CS348a: Geometry Processing

Reconstruction / Fairing
 (also: Laplace-Beltrami)

In Previous Lecture

*Point cloud registration

This Lecture

-Point clouds not directly usable by most CG applications
\bullet Rendering, editing/deformation, texturing, simulation, ...!
*Need a semi-"continuous" surface instead!

This Lecture

-Point clouds not directly usable by most CG applications
*Rendering, editing/deformation, texturing, simulation, ...!
*Need a semi-"continuous" surface instead!

Input to Reconstruction Process

-Input option 1: just a set of 3D points, irregularly spaced
*Need to estimate normals
\rightarrow reminder: PCA - intro class!
\rightarrow Hoppe et al. 92, "Surface
reconstruction from unorganized points"

Input to Reconstruction Process

-Input option 1: just a set of 3D points, irregularly spaced
-Need to estimate normals
\rightarrow reminder: PCA - intro class!
\rightarrow Hoppe et al. 92, "Surface
reconstruction from unorganized points"

- Input option 2:
normals come from the range scans

What is a surface?

What is a surface?

Explicit representation

- Image of parameterization

$$
f(t)=(x(t), y(t))=(r \cos (t), r \sin (t))
$$

What is a surface?

Explicit representation

- Image of parameterization

$$
f(t)=(x(t), y(t))=(r \cos (t), r \sin (t))
$$

- Implicit representation
- Zero set of distance function

$$
F(x, y)=\sqrt{x^{2}+y^{2}}-r
$$

What is a surface?

Explicit representation

- Image of parameterization

$$
f(t)=(x(t), y(t))=(r \cos (t), r \sin (t))
$$

- Implicit representation
- Zero set of distance function

$$
F(x, y)=\sqrt{x^{2}+y^{2}}-r
$$

What is a surface?

Explicit representation

- Image of parameterization

$$
f(t)=(x(t), y(t))=(r \cos (t), r \sin (t))
$$

- Implicit representation
- Zero set of distance function

$$
F(x, y)=\sqrt{x^{2}+y^{2}}-r
$$

$$
F(x, y)>0
$$

What is a surface?

Explicit representation

- Image of parameterization

$$
f(t)=(x(t), y(t))=(r \cos (t), r \sin (t))
$$

- Implicit representation
- Zero set of distance function

$$
F(x, y)=\sqrt{x^{2}+y^{2}}-r
$$

$$
F(x, y)>0
$$

Explicit / Implicit

- Explicit representation
- Image of parameterization
- Implicit representation
- Zero set of distance function

$$
F(x, y)>0
$$

Explicit / Implicit

- Explicit representation
- Image of parameterization
- Easy to find points on shape
- Implicit representation
- Zero set of distance function

$$
F(x, y)>0
$$

Explicit / Implicit

- Explicit representation
- Image of parameterization
- Easy to find points on shape
- Can defer problems to param domain
- Implicit representation
- Zero set of distance function

$$
F(x, y)>0
$$

Explicit / Implicit

- Explicit representation
- Image of parameterization
- Easy to find points on shape
- Can defer problems to param domain
- Implicit representation
- Zero set of distance function
- Easy in/out/distance test

$$
F(x, y)>0
$$

Explicit / Implicit

- Explicit representation
- Image of parameterization
- Easy to find points on shape
- Can defer problems to param domain
- Implicit representation
- Zero set of distance function
- Easy in/out/distance test
- Easy to handle different topologies

$F(x, y)>0$

Implicit Representations

Easy to handle different topologies

How to Connect the Dots?

Explicit reconstruction: stitch the range scans together

"Zippered Polygon Meshes from Range Images", Greg Turk and Marc Levoy, ACM SIGGRAPH 1994

How to Connect the Dots?

Explicit reconstruction:
stitch the range scans together

- Connect sample points by triangles
- Exact interpolation of sample points
- Bad for noisy or misaligned data
- Can lead to holes or non-manifold situations

Implicit Function Approach

Define a function

$$
f: R^{3} \rightarrow R
$$

with value < 0 outside the shape and >0 inside

Implicit Function Approach

Define a function

$$
f: R^{3} \rightarrow R
$$

with value <0 outside the shape and >0 inside

Implicit Function Approach.

Define a function

$$
f: R^{3} \rightarrow R
$$

with value <0 outside the shape and >0 inside
\& Extract the zero-set

Implicit Function Approach.

Define a function

$$
f: R^{3} \rightarrow R
$$

with value <0 outside the shape and >0 inside
\& Extract the zero-set

$$
\{x: f(x)=0\}
$$

Implicit Function Approach.

Define a function

$$
f: R^{3} \rightarrow R
$$

with value <0 outside the shape and >0 inside
*Extract the zero-set

$$
\{x: f(x)=0\}
$$

How to Connect the Dots?

-Implicit reconstruction: estimate a signed distance function (SDF); extract 0-level set mesh using Marching Cubes

- Approximation of input points
- Watertight manifold results by construction

Implicit vs. Explicit

Input

SDF from Points and Normals

*Compute signed distance to the tangent plane of the closest point

Normals help to distinguish between inside and outside

SDF from Points and Normals

*Compute signed distance to the tangent plane of the closest point

Normals help to distinguish between inside and outside

"Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

SDF from Points and Normals

*Compute signed distance to the tangent plane of the closest point
$\underset{0}{\mathrm{X}}$

$$
f(x)=(x-p)^{T} \mathbf{n}_{p}
$$

"Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

SDF from Points and Normals

-Compute signed distance to the tangent plane of the closest point

$$
f(x)=(x-p)^{T} \mathbf{n}_{p}
$$

"Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

SDF from Points and Normals

*Compute signed distance to the tangent plane of the closest point

$$
f(x)=(x-p)^{T} \mathbf{n}_{p}
$$

"Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

SDF from Points and Normals

-Compute signed distance to the tangent plane of the closest point

The function will be discontinuous
"Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

Smooth SDF

- Instead find a smooth formulation for F.
-Scattered data interpolation:
- $F\left(\mathbf{p}_{i}\right)=0$
$\star F$ is smooth
-Avoid trivial $F \equiv 0$

Smooth SDF

-Scattered data interpolation:

- $F\left(\mathbf{p}_{i}\right)=0$
$\star F$ is smooth
-Avoid trivial $F \equiv 0$
Add off-surface
constraints

$$
\begin{aligned}
& F\left(\mathbf{p}_{i}+\varepsilon \mathbf{n}_{i}\right)=\varepsilon \\
& F\left(\mathbf{p}_{i}-\varepsilon \mathbf{n}_{i}\right)=-\varepsilon
\end{aligned}
$$

Radial Basis Function Interpolation

RBF: Weighted sum of shifted, smooth kernels

$$
F(\mathbf{x})=\sum_{i=0}^{N-1} w_{i} \varphi\left(\left\|\mathbf{X}-\mathbf{c}_{i}\right\|\right) \quad N=3 n
$$

Radial Basis Functions Interpolation

Radial Basis Functions Interpolation

Radial Basis Functions Interpolation

$\varphi_{i}(\mathbf{x})=\varphi\left(\left\|\mathbf{x}-\mathbf{c}_{i}\right\|\right)$

Radial Basis Functions Interpolation

Kernel centers: on- and off-surface points

$\varphi_{i}(\mathbf{x})=\varphi\left(\left\|\mathbf{x}-\mathbf{c}_{i}\right\|\right)$

Radial Basis Functions Interpolation

Kernel centers: on- and off-surface points

How do we find the weights?

$\varphi_{i}(\mathbf{x})=\varphi\left(\left\|\mathbf{x}-\mathbf{c}_{i}\right\|\right)$

Radial Basis Function Interpolation

- Interpolate the constraints:

$$
\begin{aligned}
& \left\{\mathbf{c}_{3 i}, \mathbf{c}_{3 i+1}, \mathbf{c}_{3 i+2}\right\}=\left\{\mathbf{p}_{i}, \mathbf{p}_{i}+\varepsilon \mathbf{n}_{i}, \mathbf{p}_{i}-\varepsilon \mathbf{n}_{i}\right\} \\
& \forall j=0, \ldots, N-1, \quad \sum_{i=0}^{N-1} w_{i} \varphi\left(\left\|\mathbf{c}_{j}-\mathbf{c}_{i}\right\|\right)=d_{j} \\
& \begin{array}{l}
F\left(\mathbf{p}_{i}\right)=0 \\
F\left(\mathbf{p}_{i}+\varepsilon \mathbf{n}_{i}\right)=\varepsilon \\
F\left(\mathbf{p}_{i}-\varepsilon \mathbf{n}_{i}\right)=-\varepsilon
\end{array}
\end{aligned}
$$

Radial Basis Function Interpolation

ψ Interpolate the constraints:

$$
\left\{\mathbf{c}_{3 i}, \mathbf{c}_{3 i+1}, \mathbf{c}_{3 i+2}\right\}=\left\{\mathbf{p}_{i}, \mathbf{p}_{i}+\varepsilon \mathbf{n}_{i}, \mathbf{p}_{i}-\varepsilon \mathbf{n}_{i}\right\}
$$

Symmetric linear system to get the weights:

$$
\left(\begin{array}{ccc}
\varphi\left(\left\|\mathbf{c}_{0}-\mathbf{c}_{0}\right\|\right) & \cdots & \varphi\left(\left\|\mathbf{c}_{0}-\mathbf{c}_{N-1}\right\|\right. \\
\vdots & \ddots & \vdots \\
\varphi\left(\left\|\mathbf{c}_{N-1}-\mathbf{c}_{0}\right\|\right) & \cdots & \varphi\left(\left\|\mathbf{c}_{N-1}-\mathbf{c}_{N-1}\right\|\right)
\end{array}\right)\left(\begin{array}{c}
w_{0} \\
\vdots \\
w_{N-1}
\end{array}\right)=\left(\begin{array}{c}
d_{0} \\
\vdots \\
d_{N-1}
\end{array}\right)
$$

$3 n$ equations
$3 n$ variables

RBF Kernels

$$
\varphi(r)=r^{3}
$$

Triharmonic:
-Globally supported
Leads to dense symmetric linear system

* ${ }^{2}$ smoothness

Works well for highly irregular sampling

RBF Kernels

Polyharmonic spline

$\varphi(r)=r^{k} \log (r), k=2,4,6 \ldots$

- $\varphi(r)=r^{k}, k=1,3,5 \ldots$
- Multiquadratic

$$
\varphi(r)=\sqrt{r^{2}+\beta^{2}}
$$

Gaussian

$$
\varphi(r)=e^{-\beta r^{2}}
$$

B-Spline (compact support)

$\varphi(r)=$ piecewise-polynomial (r)

RBF Reconstruction Examples

Off-Surface Points

Insufficient number/

Properly chosen off-surface points

Comparison of the various SDFs so far

Distance to plane

Compact RBF

Global RBF
Triharmonic

RBF - Discussion

Global definition! $F(\mathbf{x})=\sum_{i=0}^{N-1} w_{i} \varphi\left(\left\|\mathbf{x}-\mathbf{c}_{i}\right\|\right)$

Global optimization of the weights, even if the basis functions are local

Complexity Issues

Complexity Issues

-Solve the linear system for RBF weights *Hard to solve for large number of samples

Complexity Issues

-Solve the linear system for RBF weights
Hard to solve for large number of samples
*Compactly supported RBFs
Sparse linear system
-Efficient solvers
-.. but less smooth!

Complexity Issues

©Solve the linear system for RBF weights
Hard to solve for large number of samples
*Compactly supported RBFs
Sparse linear system
-Efficient solvers
*.. but less smooth!
Greedy RBF fitting
Start with a few RBFs only
-Add more RBFs in region of large error

Complexity Issues

©Solve the linear system for RBF weights
-Hard to solve for large number of samples
*Compactly supported RBFs
-Sparse linear system
-Efficient solvers
*.. but less smooth!
Greedy RBF fitting
Start with a few RBFs only
-Add more RBFs in region of large error
*Even better: Moving Least Squares! (maybe later....)

Extracting the Surface

Wish to compute a manifold mesh of the level set

Sample the SDF

Sample the SDF

Sample the SDF

Sample the SDF

Marching Cubes! (in previous lecture)

Example: Reconstruction

Other Methods

- Better use of normals: [Shen et al. SIGGRAPH 2004]

Poisson Reconstruction : Kazhdan et al., SGP 2006
http://www.cs.jhu.edu/~misha/Code/
PoissonRecon/

Smoothing \& RemeshingMotivation

*Scanned surfaces can be noisy

Smoothing \& RemeshingMotivation

*Marching Cubes meshes can be ugly

Fourier analysis - Example

-Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768-1830

Fourier analysis - Example

basis functions

weighted sum

Joseph Fourier 1768-1830

$$
f(x)=a_{0}+a_{1} \cos (x)
$$

Coefficients : co-integrate function with basis

Fourier analysis - Example

basis functions

weighted sum

Joseph Fourier 1768-1830

$$
f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (3 x)
$$

Coefficients : co-integrate function with basis

Fourier analysis - Example

basis functions

$$
f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (3 x)+a_{3} \cos (5 x)
$$

Coefficients: co-integrate function with basis

Fourier analysis - Example

basis functions

weighted sum
-Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768-1830

$f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (3 x)+a_{3} \cos (5 x)+a_{4} \cos (7 x)+\ldots$
Coefficients : co-integrate function with basis

More generally - Fourier analysis

*Inner product for L^{2} function space $\langle f, g\rangle:=\int_{-\infty}^{\infty} f(x) \overline{g(x)} \mathrm{d} x$
-Orthonormal basis : complex "waves"

$$
e_{u}(x):=\mathrm{e}^{\mathrm{i} 2 \pi u x}=\cos (2 \pi u x)-\mathrm{i} \sin (2 \pi u x)
$$

More generally - Fourier analysis

- Inner product for L^{2} function space $\langle f, g\rangle:=\int_{-\infty}^{\infty} f(x) \overline{g(x)} \mathrm{d} x$

ثOrthonormal basis : complex "waves"

$$
e_{u}(x):=\mathrm{e}^{\mathrm{i} 2 \pi u x}=\cos (2 \pi u x)-\mathrm{i} \sin (2 \pi u x)
$$

Spatial Domain

Frequency Domain

More generally - Fourier analysis

*Inner product for L^{2} function space $\langle f, g\rangle:=\int_{-\infty}^{\infty} f(x) \overline{g(x)} \mathrm{d} x$
*Orthonormal basis : complex "waves"

$$
\begin{gathered}
e_{u}(x):=\mathrm{e}^{\mathrm{i} 2 \pi u x}=\cos (2 \pi u x)-\mathrm{i} \sin (2 \pi u x) \\
F(\omega)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-2 \pi i \omega x} d x
\end{gathered}
$$

Spatial Domain

More generally - Fourier analysis

- Inner product for L^{2} function space $\langle f, g\rangle:=\int_{-\infty}^{\infty} f(x) \overline{\overline{g(x)}} \mathrm{d} x$
-Orthonormal basis : complex "waves"

$$
\begin{gathered}
e_{u}(x):=\mathrm{e}^{\mathrm{i} 2 \pi u x}=\cos (2 \pi u x)-\mathrm{i} \sin (2 \pi u x) \\
F(\omega)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-2 \pi i \omega x} d x
\end{gathered}
$$

Spatial Domain

Fourier Transform

Inverse Transform

$$
f(x)=\int_{-\infty}^{\infty} F(\omega) \mathrm{e}^{2 \pi i \omega x} d \omega
$$

Frequency Domain

We can also Fourier on rectangular 2D domains

Fourier (DCT) basis functions for $8 x 8$ grayscale images

$$
\cos \left(2 \pi \omega_{h}\right) \cos \left(2 \pi \omega_{v}\right)
$$

Smoothing $=$ filtering high frequencies out

spatial domain

frequency domain

- Spatial domain $f(x) \rightarrow$ Frequency domain $F(u)$

$$
F(u)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} 2 \pi u x} \mathrm{~d} x
$$

- Multiply by low-pass
filter $G(u)$

$$
F(u) \leftarrow F(u) \cdot G(u)
$$

Frequency domain $F(u) \rightarrow$ Spatial domain $f(x)$

$$
f(x)=\int_{-\infty}^{\infty} F(u) \mathrm{e}^{\mathrm{i} 2 \pi u x} \mathrm{~d} u
$$

Smoothing $=$ filtering high frequencies out

spatial domain

frequency domain

Spatial domain $f(x) \rightarrow$ Frequency domain $F(u)$

$$
F(u)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} 2 \pi u x} \mathrm{~d} x
$$

Multiply by low-pass filter $G(u)$

$$
F(u) \leftarrow F(u) \cdot G(u)
$$

Frequency domain $F(u) \rightarrow$ Spatial domain $f(x)$

$$
f(x)=\int_{-\infty}^{\infty} F(u) \mathrm{e}^{\mathrm{i} 2 \pi u x} \mathrm{~d} u
$$

Smoothing $=$ filtering high frequencies out

spatial domain

frequency domain

* Spatial domain $f(x) \rightarrow$ Frequency domain $F(u)$

$$
F(u)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} 2 \pi u x} \mathrm{~d} x
$$

- Multiply by low-pass
filter $G(u)$

$$
F(u) \leftarrow F(u) \cdot G(u)
$$

Frequency domain $F(u) \rightarrow$ Spatial domain $f(x)$
$f(x)=\int_{-\infty}^{\infty} F(u) \mathrm{e}^{\mathrm{i} 2 \pi u x} \mathrm{~d} u$

Extend Fourier to meshes?

Extend Fourier to meshes?

So far, our functions have been defined on parameterized patches $f(u, v)$

- Generalize to meshes!

Extend Fourier to meshes?

So far, our functions have been defined on parameterized patches $f(u, v)$

- Generalize to meshes!

Fourier basis functions are eigenfunctions of the (standard) Laplace operator $\Delta: L^{2} \rightarrow L^{2}$

$$
\Delta\left(e^{2 \pi i \omega x}\right)=\frac{\partial^{2}}{\partial x^{2}} e^{2 \pi i \omega x}=-(2 \pi \omega)^{2} e^{2 \pi i \omega x}
$$

Extend Fourier to meshes?

So far, our functions have been defined on parameterized patches $f(u, v)$

- Generalize to meshes!

Fourier basis functions are eigenfunctions of the (standard) Laplace operator $\Delta: L^{2} \rightarrow L^{2}$

$$
\Delta\left(e^{2 \pi i \omega x}\right)=\frac{\partial^{2}}{\partial x^{2}} e^{2 \pi i \omega x}=-(2 \pi \omega)^{2} e^{2 \pi i \omega x}
$$

We need a discrete (mesh-based) version of this operator!

Continuous Laplace Operator

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Delta f: \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

Continuous Laplace Operator

$f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Delta f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
Laplace operator

Euclidean space

Continuous Laplace Operator

$f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Delta f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
function in
Euclidean space

2nd partial derivatives

Continuous Laplace Operator

$f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Delta f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
$\xrightarrow{\substack{\text { Laplace } \\ \text { operator }}}$
function in
Euclidean space
gradient
operator
2nd partial derivatives

Continuous Laplace Operator

$f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Delta f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
Laplace
operator
function in
Euclidean space
gradient
operator

2nd partial
derivatives
2nd partial
derivatives
$\operatorname{grad} f=\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$

Continuous Laplace Operator

$f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Delta f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
Laplace
operator
2nd partial derivatives
function in
Euclidean
Euclidean space

$$
\begin{aligned}
& \text { gradient } \\
& \text { operator }
\end{aligned}
$$

$\operatorname{grad} f=\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
$\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}$

Continuous Laplace-Beltrami Operator

Extension of Laplace operator to functions on manifolds
$f: \mathcal{M} \rightarrow \mathbb{R} \quad \Delta f: \mathcal{M} \rightarrow \mathbb{R}$

Continuous Laplace-Beltrami Operator

*Extension of Laplace operator to functions on manifolds
$f: \mathcal{M} \rightarrow \mathbb{R} \quad \Delta f: \mathcal{M} \rightarrow \mathbb{R}$

Continuous Laplace-Beltrami Operator

*Extension of Laplace operator to functions on manifolds
$f: \mathcal{M} \rightarrow \mathbb{R} \quad \Delta f: \mathcal{M} \rightarrow \mathbb{R}$

Differential Properties on Meshes

Differential Properties on Meshes

So for Laplacian, we need differential quantities (gradient, divergence...)

Differential Properties on Meshes

So for Laplacian, we need differential quantities (gradient, divergence...)
Assumption: meshes are piecewise linear approximations of smooth surfaces

Differential Properties on Meshes

-So for Laplacian, we need differential quantities (gradient, divergence...)
Assumption: meshes are piecewise linear approximations of smooth surfaces
Can try fitting a smooth surface locally (say, a polynomial) and find differential quantities analytically

Differential Properties on Meshes

So for Laplacian, we need differential quantities (gradient, divergence...)
Assumption: meshes are piecewise linear approximations of smooth surfaces
Can try fitting a smooth surface locally (say, a polynomial) and find differential quantities analytically
But: it is often too slow for interactive setting and error prone

Discrete Differential Operators

Approach: approximate differential properties at point \mathbf{v} as spatial average over local mesh neighborhood $N(\mathbf{v})$ where typically
*v = mesh vertex

* $N_{k}(\mathbf{v})=k$-ring neighborhood

Discrete Laplace-Beltrami

*Uniform discretization: $L(f)$ or Δf

$$
\begin{aligned}
\Delta f(\mathbf{v}) & =\sum_{v_{j} \in N(v)}\left(f\left(\mathbf{v}_{j}\right)-f(\mathbf{v})\right) \\
& =\sum_{v_{j} \in N(v)} f\left(\mathbf{v}_{j}\right)-k f(\mathbf{v}), k=|N(v)|
\end{aligned}
$$

-Similar to 5 point stencil for images!

*Depends only on connectivity : simple and efficient
*Bad approximation for irregular triangulations

Discrete Laplace-Beltrami Operator

*In matrix form

$$
\Delta f(\mathbf{v})=\sum_{v_{j} \in N(v)} f\left(\mathbf{v}_{j}\right)-k f(\mathbf{v}), k=|N(v)|
$$

Discrete Laplace-Beltrami Operator

*In matrix form

$$
\Delta f(\mathbf{v})=\sum_{v_{j} \in N(v)} f\left(\mathbf{v}_{j}\right)-k f(\mathbf{v}), k=|N(v)|
$$

$$
\mathbf{F}=\left[\begin{array}{c}
f\left(\mathbf{v}_{1}\right) \\
f\left(\mathbf{v}_{2}\right) \\
f\left(\mathbf{v}_{3}\right) \\
\cdots\left(\mathbf{v}_{N}\right)
\end{array}\right]
$$

Discrete Laplace-Beltrami Operator

*In matrix form

$$
\Delta f(\mathbf{v})=\sum_{v_{j} \in N(v)} f\left(\mathbf{v}_{j}\right)-k f(\mathbf{v}), k=|N(v)|
$$

$$
\mathbf{Y}=\left[\begin{array}{c}
\Delta f\left(\mathbf{v}_{1}\right) \\
\Delta f\left(\mathbf{v}_{2}\right) \\
\Delta f\left(\mathbf{v}_{3}\right) \\
\cdots \\
\Delta f\left(\mathbf{v}_{N}\right)
\end{array}\right]
$$

$$
\mathbf{F}=\left[\begin{array}{c}
f\left(\mathbf{v}_{1}\right) \\
f\left(\mathbf{v}_{2}\right) \\
f\left(\mathbf{v}_{3}\right) \\
\cdots \\
f\left(\mathbf{v}_{N}\right)
\end{array}\right]
$$

Discrete Laplace-Beltrami Operator

*In matrix form

$$
\Delta f(\mathbf{v})=\sum_{v_{j} \in N(v)} f\left(\mathbf{v}_{j}\right)-k f(\mathbf{v}), k=|N(v)|
$$

$$
\begin{gathered}
\mathbf{Y}=\mathbf{L F} \\
\mathbf{Y}=\left[\begin{array}{c}
\Delta f\left(\mathbf{v}_{1}\right) \\
\Delta f\left(\mathbf{v}_{2}\right) \\
\Delta f\left(\mathbf{v}_{3}\right) \\
\cdots f\left(\mathbf{v}_{N}\right)
\end{array}\right]
\end{gathered}{\mathbf{L}=\left[\begin{array}{cccc}
w_{11} & w_{12} & \cdots & w_{1 N} \\
w_{21} & w_{22} & \cdots & w_{2 N} \\
\vdots & \vdots & \cdots & \vdots \\
w_{N 1} & w_{N 2} & \cdots & w_{N N}
\end{array}\right]=\left\{w_{i j}\right\} \quad \mathbf{F}=\left[\begin{array}{c}
f\left(\mathbf{v}_{1}\right) \\
f\left(\mathbf{v}_{2}\right) \\
f\left(\mathbf{v}_{3}\right. \\
\cdots\left(\mathbf{v}_{N}\right)
\end{array}\right]}_{f\left(\begin{array}{l}
i \neq j, \nexists \operatorname{edge}(i, j) \\
w_{i j}
\end{array}\right.}^{= \begin{cases}0 & i \neq j, \exists \operatorname{edge}(i, j) \\
1 & i=j\end{cases} }
$$

Discrete Laplace-Beltrami

Better: cotangent formula

$$
\Delta_{\mathcal{S}} f\left(v_{i}\right):=\frac{1}{2 A_{i}} \sum_{v_{j} \in \mathcal{N}_{1}\left(v_{i}\right)}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right)
$$

A_{i} : vertex area (Voronoi, barycentric..)

Can be derived by discretizing continuous L-B via linear Finite Elements!

Now we can Fourier-smooth!

Take your favorite L-B matrix L
Compute eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}$ with the k smallest eigenvalues \Rightarrow matrix eigenvalues!
Reconstruct mesh geometry (= coordinate functions, e.g. $f(x, y, z)=x)$ from the eigenvectors:

$$
\begin{array}{ccc}
\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T} & \mathbf{y}=\left[y_{1}, \ldots, y_{n}\right]^{T} & \mathbf{z}=\left[z_{1}, \ldots, z_{n}\right]^{T} \\
\tilde{\mathbf{x}}=\sum_{i=1}^{k}\left(\mathbf{x}^{T} \mathbf{e}_{i}\right) \mathbf{e}_{i} \quad \tilde{\mathbf{y}}=\sum_{i=1}^{k}\left(\mathbf{y}^{T} \mathbf{e}_{i}\right) \mathbf{e}_{i} \quad \tilde{\mathbf{z}}=\sum_{i=1}^{k}\left(\mathbf{z}^{T} \mathbf{e}_{i}\right) \mathbf{e}_{i} \\
\tilde{\mathbf{p}}=\left[\begin{array}{lll}
\tilde{\mathbf{x}} \tilde{\mathbf{y}} & \tilde{\mathbf{z}}
\end{array}\right] \in \mathbb{R}^{n \times 3}
\end{array}
$$

Spectral analysis on meshes

Take your favorite L-B matrix L
Compute eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}$ with the k smallest eigenvalues
*Reconstruct mesh geometry (= coordinate functions, e.g. $f(x, y, z)=x)$ from the eigenvectors:

Spectral analysis on meshes

Take your favorite L-B matrix L
Compute eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}$ with the k smallest eigenvalues
Reconstruct mesh geometry (= coordinate functions, e.g. $f(x, y, z)=x)$ from the eigenvectors:

An alternative approach

-Laplace - Beltrami operator relates to mesh curvature!
*Smoothing is "reducing the curvature" !

What is Curvature?

Measure how much the surface "changes" along a the various tangential directions.

For given tangential direction \mathbf{t} : Take curve γ - intersection of surface with the plane through \mathbf{n} and \mathbf{t}.

Normal curvature:

$$
\kappa_{n}(\varphi)=\kappa(\gamma(\mathbf{p}))
$$

Surface Curvatures

Principal curvatures
-Minimal curvature

$$
\kappa_{1}=\kappa_{\min }=\min _{\varphi} \kappa_{n}(\varphi)
$$

Maximal curvature $\quad \kappa_{2}=\kappa_{\max }=\max _{\varphi} \kappa_{n}(\varphi)$
Mean curvature $H=\frac{\kappa_{1}+\kappa_{2}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa_{n}(\varphi) d \varphi$
Gaussian curvature $K=\kappa_{1} \cdot \kappa_{2}$

Principal Directions

Principal directions: tangent vectors corresponding to $\varphi_{\max }$ and $\varphi_{\min }$

min curvature

Principal Directions

Euler's Theorem: Planes of principal curvature are orthogonal and independent of parameterization.
$\kappa_{n}(\varphi)=\kappa_{1} \cos ^{2} \varphi+\kappa_{2} \sin ^{2} \varphi, \quad \varphi=$ angle with \mathbf{t}_{1}

Laplace-Beltrami and Curvature

*Apply operator to coordinate functions

Laplace-
Beltrami
gradient
operator

$\mathcal{M}_{\mathbf{M}}=\operatorname{div}_{\mathcal{M}} \nabla_{\mathcal{M}} \mathbf{p}$

coordinate functions on surface M

$$
\mathbf{p}=(x, y, z)
$$

Laplace-Beltrami and Curvature

Apply operator to coordinate functions

Laplace-
Beltrami
coordinate functions on surface M

$$
\mathbf{p}=(x, y, z)
$$

gradient	mean
operator	curvature

Effect of the Discretization

Effect of the Discretization

Effect of the Discretization

*Uniform Laplacian $\mathbf{L}_{u}\left(\mathbf{v}_{i}\right)$
-Cotangent Laplacian $\mathbf{L}_{c}\left(\mathbf{v}_{i}\right)$

Effect of the Discretization

*Uniform Laplacian $\mathbf{L}_{u}\left(\mathbf{v}_{i}\right)$
Cotangent Laplacian $\mathbf{L}_{c}\left(\mathbf{v}_{i}\right)$

- Normal

Effect of the Discretization

*Uniform Laplacian $\mathbf{L}_{u}\left(\mathbf{v}_{i}\right)$
Cotangent Laplacian $\mathbf{L}_{c}\left(\mathbf{v}_{i}\right)$
*Normal

For nearly equal edge lengths
Uniform \approx Cotangent

Effect of the Discretization

*Uniform Laplacian $\mathbf{L}_{u}\left(\mathbf{v}_{i}\right)$
Cotangent Laplacian $\mathbf{L}_{c}\left(\mathbf{v}_{i}\right)$
*Normal
*For nearly equal edge lengths
Uniform \approx Cotangent

Cotan Laplacian allows computing discrete normal Nice property: gives zero for planar 1-rings!

Effect of the Discretization

Uniform Laplacian: Frequency Mixup!

How to use curvature relation for smoothing?

$$
\begin{array}{ll}
& \Delta_{\mathcal{M}} \mathbf{p}=-2 H \mathbf{n} \\
\text { goal: } & H=0 \text { or } H=\mathrm{const}
\end{array}
$$

-Smooth H, obtain \tilde{H}
-Find a surface that has \tilde{H}
 as mean curvature
$\star H$ doesn't define the surface
-n nonlinear in \mathbf{p}

How to use curvature relation for smoothing?

$$
\begin{array}{ll}
& \Delta_{\mathcal{M}} \mathbf{p}=-2 H \mathbf{n} \\
\text { goal: } & H=0 \text { or } H=\mathrm{const}
\end{array}
$$

*Another idea:
-Keep the old \mathbf{n}
*"Flow" along \mathbf{n} to decrease H

Diffusion Flow on Height Fields

-Diffusion equation

diffusion constant

Diffusion flow on Meshes

Diffusion flow on Meshes

*Model smoothing as a diffusion process

Diffusion flow on Meshes

©Model smoothing as a diffusion process
$\frac{\partial \mathbf{p}}{\partial t}=\lambda \Delta \mathbf{p}=-2 \lambda H \mathbf{n}$

Diffusion flow on Meshes

*Model smoothing as a diffusion process

$$
\frac{\partial \mathbf{p}}{\partial t}=\lambda \Delta \mathbf{p}=-2 \lambda H \mathbf{n}
$$

Discretize in time, forward differences:

$$
\begin{aligned}
& \frac{\mathbf{p}^{(n+1)}-\mathbf{p}^{(n)}}{d t}=\lambda L \mathbf{p}^{(n)} \\
& \mathbf{p}^{(n+1)}-\mathbf{p}^{(n)}=d t \lambda L \mathbf{p}^{(n)} \\
& \mathbf{p}^{(n+1)}=(I+d t \lambda L) \mathbf{p}^{(n)}
\end{aligned}
$$

Diffusion flow on Meshes

*Model smoothing as a diffusion process

$$
\frac{\partial \mathbf{p}}{\partial t}=\lambda \Delta \mathbf{p}=-2 \lambda H \mathbf{n}
$$

Discretize in time, forward differences:

$$
\begin{aligned}
& \frac{\mathbf{p}^{(n+1)}-\mathbf{p}^{(n)}}{d t}=\lambda L \mathbf{p}^{(n)} \\
& \mathbf{p}^{(n+1)}-\mathbf{p}^{(n)}=d t \lambda L \mathbf{p}^{(n)} \\
& \mathbf{p}^{(n+1)}=(I+d t \lambda L) \mathbf{p}^{(n)}
\end{aligned}
$$

Explicit integration! Unstable unless time step $d t$ is small

Diffusion Flow on Meshes

$$
\mathbf{p}_{i} \leftarrow \mathbf{p}_{i}+\lambda \Delta \mathbf{p}_{i}
$$

*Iterate

5 Iterations

20 Iterations

Effect of Laplace Discretization

*Uniform Laplace smooths geometry and triangulation
*Can be non-zero even for planar triangulations
*Vertex drift can lead to distortions
*Might be desired for mesh regularization

Comparison

Original

Uniform Laplace

Remeshing

Remeshing

-Improved geometry (positions)
*How about connectivity?

Remeshing

- Improved geometry (positions)
*How about connectivity?
*Remeshing: Given a 3D mesh, improve its triangulation while preserving its geometry.

Remeshing

*Improved geometry (positions)
*How about connectivity?
Remeshing: Given a 3D mesh, improve its triangulation while preserving its geometry.

Meshing Quality Checklist

- Equal edge lengths
- Equilateral triangles
- Valence close to 6
* Uniform vs. adaptive sampling
- Feature preservation
* Alignment to curvature lines
- Isotropic vs. anisotropic
* Triangles vs. quadrangles

Two Fundamental Approaches

Two Fundamental Approaches

Parametrization based

- map to 2D domain / 2D problem
- computationally more expensive
- works even for coarse resolution remeshing

Two Fundamental Approaches

Parametrization based

- map to 2D domain / 2D problem
- computationally more expensive
- works even for coarse resolution remeshing

Surface oriented

- operate directly of the surface
- treat surface as a set of points / polygons in space
- efficient for high resolution remeshing

Parametrization Based

Surface Oriented

Surface Oriented

Surface Oriented

Surface Oriented

Parameterization-Based Approach

Motivation: 2D remeshing is much easier

- Sample distribution
- Delaunay triangulation
- Centroidal Voronoi diagram
- Which parameterization method to choose?
-Next time!

Parameterization- Based Isotropic Remeshing

Alliez et al. 2002,
Interactive Geometry Remeshing

Parameterization- Based Isotropic Remeshing

Alliez et al. 2002,
Interactive Geometry Remeshing

Parameterization- Based Isotropic Remeshing

Parameterization- Based Isotropic Remeshing

Alliez et al. 2002,
Interactive Geometry Remeshing

Weighted Centroidal Voronoi tessellation

Parameterization- Based Isotropic Remeshing

Need disk-like topology

-Introduce cuts on the mesh

Distortion-Based Sampling

Randomly sample triangles

- Weighted by area and density
- Density: curvature or userdefined sizing field

Compensate area distortion when sampling in the parameter domain

- Distortion $=3 \mathrm{D}$ area $/ 2 \mathrm{D}$ area

Distortion-Based Sampling

*Compose importance map

-At parameterization time: Keep track of where each point/triangle lands!

Distortion-Based Sampling

-2D error diffusion on importance map

- Half-toning, dithering

Floyd-Steinberg dithering

Distortion-Based Sampling

-2D error diffusion on importance map

- Half-toning, dithering

Floyd-Steinberg dithering

Connecting the samples

*2D constrained Delaunay triangulation

Uniform vs. Adaptive

Limitations

Closed genus 0

- May need a good cut
- Stitch seams afterwards
*Protruding legs
- Sampling
- Numerical problems

Direct Surface Remeshing

Avoid global parametrization

- Numerically very sensitive
- Topological restrictions

Use local operators \& backprojections

- Resampling of 100k triangles in < 5s

Botsch et al. 2004, "A Remeshing Approach to Multiresolution Modeling"

Local Remeshing Operators

Edge
Collapse

Local Remeshing Operators

Local Remeshing Operators

Local Remeshing Operators

Isotropic Remeshing

-Specify target edge length L

- Iterate:

1. Split edges longer than $L_{\text {max }}$
2. Collapse edges shorter than $L_{\text {min }}$
3. Flip edges to get closer to valence 6
4. Vertex shift towards neighbor average by tangential relaxation
5. Project vertices onto reference mesh

Remeshing Results

Original

$\left(\frac{1}{2}, 2\right)$

$\left(\frac{4}{5}, \frac{4}{3}\right)$

Next Time

*Parameterization!

EXTRAS

Moving Least Squares (Reconstruction) Implicit integration (Smoothing) Vertex areas (Laplace-Beltrami)
More details on Remeshing Ops (Remeshing)

Moving Least Squares (MLS)

*Do purely local approximation of the SDF
*Weights change depending on where we are evaluating
*The beauty: the "stitching" of all local approximations, seen as one function $F(\mathbf{x})$, is smooth everywhere!

Moving Least Squares (MLS)

*Do purely local approximation of the SDF
*Weights change depending on where we are evaluating
*The beauty: the "stitching" of all local approximations, seen as one function $F(\mathbf{x})$, is smooth everywhere!
-We get a globally smooth
function but only do local computation

Moving Least Squares (MLS)

*Do purely local approximation of the SDF
*Weights change depending on where we are evaluating
*The beauty: the "stitching" of all local approximations, seen as one function $F(\mathbf{x})$, is smooth everywhere!
*We get a globally smooth
function but only do local computation

Moving Least Squares (MLS)

*Do purely local approximation of the SDF
*Weights change depending on where we are evaluating
*The beauty: the "stitching" of all local approximations, seen as one function $F(\mathbf{x})$, is smooth everywhere!
*We get a globally smooth function but only do local computation

Moving Least Squares (MLS)

*Do purely local approximation of the SDF
*Weights change depending on where we are evaluating
*The beauty: the "stitching" of all local approximations, seen as one function $F(\mathbf{x})$, is smooth everywhere!
-We get a globally smooth function but only do local computation

Least-Squares Approximation

$$
f \in \Pi_{k}^{3}: f(x, y, z)=a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} x y+\ldots+a_{*} z^{k}
$$

Least-Squares Approximation

$$
\begin{gathered}
f \in \Pi_{k}^{3}: f(x, y, z)=a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} x y+\ldots+a_{*} z^{k} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{a}
\end{gathered}
$$

Least-Squares Approximation

$$
\begin{gathered}
f \in \Pi_{k}^{3}: f(x, y, z)=a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} x y+\ldots+a_{*} z^{k} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{a} \\
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{*}\right)^{T}, \mathbf{b}(\mathbf{x})^{T}=\left(1, x, y, z, x^{2}, x y, \ldots, z^{k}\right)
\end{gathered}
$$

Least-Squares Approximation

*Polynomial least-squares approximation
-Choose degree, k

$$
\begin{gathered}
f \in \Pi_{k}^{3}: f(x, y, z)=a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} x y+\ldots+a_{*} z^{k} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{a} \\
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{*}\right)^{T}, \mathbf{b}(\mathbf{x})^{T}=\left(1, x, y, z, x^{2}, x y, \ldots, z^{k}\right)
\end{gathered}
$$

*Find a that minimizes sum of squared differences

Least-Squares Approximation

*Polynomial least-squares approximation
-Choose degree, k

$$
\begin{gathered}
f \in \Pi_{k}^{3}: f(x, y, z)=a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} x y+\ldots+a_{*} z^{k} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{a} \\
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{*}\right)^{T}, \mathbf{b}(\mathbf{x})^{T}=\left(1, x, y, z, x^{2}, x y, \ldots, z^{k}\right)
\end{gathered}
$$

Find a that minimizes sum of squared differences

$$
\underset{f \in \Pi_{k}^{3}}{\operatorname{argmin}} \sum_{i=0}^{N-1}\left(f\left(\mathbf{c}_{i}\right)-d_{i}\right)^{2} \text { or: } \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{i=0}^{N-1}\left(\mathbf{b}\left(\mathbf{c}_{i}\right)^{T} \mathbf{a}-d_{i}\right)^{2}
$$

MOVING Least-Squares Approximation

*Polynomial least-squares approximation
-Choose degree, k

$$
\begin{gathered}
f \in \Pi_{k}^{3}: f(x, y, z)=a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} x y+\ldots+a_{*} z^{k} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{a} \\
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{*}\right)^{T}, \mathbf{b}(\mathbf{x})^{T}=\left(1, x, y, z, x^{2}, x y, \ldots, z^{k}\right)
\end{gathered}
$$

Find $\mathbf{a}_{\mathbf{x}}$ that minimizes WEIGHTED sum of squared differences

$$
\begin{aligned}
& f_{\mathbf{x}}=\underset{f \in \Pi_{k}^{3}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|\mathbf{x}-\mathbf{c}_{i}\right\|\right)\left(f\left(\mathbf{c}_{i}\right)-d_{i}\right)^{2} \text { or: } \\
& \mathbf{a}_{\mathbf{x}}=\underset{\mathbf{a}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|\mathbf{x}-\mathbf{c}_{i}\right\|\right)\left(\mathbf{b}\left(\mathbf{c}_{i}\right)^{T} \mathbf{a}-d_{i}\right)^{2}
\end{aligned}
$$

MOVING Least-Squares Approximation

-Polynomial least-squares approximation
-Choose degree, k

$$
\begin{gathered}
f \in \Pi_{k}^{3}: f(x, y, z)=a_{0}+a_{1} x+a_{2} y+a_{3} z+a_{4} x^{2}+a_{5} x y+\ldots+a_{*} z^{k} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{a} \\
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{*}\right)^{T}, \mathbf{b}(\mathbf{x})^{T}=\left(1, x, y, z, x^{2}, x y, \ldots, z^{k}\right)
\end{gathered}
$$

Find $\mathbf{a}_{\mathbf{x}}$ that minimizes WEIGHTED sum of squared differences
*The value of the SDF is the obtained approximation evaluated at \mathbf{x} :

$$
F(\mathbf{x})=f_{\mathbf{x}}(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{a}_{\mathbf{x}}
$$

MLS - 1D Example

Global approximation in Π_{2}^{1}

$$
f=\underset{f \in \Pi_{2}^{1}}{\operatorname{argmin}} \sum_{i=0}^{N-1}\left(f\left(c_{i}\right)-d_{i}\right)^{2}
$$

MLS - 1D Example

*MLS approximation using functions in Π_{2}^{1}

$$
F(x)=f_{x}(x), \quad f_{x}=\underset{f \in \Pi_{2}^{1}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|c_{i}-x\right\|\right)\left(f\left(c_{i}\right)-d_{i}\right)^{2}
$$

Evaluation of the SDF now involves a small optimization problem (linear system)

MLS - 1D Example

$*$ MLS approximation using functions in Π_{2}^{1}

$$
F(x)=f_{x}(x), \quad f_{x}=\underset{f \in \Pi_{2}^{1}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|c_{i}-x\right\|\right)\left(f\left(c_{i}\right)-d_{i}\right)^{2}
$$

Evaluation of the SDF now involves a small optimization problem (linear system)

MLS - 1D Example

*MLS approximation using functions in Π_{2}^{1}

$$
F(x)=f_{x}(x), \quad f_{x}=\underset{f \in \Pi_{2}^{1}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|c_{i}-x\right\|\right)\left(f\left(c_{i}\right)-d_{i}\right)^{2}
$$

Evaluation of the SDF now involves a small optimization problem (linear system)

MLS - 1D Example

*MLS approximation using functions in Π_{2}^{1}

$$
F(x)=f_{x}(x), \quad f_{x}=\underset{f \in \Pi_{2}^{1}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|c_{i}-x\right\|\right)\left(f\left(c_{i}\right)-d_{i}\right)^{2}
$$

Evaluation of the SDF now involves a small optimization problem (linear system)

MLS - 1D Example

*MLS approximation using functions in Π_{2}^{1}

$$
F(x)=f_{x}(x), \quad f_{x}=\underset{f \in \Pi_{2}^{1}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|c_{i}-x\right\|\right)\left(f\left(c_{i}\right)-d_{i}\right)^{2}
$$

Evaluation of the SDF now involves a small optimization problem (linear system)

MLS - 1D Example

$*$ MLS approximation using functions in Π_{2}^{1}

$$
F(x)=f_{x}(x), \quad f_{x}=\underset{f \in \Pi_{2}^{1}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|c_{i}-x\right\|\right)\left(f\left(c_{i}\right)-d_{i}\right)^{2}
$$

Evaluation of the SDF now involves a small optimization problem (linear system)

Weight Functions

Gaussian

* h is a smoothing parameter

$$
\theta(r)=e^{-\frac{r^{2}}{h^{2}}}
$$

Wendland function $\quad \theta(r)=(1-r / h)^{4}(4 r / h+1)$
-Defined in $[0, h]$ and

$$
\theta(0)=1, \theta(h)=0, \theta^{\prime}(h)=0, \theta^{\prime \prime}(h)=0
$$

Singular function

$$
\theta(r)=\frac{1}{r^{2}+\varepsilon^{2}}
$$

\star For small ε, weights large near $r=0$ (interpolation)

Dependence on Weight Function

Global least squares with linear basis

MLS with (nearly) singular weight function

$$
\theta(r)=\frac{1}{r^{2}+\varepsilon^{2}}
$$

-MLS with approximating weight function

$$
\theta(r)=e^{-\frac{r^{2}}{h^{2}}}
$$

Dependence on Weight Function

The MLS function F is continuously differentiable if and only if the weight function θ is continuously differentiable In general, F is as smooth as θ

$$
F(\mathbf{x})=f_{\mathbf{x}}(\mathbf{x}), \quad f_{\mathbf{x}}=\underset{f \in \Pi_{k}^{d}}{\operatorname{argmin}} \sum_{i=0}^{N-1} \theta\left(\left\|\mathbf{c}_{i}-\mathbf{x}\right\|\right)\left(f\left(\mathbf{c}_{i}\right)-d_{i}\right)^{2}
$$

Global RBF vs. Local MLS

RBF:
*sees the whole data set, can make for very smooth surfaces
-global (dense) system to solve - expensive MLS:
*sees only a small part of the dataset, can get confused by noise
*local linear solves - cheap

Vertex Area - Barycentric

* Barycentric area
*Connect edge midpoints and triangle barycenters
*Each of the incident triangles contributes $1 / 3$ of its area to all its vertices, regardless of the placement
+ Simple to compute
+ Always positive weights
- Heavily connectivity dependent
- Changes if edges are flipped

Vertex Area - Voronoi

*Unfold the triangle flap onto the plane (without distortion)

Voronoi Vertex Area

$$
\begin{aligned}
& \mathbf{c}_{j}= \begin{cases}\text { circumcenter of } \triangle\left(\mathbf{v}_{i}, \mathbf{v}_{j}, \mathbf{v}_{j+1}\right) & \text { if } \theta<\pi / 2 \\
\text { midpoint of edge }\left(\mathbf{v}_{j}, \mathbf{v}_{j+1}\right) & \text { if } \theta \geq \pi / 2\end{cases} \\
& A_{i}=\sum_{j} \operatorname{Area}\left(\triangle\left(\mathbf{v}_{i}, \mathbf{c}_{j}, \mathbf{c}_{j+1}\right)\right)
\end{aligned}
$$

Voronoi Vertex Area

$$
\begin{aligned}
& \mathbf{c}_{j}= \begin{cases}\text { circumcenter of } \triangle\left(\mathbf{v}_{i}, \mathbf{v}_{j}, \mathbf{v}_{j+1}\right) & \text { if } \theta<\pi / 2 \\
\text { midpoint of edge }\left(\mathbf{v}_{j}, \mathbf{v}_{j+1}\right) & \text { if } \theta \geq \pi / 2\end{cases} \\
& A_{i}=\sum_{j} \operatorname{Area}\left(\triangle\left(\mathbf{v}_{i}, \mathbf{c}_{j}, \mathbf{c}_{j+1}\right)\right)
\end{aligned}
$$

Smoothing and Numerical Integration

Smoothing and Numerical Integration

*Explicit integration of diffusion can be unstable

$$
\begin{gathered}
\mathbf{p}_{i}^{(t+1)}=\mathbf{p}_{i}^{(t)}+\lambda \Delta \mathbf{p}_{i}^{(t)} \\
\mathbf{P}^{(t)}=\left(\mathbf{p}_{1}^{(t)}, \ldots, \mathbf{p}_{n}^{(t)}\right)^{T} \in \mathbb{R}^{n \times 3} \\
\mathbf{P}^{(t+1)}=(\mathbf{I}+\lambda \mathbf{L}) \mathbf{P}^{(t)}
\end{gathered}
$$

Smoothing and Numerical Integration

*Explicit integration of diffusion can be unstable

$$
\begin{gathered}
\mathbf{p}_{i}^{(t+1)}=\mathbf{p}_{i}^{(t)}+\lambda \Delta \mathbf{p}_{i}^{(t)} \\
\mathbf{P}^{(t)}=\left(\mathbf{p}_{1}^{(t)}, \ldots, \mathbf{p}_{n}^{(t)}\right)^{T} \in \mathbb{R}^{n \times 3}
\end{gathered}
$$

-Implicit integration is unconditionally stable

$$
\mathbf{P}^{(t+1)}=(\mathbf{I}+\lambda \mathbf{L}) \mathbf{P}^{(t)}
$$

Smoothing and Numerical Integration

*Explicit integration of diffusion can be unstable

$$
\begin{aligned}
& \mathbf{p}_{i}^{(t+1)}=\mathbf{p}_{i}^{(t)}+\lambda \Delta \mathbf{p}_{i}^{(t)} \\
& \mathbf{P}^{(t)}=\left(\mathbf{p}_{1}^{(t)}, \ldots, \mathbf{p}_{n}^{(t)}\right)^{T} \in \mathbb{R}^{n \times 3}
\end{aligned}
$$

- Implicit integration is unconditionally stable

$$
\begin{gathered}
\mathbf{P}^{(t+1)}=(\mathbf{I}+\lambda \mathbf{L}) \mathbf{P}^{(t)} \\
(\mathbf{I}-\lambda \mathbf{L}) \mathbf{P}^{(t+1)}=\mathbf{P}^{(t)}
\end{gathered}
$$

*... boils down to a sparse symmetric positive definite system solve

- Iterative conjugate gradients, sparse Cholesky

Edge Collapse / Split

$$
\begin{aligned}
\left|L_{\max }-L\right| & =\left|\frac{1}{2} L_{\max }-L\right| \\
\Rightarrow L_{\max } & =\frac{4}{3} L
\end{aligned}
$$

$$
\begin{aligned}
\left|L_{\min }-L\right| & =\left|\frac{3}{2} L_{\max }-L\right| \\
\quad \Rightarrow L_{\min } & =\frac{4}{5} L
\end{aligned}
$$

Edge Flip

Improve valences

- Avg. valence is 6 (Euler)
- Reduce variation

Optimal valence is

- 6 for interior vertices
- 4 for boundary vertices

Edge Flip

Improve valences

- Avg. valence is 6 (Euler)
- Reduce variation

Optimal valence is

- 6 for interior vertices
- 4 for boundary vertices
-Minimize valence excess
$\sum_{i=1}^{4}\left(\text { valence }\left(v_{i}\right)-\text { opt_valence }\left(v_{i}\right)\right)^{2}$

Vertex Shift

Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

Vertex Shift

-Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

Vertex Shift

*Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring
 neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

Vertex Shift

*Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring
 neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

Vertex Shift

-Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

-Keep vertex (approx.) of surface

- Restrict movement to tangent plane

$$
\mathbf{p}_{i} \leftarrow \mathbf{p}_{i}+\lambda\left(I-\mathbf{n}_{i} \mathbf{n}_{i}^{T}\right)\left(\mathbf{c}_{i}-\mathbf{p}_{i}\right)
$$

Vertex Shift

-Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

-Keep vertex (approx.) of surface

- Restrict movement to tangent plane

$$
\mathbf{p}_{i} \leftarrow \mathbf{p}_{i}+\lambda\left(I-\mathbf{n}_{i} \mathbf{n}_{i}^{T}\right)\left(\mathbf{c}_{i}-\mathbf{p}_{i}\right)
$$

Vertex Shift

-Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

-Keep vertex (approx.) of surface

- Restrict movement to tangent plane

$$
\mathbf{p}_{i} \leftarrow \mathbf{p}_{i}+\lambda\left(I-\mathbf{n}_{i} \mathbf{n}_{i}^{T}\right)\left(\mathbf{c}_{i}-\mathbf{p}_{i}\right)
$$

Vertex Shift

-Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

Keep vertex (approx.) of surface

- Restrict movement to tangent plane

$$
\mathbf{p}_{i} \leftarrow \mathbf{p}_{i}+\lambda\left(I-\mathbf{n}_{i} \mathbf{n}_{i}^{T}\right)\left(\mathbf{c}_{i}-\mathbf{p}_{i}\right)
$$

Vertex Shift

-Local "spring" relaxation

- Uniform Laplacian smoothing
- Bary-center of one-ring neighbors

$$
\mathbf{c}_{i}=\frac{1}{\text { valence }\left(v_{i}\right)} \sum_{j \in N\left(v_{i}\right)} \mathbf{p}_{j}
$$

Keep vertex (approx.) of surface

- Restrict movement to tangent plane

$$
\mathbf{p}_{i} \leftarrow \mathbf{p}_{i}+\lambda\left(I-\mathbf{n}_{i} \mathbf{n}_{i}^{T}\right)\left(\mathbf{c}_{i}-\mathbf{p}_{i}\right)
$$

Vertex Projection

-Project vertices onto original reference mesh

- Static reference mesh
- Precompute BSP
-Assign position \& interpolated normal

