CS348a: Geometry Processing

Reconstruction / Fairing (also: Laplace-Beltrami)

March 13, 2017

Olga Diamanti

In Previous Lecture

Point cloud registration

This Lecture

Point clouds not directly usable by most CG applications
 Rendering, editing/deformation, texturing, simulation, …!
 Need a semi-"continuous" surface instead!

3

This Lecture

Point clouds not directly usable by most CG applications
 Rendering, editing/deformation, texturing, simulation, …!
 Need a semi-"continuous" surface instead!

3

Input to Reconstruction Process

Input option 1: just a set of 3D points, irregularly spaced

◆Need to estimate normals
 → reminder: PCA - intro class!
 → Hoppe et al. 92, "Surface reconstruction from unorganized points"

Input to Reconstruction Process

Input option 1: just a set of 3D points, irregularly spaced

◆Need to estimate normals
 → reminder: PCA - intro class!
 → Hoppe et al. 92, "Surface reconstruction from unorganized points"

Input option 2: normals come from the range scans

set of raw scans

reconstructed model

Explicit representation

Image of parameterization

 $f(t) = (x(t), y(t)) = (r \cos(t), r \sin(t))$

Explicit representation Image of parameterization $f(t) = (x(t), y(t)) = (r \cos(t), r \sin(t))$

Implicit representation

 Zero set of distance function

$$F\left(x,y\right)=\sqrt{x^{2}+y^{2}}-r$$

Explicit representation Image of parameterization $f(t) = (x(t), y(t)) = (r \cos(t), r \sin(t))$

Implicit representation

 Zero set of distance function

$$F\left(x,y\right)=\sqrt{x^{2}+y^{2}}-r$$

Explicit representation Image of parameterization $f(t) = (x(t), y(t)) = (r \cos(t), r \sin(t))$

Implicit representation

 Zero set of distance function

$$F\left(x,y\right)=\sqrt{x^{2}+y^{2}}-r$$

Explicit representation

Image of parameterization

$$f(t) = (x(t), y(t)) = (r \cos(t), r \sin(t))$$

Implicit representation

 Zero set of distance function

$$F\left(x,y\right) = \sqrt{x^2 + y^2} - r$$

• Explicit representation – Image of parameterization

Implicit representation

 Zero set of distance function

Explicit representation

- Image of parameterization
- Easy to find points on shape

Implicit representation

 Zero set of distance function

Explicit representation

- Image of parameterization
- Easy to find points on shape
- Can defer problems to param domain

Implicit representation Zero set of distance function

Explicit representation

- Image of parameterization
- Easy to find points on shape
- Can defer problems to param domain

Implicit representation

- Zero set of distance function
- Easy in/out/distance test

Explicit representation

- Image of parameterization
- Easy to find points on shape
- Can defer problems to param domain

Implicit representation

- Zero set of distance function
- Easy in/out/distance test
- Easy to handle different topologies

Implicit Representations

Easy to handle different topologies X

How to Connect the Dots?

Explicit reconstruction: stitch the range scans together

"Zippered Polygon Meshes from Range Images", Greg Turk and Marc Levoy, ACM SIGGRAPH 1994

How to Connect the Dots?

Explicit reconstruction:

stitch the range scans together

- Connect sample points by triangles
- Exact interpolation of sample points
- Bad for noisy or misaligned data
- Can lead to holes or non-manifold situations

•Define a function $f: R^3 \rightarrow R$ with value < 0 outside the shape and > 0 inside

•Define a function $f: R^3 \rightarrow R$ with value < 0 outside the shape and > 0 inside

•Define a function $f: R^3 \rightarrow R$ with value < 0 outside the shape and > 0 inside

11

•Define a function $f: R^3 \rightarrow R$ with value < 0 outside the shape and > 0 inside

$$\{x: f(x) = 0\}$$

•Define a function $f: R^3 \rightarrow R$ with value < 0 outside the shape and > 0 inside

Extract the zero-set

 $\{x: f(x) = 0\}$

How to Connect the Dots?

Implicit reconstruction: estimate a signed distance function (SDF); extract 0-level set mesh using Marching Cubes

- Approximation of input points
 - Watertight manifold results by construction

Implicit vs. Explicit

Input

Implicit

Explicit

Compute signed distance to the tangent plane of the closest point

Normals help to distinguish between inside and outside

Compute signed distance to the tangent plane of the closest point

Normals help to distinguish between inside and outside

Compute signed distance to the tangent plane of the closest point

$$f(x) = (x - p)^T \mathbf{n}_p$$

Compute signed distance to the tangent plane of the closest point

$$f(x) = (x - p)^T \mathbf{n}_p$$

 \mathbf{X}

Compute signed distance to the tangent plane of the closest point

$$f(x) = (x - p)^T \mathbf{n}_p$$

 \mathbf{X}

Compute signed distance to the tangent plane of the closest point

$$f(x) = (x - p)^T \mathbf{n}_p$$

 The function will be discontinuous

Smooth SDF

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

Smooth SDF

Scattered data interpolation:

 $F(\mathbf{p}_i) = 0$ F is smooth Avoid trivial $F \equiv 0$

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

Radial Basis Function Interpolation

RBF: Weighted sum of shifted, smooth kernels

$$F(\mathbf{x}) = \sum_{i=0}^{N-1} w_i \varphi(\|\mathbf{x} - \mathbf{c}_i\|) \quad N = 3n$$

Scalar weights **Unknowns**

Smooth kernels (basis functions) centered at constrained points. For example: $\varphi(r)=r^3$

Interpolate the constraints: $\{\mathbf{c}_{3i}, \mathbf{c}_{3i+1}, \mathbf{c}_{3i+2}\} = \{\mathbf{p}_i, \ \mathbf{p}_i + \varepsilon \mathbf{n}_i, \ \mathbf{p}_i - \varepsilon \mathbf{n}_i\}$ N-1 $\forall j = 0, \dots, N-1, \quad \sum w_i \varphi(\|\mathbf{c}_j - \mathbf{c}_i\|) = d_j$ i=00 $F(\mathbf{p}_i) = 0$ $F(\mathbf{p}_i + \varepsilon \mathbf{n}_i) = \varepsilon$ $F(\mathbf{p}_i - \varepsilon \mathbf{n}_i) = -\varepsilon$

Interpolate the constraints: $\{\mathbf{c}_{3i}, \mathbf{c}_{3i+1}, \mathbf{c}_{3i+2}\} = \{\mathbf{p}_i, \mathbf{p}_i + \varepsilon \mathbf{n}_i, \mathbf{p}_i - \varepsilon \mathbf{n}_i\}$

Symmetric linear system to get the weights: $\begin{pmatrix} \varphi(\|\mathbf{c}_0 - \mathbf{c}_0\|) & \dots & \varphi(\|\mathbf{c}_0 - \mathbf{c}_{N-1}\|) \\ \vdots & \ddots & \vdots \\ \varphi(\|\mathbf{c}_{N-1} - \mathbf{c}_0\|) & \dots & \varphi(\|\mathbf{c}_{N-1} - \mathbf{c}_{N-1}\|) \end{pmatrix} \begin{pmatrix} w_0 \\ \vdots \\ w_{N-1} \end{pmatrix} = \begin{pmatrix} d_0 \\ \vdots \\ d_{N-1} \end{pmatrix}$

> 3n equations 3n variables 22

RBF Kernels

$$\varphi(r) = r^3$$

Triharmonic: Globally supported Leads to dense symmetric linear system C² smoothness Works well for highly irregular sampling

RBF Kernels

Polyharmonic spline

•
$$\varphi(r) = r^k \log(r), \ k = 2, 4, 6 \dots$$

• $\varphi(r) = r^k, \ k = 1, 3, 5 \dots$

Gaussian

$$\varphi(r) = e^{-\beta r^2}$$

B-Spline (compact support)

 $\varphi(r) = \text{piecewise-polynomial}(r)$

RBF Reconstruction Examples

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

Off-Surface Points

Insufficient number/ badly placed off-surface points Properly chosen off-surface points

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

Comparison of the various SDFs so far

Distance to plane Compact RBF

Global RBF Triharmonic

RBF – Discussion
• Global definition!
$$F(\mathbf{x}) = \sum_{i=0}^{N-1} w_i \varphi(||\mathbf{x} - \mathbf{c}_i||)$$

 $\begin{pmatrix} \varphi(||\mathbf{c}_0 - \mathbf{c}_0||) & \cdots & \varphi(||\mathbf{c}_0 - \mathbf{c}_{N-1}||) \\ \vdots & \ddots & \vdots \\ \varphi(||\mathbf{c}_{N-1} - \mathbf{c}_0||) & \cdots & \varphi(||\mathbf{c}_{N-1} - \mathbf{c}_{N-1}||) \end{pmatrix} \begin{pmatrix} w_0 \\ \vdots \\ w_{N-1} \end{pmatrix} = \begin{pmatrix} d_0 \\ \vdots \\ d_{N-1} \end{pmatrix}$
• Global optimization of the weights, even if the basis functions are local

Solve the linear system for RBF weights Hard to solve for large number of samples

Solve the linear system for RBF weights
 Hard to solve for large number of samples

Compactly supported RBFs
 Sparse linear system
 Efficient solvers
 .. but less smooth!

Solve the linear system for RBF weights
 Hard to solve for large number of samples

Compactly supported RBFs
 Sparse linear system
 Efficient solvers
 .. but less smooth!

Greedy RBF fitting
 Start with a few RBFs only
 Add more RBFs in region of large error

Solve the linear system for RBF weights
 Hard to solve for large number of samples

Compactly supported RBFs
 Sparse linear system
 Efficient solvers
 .. but less smooth!

Greedy RBF fitting
 Start with a few RBFs only
 Add more RBFs in region of large error

Even better: Moving Least Squares! (maybe later....)

Extracting the Surface

Wish to compute a manifold mesh of the level set

Example: Reconstruction

Other Methods

Better use of normals: [Shen et al. SIGGRAPH 2004]

Poisson Reconstruction : Kazhdan et al., SGP 2006 <u>http://www.cs.jhu.edu/~misha/Code/</u> <u>PoissonRecon/</u>

Smoothing & Remeshing– Motivation

Scanned surfaces can be noisy

Smoothing & Remeshing– Motivation

Marching Cubes meshes can be ugly

Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768 - 1830

Represent a function as a weighted sum of sines and cosines (basis functions)

basis functions

weighted sum

Joseph Fourier 1768 - 1830

$$f(x) = a_0 + a_1 \cos(x)$$

Coefficients : co-integrate function with basis

Represent a function as a weighted sum of sines and cosines (basis functions)

basis functions

weighted sum

Joseph Fourier 1768 - 1830

$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x)$$

Coefficients : co-integrate function with basis

Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768 - 1830

$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x) + a_3 \cos(5x)$$

Coefficients : co-integrate function with basis

Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768 - 1830

 $f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x) + a_3 \cos(5x) + a_4 \cos(7x) + \dots$ Coefficients : co-integrate function with basis

More generally - Fourier analysis

 $\bullet Inner \text{ product for } L^2 \text{ function space } \langle f,g \rangle := \int_{-\infty}^{\infty} f(x) \overline{g(x)} \, dx$

Orthonormal basis : complex "waves"

 $e_u(x) := e^{i2\pi ux} = \cos(2\pi ux) - i\sin(2\pi ux)$

More generally - Fourier analysis

 $\bullet Inner \text{ product for } L^2 \text{ function space } \langle f,g \rangle := \int_{-\infty}^{\infty} f(x) \overline{g(x)} \, \mathrm{d}x$

Orthonormal basis : complex "waves"

 $e_u(x) := e^{i2\pi ux} = \cos(2\pi ux) - i\sin(2\pi ux)$

More generally - Fourier analysis Inner product for L² function space $\langle f,g \rangle := \int_{-\infty}^{\infty} f(x) \overline{g(x)} \, dx$ Orthonormal basis : complex "waves" $e_u(x) := e^{i2\pi ux} = \cos(2\pi ux) - i\sin(2\pi ux)$ $F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \omega x} dx$ **Fourier Transform Spatial** Frequency Domain Domain

More generally - Fourier analysis Inner product for L² function space $\langle f,g \rangle := \int_{-\infty}^{\infty} f(x) \overline{g(x)} \, dx$ Orthonormal basis : complex "waves" $e_u(x) := e^{i2\pi ux} = \cos(2\pi ux) - i\sin(2\pi ux)$ $F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \omega x} dx$ **Fourier Transform Spatial** Frequency Domain Domain **Inverse Transform** $f(x) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega x} d\omega$ 39

We can also Fourier on rectangular 2D domains

Fourier (DCT) basis functions for 8x8 grayscale images $\cos(2\pi\omega_h)\cos(2\pi\omega_v)$

Smoothing = filtering high frequencies out

spatial domain

frequency domain

Spatial domain $f(x) \rightarrow$ Frequency domain F(u) $F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx$

 Multiply by low-pass filter G(u)

 $F(u) \ \leftarrow \ F(u) \cdot G(u)$

◆ Frequency domain *F*(*u*) →
Spatial domain *f*(*x*) *f*(*x*) = $\int_{-\infty}^{\infty} F(u) e^{i2\pi ux} du$

Smoothing = filtering high frequencies out

Smoothing = filtering high frequencies out

spatial domain

frequency domain

Spatial domain $f(x) \rightarrow$ Frequency domain F(u) $F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx$

$$F(u) \leftarrow F(u) \cdot G(u)$$

Frequency domain $F(u) \rightarrow$ Spatial domain f(x) $f(x) = \int_{-\infty}^{\infty} F(u) e^{i2\pi ux} du$

•So far, our functions have been defined on parameterized patches f(u,v)

• Generalize to meshes!

•So far, our functions have been defined on parameterized patches f(u,v)

• Generalize to meshes!

•Fourier basis functions are eigenfunctions of the (standard) Laplace operator $\Delta: L^2 \rightarrow L^2$

$$\Delta \left(e^{2\pi i\omega x} \right) = \frac{\partial^2}{\partial x^2} e^{2\pi i\omega x} = -(2\pi\omega)^2 e^{2\pi i\omega x}$$

•So far, our functions have been defined on parameterized patches f(u,v)

• Generalize to meshes!

•Fourier basis functions are eigenfunctions of the (standard) Laplace operator $\Delta: L^2 \rightarrow L^2$

$$\Delta \left(e^{2\pi i\omega x} \right) = \frac{\partial^2}{\partial x^2} e^{2\pi i\omega x} = -(2\pi\omega)^2 e^{2\pi i\omega x}$$

We need a discrete (mesh-based) version of this operator!

Continuous Laplace Operator $f: \mathbb{R}^3 \to \mathbb{R} \qquad \Delta f: \mathbb{R}^3 \to \mathbb{R}$

Continuous Laplace Operator $f: \mathbb{R}^3 \to \mathbb{R} \qquad \Delta f: \mathbb{R}^3 \to \mathbb{R}$ Laplace operator function in **Euclidean space**

Continuous Laplace Operator

Continuous Laplace Operator

Continuous Laplace Operator

Continuous Laplace-Beltrami Operator

Extension of Laplace operator to functions on manifolds

$$f: \mathcal{M} \to \mathbb{R} \qquad \Delta f: \mathcal{M} \to \mathbb{R}$$

Continuous Laplace-Beltrami Operator

Extension of Laplace operator to functions on manifolds

$$f: \mathcal{M} \to \mathbb{R} \qquad \Delta f: \mathcal{M} \to \mathbb{R}$$

Continuous Laplace-Beltrami Operator

Extension of Laplace operator to functions on manifolds

$$f: \mathcal{M} \to \mathbb{R} \qquad \Delta f: \mathcal{M} \to \mathbb{R}$$

Laplace-Beltrami $\Delta_{\mathcal{M}} f = \operatorname{div}_{\mathcal{M}} \nabla_{\mathcal{M}} f$ function on surface *M* $\operatorname{divergence operator}$

So for Laplacian, we need differential quantities (gradient, divergence...)

So for Laplacian, we need differential quantities (gradient, divergence...)

Assumption: meshes are piecewise linear approximations of smooth surfaces

- So for Laplacian, we need differential quantities (gradient, divergence...)
- Assumption: meshes are piecewise linear approximations of smooth surfaces

Can try fitting a smooth surface locally (say, a polynomial) and find differential quantities analytically

- So for Laplacian, we need differential quantities (gradient, divergence...)
- Assumption: meshes are piecewise linear approximations of smooth surfaces
- Can try fitting a smooth surface locally (say, a polynomial) and find differential quantities analytically
- But: it is often too slow for interactive setting and error prone

Discrete Differential Operators

Approach: approximate differential properties at point v as spatial average over local mesh neighborhood N(v) where typically

•v = mesh vertex

 $\bullet N_k(\mathbf{v}) = k$ -ring neighborhood

Discrete Laplace-Beltrami

• Uniform discretization: L(f) or Δf

$$\Delta f(\mathbf{v}) = \sum_{v_j \in N(v)} (f(\mathbf{v}_j) - f(\mathbf{v}))$$
$$= \sum_{v_j \in N(v)} f(\mathbf{v}_j) - kf(\mathbf{v}), \ k = |N(v)|$$

Similar to 5 point stencil for images!

Depends only on connectivity : simple and efficient

Bad approximation for irregular triangulations

In matrix form

$$\Delta f(\mathbf{v}) = \sum_{v_j \in N(v)} f(\mathbf{v}_j) - kf(\mathbf{v}), \ k = |N(v)|$$

In matrix form

$$\Delta f(\mathbf{v}) = \sum_{v_j \in N(v)} f(\mathbf{v}_j) - k f(\mathbf{v}), \ k = |N(v)|$$

$$\mathbf{F} = \begin{bmatrix} f(\mathbf{v}_1) \\ f(\mathbf{v}_2) \\ f(\mathbf{v}_3) \\ \dots \\ f(\mathbf{v}_N) \end{bmatrix}$$

In matrix form

$$\Delta f(\mathbf{v}) = \sum_{v_j \in N(v)} f(\mathbf{v}_j) - k f(\mathbf{v}), \ k = |N(v)|$$

$$\mathbf{Y} = \begin{bmatrix} \Delta f(\mathbf{v}_1) \\ \Delta f(\mathbf{v}_2) \\ \Delta f(\mathbf{v}_3) \\ \dots \\ \Delta f(\mathbf{v}_N) \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} f(\mathbf{v}_1) \\ f(\mathbf{v}_2) \\ f(\mathbf{v}_3) \\ \dots \\ f(\mathbf{v}_N) \end{bmatrix}$$

In matrix form

$$\Delta f(\mathbf{v}) = \sum_{v_j \in N(v)} f(\mathbf{v}_j) - k f(\mathbf{v}), \ k = |N(v)|$$

 $\mathbf{Y} = \mathbf{LF}$

$$\mathbf{Y} = \begin{bmatrix} \Delta f(\mathbf{v}_1) \\ \Delta f(\mathbf{v}_2) \\ \Delta f(\mathbf{v}_3) \\ \cdots \\ \Delta f(\mathbf{v}_N) \end{bmatrix} \qquad \mathbf{L} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1N} \\ w_{21} & w_{22} & \cdots & w_{2N} \\ \vdots & \vdots & \cdots & \vdots \\ w_{N1} & w_{N2} & \cdots & w_{NN} \end{bmatrix} = \{w_{ij}\} \qquad \mathbf{F} = \begin{bmatrix} f(\mathbf{v}_1) \\ f(\mathbf{v}_2) \\ f(\mathbf{v}_3) \\ \cdots \\ f(\mathbf{v}_N) \end{bmatrix}$$
$$w_{ij} = \begin{cases} 0 & i \neq j, \ \nexists \ \text{edge} \ (i, j) \\ 1 & i \neq j, \ \exists \ \text{edge} \ (i, j) \\ -|N(v_i)| & i = j \end{cases}$$

Discrete Laplace-Beltrami

Better: cotangent formula

$$\Delta_{\mathcal{S}} f(v_i) := \frac{1}{2A_i} \sum_{v_j \in \mathcal{N}_1(v_i)} \left(\cot \alpha_{ij} + \cot \beta_{ij} \right) \left(f(v_j) - f(v_i) \right)$$

Can be derived by discretizing continuous L-B via linear Finite Elements!

Now we can Fourier-smooth!

◆Take your favorite L-B matrix L
◆Compute eigenvectors e₁, e₂, ..., e_k with the k smallest eigenvalues ⇒ matrix eigenvalues!
◆Reconstruct mesh geometry (= coordinate functions, e.g. f(x, y, z) = x) from the eigenvectors:

$$\mathbf{x} = [x_1, \dots, x_n]^T \qquad \mathbf{y} = [y_1, \dots, y_n]^T \qquad \mathbf{z} = [z_1, \dots, z_n]^T$$
$$\tilde{\mathbf{x}} = \sum_{i=1}^k (\mathbf{x}^T \mathbf{e}_i) \mathbf{e}_i \qquad \tilde{\mathbf{y}} = \sum_{i=1}^k (\mathbf{y}^T \mathbf{e}_i) \mathbf{e}_i \qquad \tilde{\mathbf{z}} = \sum_{i=1}^k (\mathbf{z}^T \mathbf{e}_i) \mathbf{e}_i$$

 $\tilde{\mathbf{p}} = [\tilde{\mathbf{x}} \; \tilde{\mathbf{y}} \; \tilde{\mathbf{z}}] \in \mathbb{R}^{n \times 3}$

Spectral analysis on meshes

Take your favorite L-B matrix L
 Compute eigenvectors e₁, e₂, ..., e_k with the k
 smallest eigenvalues

•Reconstruct mesh geometry (= coordinate functions, e.g. f(x, y, z) = x) from the eigenvectors:

Spectral analysis on meshes

Take your favorite L-B matrix L

Compute eigenvectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ with the *k* smallest eigenvalues too expensive for large meshes

Reconstruct mesh geometry (= coordinate functions, e.g. f(x, y, z) = x) from the eigenvectors:

An alternative approach

Laplace – Beltrami operator relates to mesh curvature!

Smoothing is "reducing the curvature" !

What is Curvature?

Measure how much the surface "changes" along a the various tangential directions.

For given tangential direction t: Take curve γ – intersection of surface with the plane through **n** and **t**.

Normal curvature:

 $\kappa_n(\varphi) = \kappa(\gamma(\mathbf{p}))$

Surface Curvatures

Principal Directions

 Principal directions: tangent vectors corresponding to φ_{max} and φ_{min}

Principal Directions

Euler's Theorem: Planes of principal curvature are **orthogonal** and independent of parameterization.

 $\kappa_n(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi, \quad \varphi = \text{angle with } \mathbf{t}_1$

Laplace-Beltrami and Curvature

Apply operator to coordinate functions

Laplace-Beltrami and Curvature

Apply operator to coordinate functions

•Uniform Laplacian $L_u(v_i)$

•Uniform Laplacian $L_u(v_i)$

•Cotangent Laplacian $L_c(v_i)$

Uniform Laplacian L_u(v_i)
 Cotangent Laplacian L_c(v_i)
 Normal

Uniform Laplacian L_u(v_i)
 Cotangent Laplacian L_c(v_i)
 Normal

◆For nearly equal edge lengths Uniform ≈ Cotangent

Uniform Laplacian L_u(v_i)
 Cotangent Laplacian L_c(v_i)
 Normal

◆For nearly equal edge lengths Uniform ≈ Cotangent

Cotan Laplacian allows computing discrete normal Nice property: gives zero for planar 1-rings!

Uniform Laplacian: Frequency Mixup!

How to use curvature relation for smoothing?

 $\Delta_{\mathcal{M}} \mathbf{p} = -2H\mathbf{n}$ goal: H = 0 or H = const

Smooth *H*, obtain *H*Find a surface that has *H*as mean curvature *H* doesn't define the surface
n nonlinear in p

How to use curvature relation for smoothing?

$$\Delta_{\mathcal{M}} \mathbf{p} = -2H\mathbf{n}$$

goal: $H = 0$ or $H = \text{const}$

Another idea:
 Keep the old n
 "Flow" along n to decrease H

Diffusion Flow on Height Fields

diffusion constant $\frac{\partial f}{\partial t} = \lambda \Delta f$ Laplace operator

Model smoothing as a diffusion process

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Discretize in time, forward differences:

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \,\lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} = (I + dt \,\lambda L) \mathbf{p}^{(n)}$$

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Discretize in time, forward differences:

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \,\lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} = (I + dt \,\lambda L) \mathbf{p}^{(n)} \checkmark$$

Explicit integration! Unstable unless time step *dt* is small

 $\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda \Delta \mathbf{p}_i$

0 Iterations

5 Iterations

20 Iterations

Effect of Laplace Discretization

- Uniform Laplace smooths geometry and triangulation
- Can be non-zero even for planar triangulations
- Vertex drift can lead to distortions
- Might be desired for mesh regularization

Desbrun et al., Siggraph 1999

Comparison

Original

Uniform Laplace

Laplace-Beltrami

Improved geometry (positions)

How about connectivity?

Improved geometry (positions)

How about connectivity?

Remeshing: Given a 3D mesh, improve its triangulation while preserving its geometry.

Improved geometry (positions)

How about connectivity?

Remeshing: Given a 3D mesh, improve its triangulation while preserving its geometry.

Meshing Quality Checklist

- Equal edge lengths
- Equilateral triangles
- Valence close to 6
- Uniform vs. adaptive sampling
- Feature preservation
- Alignment to curvature lines
- Isotropic vs. anisotropic
- Triangles vs. quadrangles

Two Fundamental Approaches

Two Fundamental Approaches

- map to 2D domain / 2D problem
- computationally more expensive
- works even for coarse resolution remeshing

Two Fundamental Approaches

Parametrization based

- map to 2D domain / 2D problem
- computationally more expensive
- works even for coarse resolution remeshing

Surface oriented

- operate directly of the surface
- treat surface as a set of points / polygons in space
- efficient for high resolution remeshing

Surface Oriented

Surface Oriented

Surface Oriented

Surface Oriented

Parameterization-Based Approach

Motivation: 2D remeshing is much easier

- Sample distribution
- Delaunay triangulation
- Centroidal Voronoi diagram

Interactive Geometry Remeshing

Alliez et al. 2002, Interactive Geometry Remeshing

Weighted Centroidal Voronoi tessellation

Need disk-like topology

Introduce cuts on the mesh

Randomly sample triangles

- Weighted by area and density
- Density: curvature or userdefined sizing field
- Compensate area distortion when sampling in the parameter domain
 - Distortion = 3D area / 2D area

Compose importance map

At parameterization time: Keep track of where each point/triangle lands!

2D error diffusion on importance map

• Half-toning, dithering

Floyd-Steinberg dithering

2D error diffusion on importance map

• Half-toning, dithering

Floyd-Steinberg dithering

Connecting the samples

2D constrained Delaunay triangulation

Uniform vs. Adaptive

Limitations

Closed genus 0

- May need a good cut
- Stitch seams afterwards

Protruding legs

- Sampling
- Numerical problems

Direct Surface Remeshing

- Avoid global parametrization
 - Numerically very sensitive
 - Topological restrictions
- Use local operators & backprojections
 - Resampling of 100k triangles in < 5s

Botsch et al. 2004, "A Remeshing Approach to Multiresolution Modeling"

Local Remeshing Operators

Local Remeshing Operators

Local Remeshing Operators Edge Collapse Edge Split Edge Flip

Isotropic Remeshing

Specify target edge length L

Iterate:

- 1. Split edges longer than Lmax
- 2. Collapse edges shorter than Lmin
- **3.** Flip edges to get closer to valence 6
- 4. Vertex shift towards neighbor average by tangential relaxation
- 5. Project vertices onto reference mesh

Remeshing Results

Original

Next Time

Parameterization!

EXTRAS

Moving Least Squares (Reconstruction) Implicit integration (Smoothing) Vertex areas (Laplace-Beltrami) More details on Remeshing Ops (Remeshing)

Do purely local approximation of the SDF
Weights change depending on where we are evaluating

The beauty: the "stitching" of all local approximations, seen as one function F(x), is smooth everywhere!

 We get a globally smooth function but only do local computation

"Interpolating and Approximating Implicit Surfaces from Polygon Soup", Shen et al., ACM SIGGRAPH 2004 http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html

Do purely local approximation of the SDF
Weights change depending on where we are evaluating

The beauty: the "stitching" of all local approximations, seen as one function F(x), is smooth everywhere!

 We get a globally smooth function but only do local computation

Do purely local approximation of the SDF
Weights change depending on where we are evaluating

The beauty: the "stitching" of all local approximations, seen as one function F(x), is smooth everywhere!

We get a globally smooth function but only do local computation

Do purely local approximation of the SDF
Weights change depending on where we are evaluating

The beauty: the "stitching" of all local approximations, seen as one function F(x), is smooth everywhere!

 We get a globally smooth function but only do local computation

Do purely local approximation of the SDF
Weights change depending on where we are evaluating

The beauty: the "stitching" of all local approximations, seen as one function F(x), is smooth everywhere!

We get a globally smooth function but only do local computation

 $f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$

 $f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$ $f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$

$$f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$$
$$f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$$
$$\mathbf{a} = (a_1, a_2, \ldots, a_*)^T, \ \mathbf{b}(\mathbf{x})^T = (1, x, y, z, x^2, x y, \ldots, z^k)$$

Polynomial least-squares approximation Choose degree, k

 $f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$ $f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$ $\mathbf{a} = (a_1, a_2, \ldots, a_*)^T, \ \mathbf{b}(\mathbf{x})^T = (1, x, y, z, x^2, x y, \ldots, z^k)$

 \blacklozenge Find \mathbf{a} that minimizes sum of squared differences

Polynomial least-squares approximation Choose degree, k

$$f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$$
$$f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$$
$$\mathbf{a} = (a_1, a_2, \ldots, a_*)^T, \ \mathbf{b}(\mathbf{x})^T = (1, x, y, z, x^2, x y, \ldots, z^k)$$
$$\bullet \text{Find a that minimizes sum of squared differences}$$
$$\operatorname*{argmin}_{f \in \Pi_k^3} \sum_{i=0}^{N-1} (f(\mathbf{c}_i) - d_i)^2 \text{ or: } \operatorname*{argmin}_{\mathbf{a}} \sum_{i=0}^{N-1} (\mathbf{b}(\mathbf{c}_i)^T \mathbf{a} - d_i)^2$$

MOVING Least-Squares Approximation

Polynomial least-squares approximation Choose degree, k

$$f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \dots + a_* z^k$$

$$f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$$

$$\mathbf{a} = (a_1, a_2, \dots, a_*)^T, \ \mathbf{b}(\mathbf{x})^T = (1, x, y, z, x^2, x y, \dots, z^k)$$

$$\bullet \text{Find } \mathbf{a}_{\mathbf{x}} \text{ that minimizes WEIGHTED sum of squared}$$

$$differences$$

$$f_{\mathbf{x}} = \underset{f \in \Pi_k^3}{\operatorname{argmin}} \sum_{i=0}^{N-1} \frac{\theta(\|\mathbf{x} - \mathbf{c}_i\|)}{(f(\mathbf{c}_i) - d_i)^2} \text{ or:}$$

$$\mathbf{a}_{\mathbf{x}} = \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \frac{\theta(\|\mathbf{x} - \mathbf{c}_i\|)}{(\mathbf{b}(\mathbf{c}_i)^T \mathbf{a} - d_i)^2}$$

MOVING Least-Squares Approximation

Polynomial least-squares approximation Choose degree, k

$$f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$$
$$f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$$
$$\mathbf{a} = (a_1, a_2, \ldots, a_*)^T, \ \mathbf{b}(\mathbf{x})^T = (1, x, y, z, x^2, x y, \ldots, z^k)$$

Find a_x that minimizes WEIGHTED sum of squared differences

•The value of the SDF is the obtained approximation evaluated at x: $F(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}_{\mathbf{x}}$

MLS – 1D Example Global approximation in Π_2^1

$$f = \underset{f \in \Pi_2^1}{\operatorname{argmin}} \sum_{i=0}^{N-1} (f(c_i) - d_i)^2$$

$igoplus \mathsf{MLS}$ approximation using functions in Π^1_2

$$F(x) = f_x(x), \quad f_x = \operatorname*{argmin}_{f \in \Pi_2^1} \sum_{i=0}^{N-1} \theta(\|c_i - x\|) (f(c_i) - d_i)^2$$

$igoplus \mathsf{MLS}$ approximation using functions in Π^1_2

 $F(x) = f_x(x), \quad f_x = \operatorname*{argmin}_{f \in \Pi_2^1} \sum_{i=0}^{N-1} \theta(\|c_i - x\|) \left(f(c_i) - d_i\right)^2$

$igoplus \mathsf{MLS}$ approximation using functions in Π^1_2

$$F(x) = f_x(x), \quad f_x = \operatorname*{argmin}_{f \in \Pi_2^1} \sum_{i=0}^{N-1} \theta(\|c_i - x\|) (f(c_i) - d_i)^2$$

$igoplus \mathsf{MLS}$ approximation using functions in Π^1_2

$$F(x) = f_x(x), \quad f_x = \operatorname*{argmin}_{f \in \Pi_2^1} \sum_{i=0}^{N-1} \theta(\|c_i - x\|) (f(c_i) - d_i)^2$$

$igoplus \mathsf{MLS}$ approximation using functions in Π^1_2

$$F(x) = f_x(x), \quad f_x = \operatorname*{argmin}_{f \in \Pi_2^1} \sum_{i=0}^{N-1} \theta(\|c_i - x\|) (f(c_i) - d_i)^2$$

igoplus MLS approximation using functions in Π^1_2

$$F(x) = f_x(x), \quad f_x = \operatorname*{argmin}_{f \in \Pi_2^1} \sum_{i=0}^{N-1} \theta(\|c_i - x\|) (f(c_i) - d_i)^2$$

Weight Functions

Saussian

$$\bullet_h$$
 is a smoothing parameter $\theta(r) = e^{-\frac{r^2}{h^2}}$

Wendland function $\theta(r) = (1 - r/h)^4 (4r/h + 1)$ \bullet Defined in [0, h] and $\theta(0) = 1, \ \theta(h) = 0, \ \theta'(h) = 0, \ \theta''(h) = 0$

Singular function $\theta(r) = \frac{1}{r^2 + \varepsilon^2}$

Gaussian

 \bullet For small ε , weights large near r=0 (interpolation)

Dependence on Weight Function

Global least squares with linear basis

MLS with (nearly) singular weight function

$$\theta(r) = \frac{1}{r^2 + \varepsilon^2}$$

•MLS with approximating weight function $\theta(r) = e^{-\frac{r^2}{h^2}}$

Dependence on Weight Function

- •The MLS function F is continuously differentiable if and only if the weight function θ is continuously differentiable
- \bullet In general, *F* is as smooth as θ

$$F(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}), \quad f_{\mathbf{x}} = \operatorname*{argmin}_{f \in \Pi_k^d} \sum_{i=0}^{N-1} \theta(\|\mathbf{c}_i - \mathbf{x}\|) (f(\mathbf{c}_i) - d_i)^2$$

Global RBF vs. Local MLS

sees the whole data set, can make for very smooth surfaces

global (dense) system to solve – expensive

MLS:

sees only a small part of the dataset, can get confused by noise

Iocal linear solves – cheap

Vertex Area - Barycentric

Barycentric area

Connect edge midpoints and triangle barycenters

Each of the incident triangles contributes 1/3 of its area to all its vertices, regardless of the placement

- + Simple to compute
- + Always positive weights
- Heavily connectivity dependent
- Changes if edges are flipped

Vertex Area - Voronoi

Unfold the triangle flap onto the plane (without distortion)

Voronoi Vertex Area

$$\mathbf{c}_{j} = \begin{cases} \text{circumcenter of } \triangle(\mathbf{v}_{i}, \mathbf{v}_{j}, \mathbf{v}_{j+1}) & \text{if } \theta < \pi/2 \\ \text{midpoint of edge } (\mathbf{v}_{j}, \mathbf{v}_{j+1}) & \text{if } \theta \ge \pi/2 \end{cases}$$
$$A_{i} = \sum_{j} \text{Area} \left(\triangle(\mathbf{v}_{i}, \mathbf{c}_{j}, \mathbf{c}_{j+1}) \right)$$

Voronoi Vertex Area

$$\mathbf{c}_{j} = \begin{cases} \text{circumcenter of } \triangle(\mathbf{v}_{i}, \mathbf{v}_{j}, \mathbf{v}_{j+1}) & \text{if } \theta < \pi/2 \\ \text{midpoint of edge } (\mathbf{v}_{j}, \mathbf{v}_{j+1}) & \text{if } \theta \ge \pi/2 \end{cases}$$
$$A_{i} = \sum_{j} \text{Area} \left(\triangle(\mathbf{v}_{i}, \mathbf{c}_{j}, \mathbf{c}_{j+1}) \right)$$

Explicit integration of diffusion can be unstable

$$\mathbf{p}_{i}^{(t+1)} = \mathbf{p}_{i}^{(t)} + \lambda \Delta \mathbf{p}_{i}^{(t)}$$
$$\mathbf{P}^{(t)} = \left(\mathbf{p}_{1}^{(t)}, \dots, \mathbf{p}_{n}^{(t)}\right)^{T} \in \mathbb{R}^{n \times 3}$$

$$\mathbf{P}^{(t+1)} = (\mathbf{I} + \lambda \mathbf{L}) \mathbf{P}^{(t)}$$

Explicit integration of diffusion can be unstable

$$\mathbf{p}_{i}^{(t+1)} = \mathbf{p}_{i}^{(t)} + \lambda \Delta \mathbf{p}_{i}^{(t)}$$
$$\mathbf{P}^{(t)} = \left(\mathbf{p}_{1}^{(t)}, \dots, \mathbf{p}_{n}^{(t)}\right)^{T} \in \mathbb{R}^{n \times 3}$$

Implicit integration is unconditionally stable

$$\mathbf{P}^{(t+1)} = (\mathbf{I} + \lambda \mathbf{L}) \mathbf{P}^{(t)}$$

Explicit integration of diffusion can be unstable

$$\mathbf{p}_{i}^{(t+1)} = \mathbf{p}_{i}^{(t)} + \lambda \Delta \mathbf{p}_{i}^{(t)}$$
$$\mathbf{P}^{(t)} = \left(\mathbf{p}_{1}^{(t)}, \dots, \mathbf{p}_{n}^{(t)}\right)^{T} \in \mathbb{R}^{n \times 3}$$

Implicit integration is unconditionally stable

$$\mathbf{P}^{(t+1)} = (\mathbf{I} + \lambda \mathbf{L}) \mathbf{P}^{(t)}$$
$$(\mathbf{I} - \lambda \mathbf{L}) \mathbf{P}^{(t+1)} = \mathbf{P}^{(t)}$$

boils down to a sparse symmetric positive definite system solve

• Iterative conjugate gradients, sparse Cholesky

Edge Collapse / Split

$$|L_{\max} - L| = \left|\frac{1}{2}L_{\max} - L\right|$$
$$\Rightarrow L_{\max} = \frac{4}{3}L$$

$$|L_{\min} - L| = \left|\frac{3}{2}L_{\max} - L\right|$$
$$\Rightarrow L_{\min} = \frac{4}{5}L$$

Edge Flip

Improve valences

- Avg. valence is 6 (Euler)
- Reduce variation
- Optimal valence is
 - 6 for interior vertices
 - 4 for boundary vertices

Edge Flip

Improve valences • Avg. valence is 6 (Euler) Reduce variation Optimal valence is • 6 for interior vertices 4 for boundary vertices Minimize valence excess

$$\sum_{i=1}^{4} \left(\text{valence}\left(v_{i}\right) - \text{opt}_{-}\text{valence}\left(v_{i}\right) \right)^{2}$$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_i = \frac{1}{\text{valence}(v_i)} \sum_{j \in N(v_i)} \mathbf{p}_j$$

- Local "spring" relaxation
 - Uniform Laplacian smoothing
 - Bary-center of one-ring neighbors

$$\mathbf{c}_i = \frac{1}{\text{valence}(v_i)} \sum_{j \in N(v_i)} \mathbf{p}_j$$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}\left(v_{i}\right)} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

• Restrict movement to tangent plane

$$\mathbf{p}_{i} \leftarrow \mathbf{p}_{i} + \lambda \left(I - \mathbf{n}_{i} \mathbf{n}_{i}^{T} \right) \left(\mathbf{c}_{i} - \mathbf{p}_{i} \right)$$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

Restrict movement to tangent plane

$$\mathbf{p}_{i} \leftarrow \mathbf{p}_{i} + \lambda \left(I - \mathbf{n}_{i} \mathbf{n}_{i}^{T} \right) \left(\mathbf{c}_{i} - \mathbf{p}_{i} \right)$$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

• Restrict movement to tangent plane

$$\mathbf{p}_{i} \leftarrow \mathbf{p}_{i} + \lambda \left(I - \mathbf{n}_{i} \mathbf{n}_{i}^{T} \right) \left(\mathbf{c}_{i} - \mathbf{p}_{i} \right)$$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

- Keep vertex (approx.) of surface
 - Restrict movement to tangent plane
 - $\mathbf{p}_{i} \leftarrow \mathbf{p}_{i} + \lambda \left(I \mathbf{n}_{i} \mathbf{n}_{i}^{T} \right) \left(\mathbf{c}_{i} \mathbf{p}_{i} \right)$

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

- Keep vertex (approx.) of surface
 - Restrict movement to tangent plane

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda \left(I - \mathbf{n}_i \mathbf{n}_i^T \right) \left(\mathbf{c}_i - \mathbf{p}_i \right)$$

Vertex Projection

Project vertices onto original reference mesh

- Static reference mesh
- Precompute BSP

Assign position & interpolated normal

