubic segment F([r..s|) and that we want to compute the
polar value f(t;,#,,13). We use each of the three polar arguments to control one stage of affine
interpolations, as follows:

frrnr) f(rnrs) f(rss) f(s,s,s)
fnnty)  f(rs,t1)  f(s,s,11)
f(rnti, ) f(s,t1,0)
f(t1,0,13)

One new phenomenon here is that the various affine interpolations have different controlling
ratios. In particular, the interpolations in the i stage are controlled by the position of #; with
respect to the interval [r.. s].

Figure 12 shows two examples of computing polar values by using the generalized de Castel-
jau Algorithm given in array (9). On the left, we compute the polar value g(2,3,4) from the
Bézier points of the cubic segment G([0.. 6]). On the right, starting from the same four Bézier
points, we compute the polar value g(4,3,2). Of course, the two computations must arrive at
the same result, because the polar form g of G is a symmetric function. But the intermediate
points and lines differ.

)
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Our third generalization of the de Casteljau Algorithm widens the class of possible input
data, instead of widening the class of possible output values. In moving from array (8) to
array (9) above, we replaced the single parameter value ¢ by three independent parameter values
11, 12, and 13. The symmetry of the triangular array suggests that we similarly replace the single
parameter values r and s by triples of independent parameter values (ry,r,r3) and (s1,52,53).
Doing so leads to the following array:

f(ri,ra,m3)  f(ri,r2,s1)  f(r1,s1,82)  f(s1,52,83)
flri,ra, ) f(ri,si,t)  f(s1,82,t)
f(ritt2)  f(s1,t1,12)
f(t1,00,13)

Note the structure of the polar arguments in this array. All rows below the first include a #
among their polar arguments; all rows below the second also include a f;; and the bottom
vertex also includes a 3. In a similar way, all positively sloped diagonals except for the longest
include an ry; all except for the two longest also include an r,; and the upper-left vertex also
includes an r3. And similarly for the negatively sloped diagonals and the s;.

The first step of the computation represented by array (10) computes f(ry,r2,t1) by interpo-
lating between f(r1,r2,r3) and f(ry,r2,s1). The common polar arguments in this interpolation
are r; and rp. As for the varying argument, the two input points correspond to the values 3 and
s1, while the output point corresponds to #1. Thus, the ratio of the interpolation will be deter-
mined by the position of #; with respect to the interval [r3..s;]. Note that we are in trouble if r3
and s; are equal. In that case, we know only one value of the affine function u — f(ry,r,u),
and that one value isn’t enough for us to compute other values by interpolation. Worse yet,
we have two different sources of information about that one value—the first two input points
f(r1,r2,r3) and f(r,rp,s1)—and they may not agree. We therefore rule out the case r3 = s.

Each of the remaining five interpolations in array (10) also requires that we rule out some
equality between an r; and an s, for similar reasons. The following table shows the six neces-
sary disequalities:

(10)

S1 S2 83
n|E|#£|#£
n|#|#

r | #

For general n, we must have r; # s; whenever i+ j < n+1. In typical applications, we actually
have r; < s; for all i and j, which is more than enough.

The following theorem describes our fully generalized version of the de Casteljau Algo-
rithm, the one in array (10).

Theorem 3. Let F' be any n-ic parametric curve, let f be its polar form, and let r| through
rn and sy through s, be any 2n numbers that satisfy the disequality constraints r; # s; for
i+ j <n+1. If we are told the n+ 1 polar values f(ry,...,rn—i,s1,...,5;) of F, foriin[0..n],
we can use the de Casteljau Algorithm to compute an arbitrary polar value f(ty,...,t,) of F
with (}) affine combinations.
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9(3,4,7) 9(4,5,7) 9(4,7,8)

Figure 13: The de Boor case of the de Casteljau Algorithm

This generalized form of the de Casteljau Algorithm arises in the context of spline curves,
where it is called the de Boor Algorithm. Although splines are properly the topic of later
lectures, Figure 13 shows one example of the de Boor Algorithm in action.

Suppose that F is a cubic spline curve whose knot sequence runs, in part,
(...,2,3,4,7,8,9,...). (11)

Over each interval between pairs of adjacent knots, the spline F follows a segment of some
cubic polynomial curve. Figure 13 shows the segment G([4 ..7]) that the spline F follows over
the parameter interval [4 .. 7] between the central pair of knots in (11). The dashed curves in
Figure 13 show the continuations of the cubic polynomial curve G on either side of the interval
[4..7]. Fort < 4 and for t > 7, the spline F follows segments of other cubic curves, which are
not shown.

Four adjacent control points of the spline curve F influence the segment F([4..7]) = G([4..
7]), and it turns out that those four control points are all polar values of the influenced curve G,
each with a consecutive triple of knots from the sequence (11) as its list of polar arguments. In
particular, the four polar values g(2,3,4), g(3,4,7), g(4,7,8), and g(7,8,9) turn out to be four
adjacent control points of the spline F'. Suppose that we know those control points and that we
want to compute F(5) = G(5). As shown in Figure 13, we are in a fine position to apply the
generalized de Casteljau Algorithm of Theorem 3 with:

rn=4 s;=7 =5
m=3 =8 H=5
r3=2 s3=9 1=5

In particular, the four input points required by the de Casteljau Algorithm with those parameters
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are precisely the four control points that we know:

g(ri,r,r) g(4,3,2) =g(2,3,4)
g(ri,m,s1) = g(4,3,7)=¢(3,4,7)
glri,s1,2) = g(4,7,8)=g(4,7,8)
g(s1,52,53) = g(7,8,9)=¢(7,8,9)

Warning: Note that the parameters ry, rp, and r3 must be indexed in reverse numerical order in
order to make this work.

6 Polar interpolation

One unpleasant characteristic of Theorem 3 is that we have to start off knowing an n-ic curve
F before we can apply the theorem. Suppose that Py through P, are n+ 1 arbitrary points in our
object space. What we would prefer to do is to use the constraints f(ry,...,rn—i,81,...,8;) = P,
for i in [0.. n] as a way of choosing which curve F we are interested in. In order to make that
procedure valid, we have to prove that those constraints always determine a unique curve F of
degree at most n. That is, we have to prove the following theorem—our last challenge for this
first lecture.

Theorem 4. Let Q be an affine object space, let Py through P, be any n+ 1 points in Q,
and let ry through r, and sy through s, be any 2n numbers with r; # s; for i+ j < n+1.
There exists a unique parametric curve F' of degree at most n that satisfies the constraints
f(rl,...,rn,,-,sl,...,s,-) :P,-foriin [Ol’l]

To understand what this theorem means, consider the special case where all of the r; are
equal, say equal to r, and all of the s; are equal, say equal to s, with r <s. In that special
case, the polar values that appear in the constraints are simply the Bézier points of the segment
F([r..s]). Thus, the theorem says the following: Given any n+ 1 points and given r and s with
r < s, there exists a unique n-ic curve segment F ([r..s]) that has those n+ 1 points as its Bézier
points. That is surely true, and, indeed, pre-blossoming approaches give various proofs. Our
goal in this section is to give a proof based on blossoming.

For a different perspective on Theorem 4, recall the Lagrange Interpolation Formula. Given
n -+ 1 distinct numbers #y through ¢, and n + 1 arbitrary points Py through P,, we can construct
a parametric curve F of degree at most n that satisfies the interpolation constraints F(t;) = P,
for i in [0..n] by using the Lagrange Interpolation Formula on each coordinate polynomial
separately. That is, we can specify an n-ic curve F by specifying n+ 1 of its diagonal values.
Theorem 4 says something very similar, except that the specified values are polar values instead
of diagonal values. Thus, Theorem 4 is actually a result about polar interpolation, which is
the process of specifying a polynomial by giving certain polar values that it must—to stretch a
term—pass through.
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Figure 14: Three dependent polar values of the parabola F (¢) = {¢,1%)

In the case of Lagrange-style, diagonal interpolation, there is a condition on the n + 1
diagonal arguments ¢y through #,: They must be distinct. In a similar way, in the polar case,
we have to put some conditions on the n+ 1 lists of polar arguments in order to make it safe to
specify the corresponding polar values independently. For example, when n = 2, it wouldn’t
make sense to specify a quadratic curve by independently specifying the three polar values
£(0,0), £(0,1), and f(0,2). Any two of those values determine the third, so the three are not
independent. Theorem 4 gives a condition on n + 1 lists of polar arguments that is sufficient to
guarantee that the corresponding polar values are independent.

By the way, not all dependencies between polar values are as obvious as the dependency
between f(0,0), £(0,1), and f(0,2). One example of a less obvious dependency is the follow-
ing, again in the quadratic case: The polar value f (—%, %) is always the midpoint of the line

joining f(—1,1) to f(—1,1). Figure 14 illustrates this for the standard parabola F (¢) = (¢,7%).

Theorem 4 claims that a unique interpolating n-ic curve F’ will exist. The uniqueness part of
this claim is quite easy to prove. If F' is any n-ic curve that satisfies f(ry,. .., m—i,S1,...,5;) = P;
foriin [0..n], we can use the generalized de Casteljau Algorithm of Theorem 3 to compute any
polar value of F' that we like by doing affine interpolations, starting with the P,. Hence, all of
the polar values of F and, in particular, all of the diagonal values of F' are uniquely determined.
That is more than enough to determine F uniquely.

The hard part of proving Theorem 4 is proving that some interpolant F' exists. Most peo-
ple’s first instinct is to prove the existence of F’ by explicitly constructing F', using the de Castel-
jau Algorithm. That technique can be made to work, but things get pretty messy. Certainly,
for any list of polar arguments (71,...,t,), we can carry out the de Casteljau Algorithm and
figure out what the polar value f(z1,...,t,) would have to be, if an interpolating curve F did
exist. Let ¢(t1,...,t,) denote the value that comes out of the de Casteljau Algorithm. It’s pretty
easy to see that ¢ will be a multiaffine function. But it takes a fair amount of work to show
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that the function ¢ will be symmetric, and hence the polar form of some n-ic curve C. And it
takes more work to show that the curve C so constructed does interpolate, that is, that we have
c(riy...yrn—iyS1,-..,8;) = P;foralliin [0..n].

Fortunately, there is a slicker and easier way to prove the existence of an interpolant F':
Count the degrees of freedom involved. As has been our custom in these notes, let’s carry out
that slicker proof in the case n = 3, for notational convenience; the same ideas work for any n.

Each coordinate of a parametric curve is independent of the other coordinates. Thus, in
proving Theorem 4, it suffices to consider the case where the object space Q is simply IR. In
the cubic case with Q = IR, we are given 4 arbitrary real numbers pg through p3, and we want
to prove that there exists some cubic polynomial F whose polar form f satisfies the four polar
interpolation constraints

f(ri,r2,13) = po
f(ri,r2,81) = p1
f(ri,s1,52) = p2 (12)

f(s1,82,53) = p3.
Using undetermined coefficients, the generic cubic polynomial can be written F(¢) = at> +
3bt? + 3ct + d; we included extra factors of 3 in the middle two coefficients in order to avoid
denominators in the polar form f of F, which is therefore given by

flu,v,w) = auvw +b(uv+uw+ww) +c(u+v+w)+d.

Substituting this formula for f into any one of the four interpolation constraints in (12) gives
an affine equation (what most people would call a non-homogeneous, linear equation) on the
unknown coefficients a, b, ¢, and d. Overall, the polar interpolation constraints (12) turn into a
system of equations of the form

mop mor Moy m3\ [a Po
myg myy miz mi3 || b| _ | p . (13)
mpoy mp1 mpy M3 c p2
my m3; mz m3z) \d P3

From the de Casteljau Algorithm, we know that solutions to this system of equations are
unique. In particular, if we set pg = p; = p» = p3 = 0, the only corresponding solution is the
trivial solution a = b = ¢ = d = 0. From this, it follows that the columns of the coefficient
matrix M = (m;;) in equation (13) are linearly independent. But M is a square matrix: If its
columns are linearly independent, then it is invertible. Thus, for any vector (pg, p1, p2, p3) of
given data, a vector (a, b, c,d) of coefficients will exist that makes the polar form f of F' satisfy
the interpolation constraints (12). And that completes the slick proof of Theorem 4.

In the proof above, we didn’t bother to express the matrix elements m;; explicitly in terms
of the parameters r; and s;. But doing so is not difficult. Here is the explicit form of the matrix
M:

rirari3
rirasi
r18152
515253

rr2+rir3+rar3
riry+ris1 +ras
r1s1+r152+ 85152
§182 + 8153 + 5253

ri+nrn—4+r3
r+ry+ s
r+s1+s2
S1+ 852+ 53

S G S Y
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From this, we can compute the determinant of M, which turns out to be

det(M) = (r1 —s1)(r1 —s2)(r1 —3)(r2 — s1) (r2 — 82) (r3 — 51).

Note that our assumption in Theorem 4 that r; # s; for i+ j <n+1 is just enough to guarantee
that det(M) is nonzero. That is, we didn’t assume any more than we had to.

Computing the explicit form of the matrix M for general n and evaluating its determinant
makes an interesting exercise in linear algebra. Furthermore, the solution to that exercise pro-
vides a proof of Theorem 4 that does not involve the de Casteljau Algorithm.

7 One last formula

I can’t resist tacking on one last pretty formula. If F is a cubic curve and f is its polar form,
de Casteljau discovered that

(v—u)’F(w)
3w—u)(u—v) 3w—v)(v—u) 3v—w)(w—u)

(14)

This equation expresses the generic polar value f(u,v,w) as an affine combination of the three
diagonal values F (u), F(v), and F (w), with coefficients that are rational functions of u, v, and
w. Among other things, this formula implies that the four points F(0), F(¢), F(1),and f(0,z,1)
in Figure 1 must be coplanar, even when F is a twisted cubic in space—something which is far
from obvious.

Similar pretty formulas for computing polar values exist for each odd value of n; when
n = 1, for example, we have the pretty but trivial formula f(z) = F(¢). The corresponding
formulas for even n aren’t quite so pretty [2].
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