
CS348a: Computer Graphics Handout # 6
Geometric Modeling and Processing
Stanford University Monday, 27 February 2017

Homework #4: Mesh simplification and expressive rendering [95 points]
Due Date: Wednesday, 15 March 2017 in class — no late days will be available for

this homework

This is the last homework of CS 348a, consisting of one programming problem in three
parts. It is a more open-ended assignment compared to the earlier ones, allowing you to
combine the modeling and algorithmic tools you have learned about in a variety of ways. The
parts are designed to be worked on in parallel, but do get started as early as possible since
each part is challenging!

Problem 1. [95 points]

Geometric Features for Non-photorealistiic Rendering
In this project you will implement a pipeline for rendering interesting features on a 3D mesh.
You first will decimate the mesh to a smaller number of triangles, so that fewer triangles need to
be processed in the second part of the project. Then, you will implement part of a technique for
finding “suggestive contours” highlighting key geometric features of the object being modeled.
Finally, you will extend the system to have additional capabilities of your choosing.

Mesh Decimation

In this part of the final project, you will implement surface decimation using the method pro-
posed in Garland and Heckbert’s “Surface Simplification Using Quadric Error Metrics” (SIG-
GRAPH 1997). The algorithm proceeds as follows:

1. Compute and save an initial quadric approximating the surface near each vertex.

2. Compute collapse priorities for each of the vertices by summing quadrics.

3. Merge adjacent pairs of vertices by collapsing halfedges when such a collapse is valid
and preferable according to the priority value.

You are provided with two starter files, src/decimation.cpp and include/
decimation.h. The simplify function performing the decimation takes a mesh in halfedge
format and the desired ratio between the initial and final vertex count (a float value ≤ 1).

Decimation algorithm: The decimation algorithm uses a quadric error measure to collapse
halfedges. Given an edge e joining vertices s and t, a halfedge collapse pulls s into t, removing
s, e and the two triangles adjacent to e. This operation is illustrated in Figure 1.

The decimation algorithm operates on the following principles:



2 CS348a: Handout # 6

Figure 1: Halfedge collapse

1. A pair of vertices may be collapsed to a single vertex only if they are connected by an
edge and they do not result in a triangle flip. This condition is checked by calling the
is_collapse_legal() function.

2. A halfedge h = s→ t will be assigned a priority priority(h) based on the quadric error
metric. We assign a priority to every vertex s such that the priority of s is equal to that of
the halfedge leaving from s having minimum priority:

priority(x) = min
h=s→t

priority(h)

Label the opposite vertex of the minimal halfedge as t, that is, t = target(s).

3. We will store a priority queue of vertices instead of halfedges so that each vertex has a
priority based on the quality of the quadric approximation and a target t.

4. In the main loop of the algorithm, we release the vertex s having the minimum priority
from the queue. Then the halfedge, s→ target(s) is collapsed so that s coincides with
t = target(s). The properties of t and other affected vertices are updated in the queue.

Computing quadrics: Each triangular face is associated with a quadric measuring squared
distance to the plane defined by its vertices. Then, the quadric associated with a vertex p is the
sum of the quadrics of its adjacent triangles. In particular, these quadrics are given by a sum of
squared distances:

∑
i

dist(qi, p)2 = ∑
i

p>Qi p = p>
(

∑
i

Qi

)
p≡ p>Qp

where p = (x,y,z,1)> is the homogeneous coordinates of the vertex p, qi = (ai,bi,ci,di)
> the

unit length vector containing the coefficients of qi’s plane equation aix+biy+ciz+di = 0, and
the matrix Qi is given by Qi = qiq>i . Use the quadric structure is located in decimation.h.

(a) (10 points) Complete the initialize() function in decimation.cpp so
that it calculates vertex quadrics from the quadrics of the incident triangles.



CS348a: Handout # 6 3

(a) (b) (c)

Figure 2: (a) An input mesh, (b) the mesh simplified to 50% of its vertices, and (c) the mesh
simplified to 10% of its vertices.

(b) (10 points) Compute the priority of a halfedge using the sum of its two end-vertex
quadrics and return it in the function compute_priority().

(c) (15 points) Implement the main loop of the decimate() function. In every
iteration there are three steps:

1. Take the vertex with the lowest priority from the queue by calling the top()
and pop() function.

2. The vertex priority values in the queue can be outdated. Check whether the
halfedge is valid using is_vertex_priority_valid() function.

3. If the corresponding collapse is legal (using the is_collapse_valid()
function), then collapse the halfedge corresponding to this vertex.

4. Update the properties of the vertices in the queue whose adjacent triangles
have been changed using the enqueue_vertex() function.

It may be useful to check your output using a mesh viewer such as MeshLab, which can
be downloaded for free from http://meshlab.sourceforge.net. Your final result
should look like Figure 2 for the simplification to 50% and 10% of the vertex count of the
homer.off mesh.

Rendering Suggestive Contours

Now that you have simplified the mesh to a reasonable number of triangles, we will use
our principal curvatures and directions from the last assignment to implement a rudimentary
method for finding curve features on meshes based on “Suggestive Contours for Conveying
Shape” by DeCarlo et al. (SIGGRAPH 2003).

Your first task is simple: Import your code from the last homework for computing principal
curvatures and directions. This code should be stable to make sure that the remaining parts of
the program work as advertised. If you have switched project groups since the last assignment,
you can use any group member’s code.



4 CS348a: Handout # 6

“Suggestive Contours” is an example of a method for nonphotorealistic rendering, a class
of techniques for rendering meshes by emphasizing interesting features rather than applying
the physics of light. We will be implementing a part of the paper for finding two types of
contours on the surface that highlight what the surface looks like from a given camera angle.
Our mesh simplification from the first part of the assignment will allow us to preview these
curves in real time.

We will first identify silhouette edges on our input meshes. These edges denote the bound-
aries between visible and invisible parts of a mesh.

(d) (5 points) Complete the isSilhouette function in src/mesh_features.cpp.
The definition of a silhouette edge is one for which one neighboring triangle points
toward the camera and the other points away. Also, complete isSharpEdge to
detect edges for which the dot product of the normals of the adjacent faces is less
than 1/2.

In the starter code, you can make the mesh invisible by press-
ing s; note that the mesh still is rendered in white to remove hid-
den lines. You should still see an silhouette curves as shown on
the right. These curves obviously are important for conveying
the shape of a 3D object, but are far from enough for communi-
cating important geometric detail.

Suggestive contours make use of the mesh curvature for find-
ing additional expressive features. In particular, take a point p
on a surface. Take v to be the vector pointing from p to the viewer, and let w be its projection
onto the tangent plane S at p normalized to unit length. From Assignment 3, we know how to
compute κw (denoted κr in the DeCarlo paper), the curvature of the surface in the w direction.

(e) (5 points) Complete the computeViewCurvaturemethod in src/curvature.cpp.
To do so, compute κw at each vertex of the mesh, and store the result in the mesh
property viewCurvature.

A suggestive contour is a zero crossing of κw (in our nota-
tion). Since we have one value of κw per vertex of the mesh,
the zero crossings will happen along the edges – that is, if you
linearly interpolate κw along an edge using the values at its ver-
tices, if there is a sign change then somewhere in between the
view curvature will be zero. Triangles for which κw has different
signs on different vertices will contain such edges; the sugges-
tive contour can be thought of as a line segment connecting the
κw = 0 points on the edges.

As explained in the paper, you should only show those contours for which the deriva-
tive of κw in the w direction — notated Dwκw — is positive. We provide code for com-
puting the gradient of κw on the mesh as one vector per face and adding it to the property



CS348a: Handout # 6 5

viewCurvatureDerivative. Take the dot product of this gradient and w to obtain the
directional derivative Dwκw.

(f) (20 points) Complete the renderSuggestiveContoursmethod in src/main.cpp.
To do so, determine which faces will have suggestive contours running across
them, and then draw segments across these faces. As proposed in the paper, you
should eliminate curves where Dwκw is positive but small and ones where the an-
gle between the surface normal and the view vector is small.

Additional Features

The final part of the project will be more open-ended. We would like you to add an additional
geometric feature to the rendering system to improve or extend it:

(g) (30 points) Add an additional feature.

You are welcome to contact the course staff with ideas or to help figure out what will be
feasible or interesting for this part of the project.

In case you’re low on ideas, we have provided you with starter code for one potential
extension. In particular, our viewer shows feature curves as chains of line segments, but we’d
like to see smooth curves. So, in src/image_generation.cpp we have provided code
to help generate 2D images with small numbers of smooth curves instead of large numbers of
3D line segments. In particular, we provide you with a method toImagePlane to take 3D
points and convert them to 2D image locations (the third coordinate is the depth buffer value)
and an additional method isVisible using the depth buffer to check if a 3D point is visible.1

In this additional feature, you should generate a .svg file in the writeImage function
containing a curve-based drawing of the mesh. Project feature line segments from the second
part of the assignment to curves on the image plane and remove segments that are invisible.
Then, propose a method to replace the long chains of line segments with approximations us-
ing polynomial curves. The svg format has a path element that will be useful here. Your
final output should be viewable in Inkscape, an open source image editor you can download.
Note this is a difficult problem, so your final writeup should include a discussion when your
technique works and when it fails.

Other ideas include:

• Eliminate spurious feature curves that are too short or uninteresting. Smooth out the
remaining curves before rendering them in OpenGL.

• Trace principal curves (curves whose tangents are principal directions T1 or T2) along
the surface to obtain additional feature curves. Propose a way for choosing a set of
“interesting” principal curves, since two exist starting at any point.

1This method is highly inaccurate and should be replaced for more accurate visibility detection! You may
choose to implement a more complex geometric visibility technique that doesn’t read the OpenGL depth buffer,
or you can add tolerances to render slightly less-than-visible points.



6 CS348a: Handout # 6

• Use the principal curvatures or other geometric features to shade or texture the mesh in
a way that makes it easier to see key features.

• Implement a more stable principal curvature computation method and explore whether it
improves the suggestive contours.

• Animate the mesh as it rotates, and identify stable suggestive contours during this motion
so that the animation looks stable.

You are provided with an OpenMesh tutorial with this homework. You can use it to better
understand OpenGL syntax before beginning to work on the assignment.

What you will be given
You will be provided with meshes in .off format, with the assumption that each mesh is
fairly smooth and non-degenerate. Some sample meshes have been provided in the models/
directory of the starter code.

What to hand in
Remember that in programming assignments you are allowed to work in teams of up to three
students, and that each team needs to hand in only a single write up. On Friday morning, 10
March 2017, you will receive the actual test data that will be used for grading. On or before
the due date, you must submit the following:

• Final version of your source code

• Images demonstrating the capabilities of your program

• Paper write-up: Give an overview of your program and explain how your algorithms
work.

We will set up time periods on Friday, 17 March 2017, during which you will have to demo
your program to the instructor and the CA.


