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In Previous Lecture
Point cloud registration
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This Lecture
Point clouds not directly usable by most CG applications 

Rendering, editing/deformation, texturing, simulation, …! 
Need a semi-”continuous” surface instead!

3Partial slides credits: Olga Sorkine-Hornung, ETH Zurich, Mario Botsch, and many others
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Input to Reconstruction Process
Input option 1: just a set of 3D 
points, irregularly spaced 

Need to estimate normals 
➔ reminder: PCA - intro class! 
➔ Hoppe et al. 92, “Surface 
reconstruction from unorganized points”  
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points, irregularly spaced 
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➔ reminder: PCA - intro class! 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reconstruction from unorganized points”  

4

set of raw scans reconstructed 
model

Input option 2:  
normals come from the  
range scans



What is a surface?
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Image of parameterization
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Implicit Representations

Easy to handle different topologies
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How to Connect the Dots?
Explicit reconstruction:  
stitch the range scans together

“Zippered Polygon Meshes from Range Images”, Greg Turk and Marc Levoy, ACM SIGGRAPH 1994
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How to Connect the Dots?
Explicit reconstruction:  
stitch the range scans together

▪ Connect sample points 
by triangles 

▪ Exact interpolation of 
sample points 

▪ Bad for noisy or 
misaligned data 

▪ Can lead to holes or 
non-manifold situations 
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Implicit Function Approach

3:f R R→
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the shape and > 0 
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How to Connect the Dots?
Implicit reconstruction: estimate a signed 
distance function (SDF); extract 0-level set 
mesh using Marching Cubes

▪ Approximation of input 
points 

▪ Watertight manifold 
results by construction
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Implicit vs. Explicit

Input Implicit Explicit
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SDF from Points and Normals
Compute signed distance 
to the tangent plane of the 
closest point 

Normals help to 
distinguish between inside 
and outside

“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992 
http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/
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SDF from Points and Normals
Compute signed 
distance to the tangent 
plane of the closest point 

The function will be 
discontinuous
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Smooth SDF
Instead find a smooth 
formulation for F. 
Scattered data 
interpolation: 

  
F is smooth 
Avoid trivial 0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
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Smooth SDF
Scattered data 
interpolation: 

  
F is smooth 
Avoid trivial 

Add off-surface 
constraints 

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
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Radial Basis Function Interpolation

RBF: Weighted sum of shifted, smooth kernels

Scalar weights 
Unknowns

Smooth kernels  
(basis functions) 

centered at constrained  
points. 

For example: 
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Radial Basis Functions Interpolation
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Radial Basis Functions Interpolation
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Kernel centers: on- and off-surface points



Radial Basis Functions Interpolation

How do we find the weights?

20

Kernel centers: on- and off-surface points



Radial Basis Function Interpolation

Interpolate the constraints:

0

0

0 0

21



Radial Basis Function Interpolation

Interpolate the constraints: 

Symmetric linear system to get the weights:

22

3n equations
3n variables



RBF Kernels

Triharmonic: 
Globally supported 
Leads to dense symmetric linear system 
C2 smoothness
Works well for highly irregular sampling
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RBF Kernels
Polyharmonic spline 

  
  

  
Multiquadratic 
   

Gaussian 

 B-Spline (compact support) 
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RBF Reconstruction Examples

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
25



Off-Surface Points

Insufficient number/ 
badly placed off-surface points

Properly chosen off-surface points

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
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Distance 
to plane

Compact RBF Global RBF 
Triharmonic

Comparison of the various SDFs so far
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RBF – Discussion
Global definition! 

Global optimization of  
the weights, even if the  
basis functions are local

0

0

0 0
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Complexity Issues
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Hard to solve for large number of samples
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Complexity Issues
Solve the linear system for RBF weights 

Hard to solve for large number of samples

Compactly supported RBFs 
Sparse linear system 
Efficient solvers 
.. but less smooth!

Greedy RBF fitting 
Start with a few RBFs only 
Add more RBFs in region of large error

Even better: Moving Least Squares! (maybe later….)
29



Extracting the Surface

Wish to compute a manifold mesh of the level set
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outside
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F(x) < 0 à 
inside
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Sample the SDF
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Sample the SDF

31



Sample the SDF
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Sample the SDF

33
Marching Cubes! (in previous lecture)



Example: Reconstruction
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Other Methods

 Better use of normals: [Shen et al. 
SIGGRAPH 2004]  

 Poisson Reconstruction : Kazhdan et 
al., SGP 2006  
http://www.cs.jhu.edu/~misha/Code/
PoissonRecon/
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Smoothing & Remeshing– 
Motivation

Scanned surfaces can be noisy
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Smoothing & Remeshing– 
Motivation

Marching Cubes meshes can be ugly
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Represent a function as a 
weighted sum of sines and 
cosines (basis functions)

Joseph Fourier 1768 - 1830

Fourier analysis - Example
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More generally - Fourier analysis
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Orthonormal basis : complex “waves” 

More generally - Fourier analysis

Spatial 
Domain

Frequency 
Domain

Fourier Transform

Inverse Transform

39

Inner product for L2 function space



We can also Fourier on rectangular 
2D domains

Fourier (DCT) basis functions for 8x8 grayscale images
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Smoothing = filtering high frequencies out

spatial domain frequency domain

41

Frequency domain F(u) → 
Spatial domain f(x)

Spatial domain f(x) → 
Frequency domain F(u)

Multiply by low-pass 
filter G(u)
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Extend Fourier to meshes?
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Extend Fourier to meshes?

So far, our functions have been defined on 
parameterized patches f (u,v)
• Generalize to meshes!

Fourier basis functions are eigenfunctions of the 
(standard) Laplace operator Δ: L2 → L2

We need a discrete (mesh-based) version of this 
operator!
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Continuous Laplace Operator
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Laplace 
operator

function in 
Euclidean space
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Continuous Laplace-Beltrami 
Operator

Extension of Laplace operator to functions on 
manifolds
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Differential Properties on Meshes
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Differential Properties on Meshes

So for Laplacian, we need differential quantities 
(gradient, divergence…)
Assumption: meshes are piecewise linear 
approximations of smooth surfaces
Can try fitting a smooth surface locally (say, a 
polynomial) and find differential quantities 
analytically
But: it is often too slow for interactive setting 
and error prone

45



Discrete Differential Operators
Approach: approximate differential 
properties at point v as spatial average 
over local mesh neighborhood N(v) where 
typically 

v = mesh vertex 
Nk(v) = k-ring neighborhood
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Discrete Laplace-Beltrami
Uniform discretization:  L(f) or ∆f 

Similar to 5 point stencil for images!  

Depends only on connectivity : simple and efficient 

Bad approximation for irregular triangulations
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Discrete Laplace-Beltrami 
Operator

In matrix form

48
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Discrete Laplace-Beltrami 
Operator

In matrix form
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Discrete Laplace-Beltrami 
Operator

In matrix form
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Discrete Laplace-Beltrami

Better: cotangent formula

Aivi

vj

αij

βij

vi

vj

49

Can be derived by discretizing continuous L-B via linear Finite Elements!

: vertex area 
(Voronoi, 
barycentric..) 



Now we can Fourier-smooth!
Take your favorite L-B matrix L 
Compute eigenvectors e1, e2, …, ek with the k 
smallest eigenvalues ⟹ matrix eigenvalues! 
Reconstruct mesh geometry  (= coordinate 
functions, e.g.                   ) from the eigenvectors:

50



Take your favorite L-B matrix L 
Compute eigenvectors e1, e2, …, ek with the k 
smallest eigenvalues 
Reconstruct mesh geometry  (= coordinate 
functions, e.g.                   ) from the eigenvectors:

Spectral analysis on meshes

k = 40 k = 200 k = 500 k = 1000
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Take your favorite L-B matrix L 
Compute eigenvectors e1, e2, …, ek with the k 
smallest eigenvalues 
Reconstruct mesh geometry  (= coordinate 
functions, e.g.                   ) from the eigenvectors:

Spectral analysis on meshes

k = 40 k = 200 k = 500 k = 1000

too expensive for 

large meshes

51



An alternative approach

Laplace – Beltrami operator relates to 
mesh curvature! 
Smoothing is “reducing the curvature” !

52



What is Curvature?

n

p

pu pv

t
γ

For given tangential direction t: 
Take curve γ  - intersection  
of surface with the plane  
through n and t. 

Normal curvature: 

 κn(ϕ) = κ(γ(p))t
ϕ

Tangent plane

53

Measure how much the surface  
“changes” along a the various 
tangential directions. 



Surface Curvatures

Principal curvatures 
Minimal curvature 

Maximal curvature 

Mean curvature 

Gaussian curvature

54



Principal Directions

Principal directions: 
tangent vectors 
corresponding to 
 ϕmax and ϕmin  

min curvature max curvaturetangent 
plane

ϕ min

t1
t2

55



Euler’s Theorem: Planes of principal curvature are 
orthogonal and independent of parameterization.

Principal Directions

56



Laplace-Beltrami and Curvature
Apply operator to coordinate functions

Laplace- 
Beltrami

gradient 
operator

divergence 
operator

coordinate functions on 
surface M

57



Laplace-Beltrami and Curvature
Apply operator to coordinate functions

mean  
curvature

unit 
surface  
normal

Laplace- 
Beltrami

gradient 
operator

divergence 
operator

coordinate functions on 
surface M
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Effect of the Discretization
vi

vj

α
β

58



Effect of the Discretization
Uniform Laplacian Lu(vi)vi

vj

α
β

58



Effect of the Discretization
Uniform Laplacian Lu(vi)
Cotangent Laplacian Lc(vi)

vi

vj

α
β
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Effect of the Discretization
Uniform Laplacian Lu(vi)
Cotangent Laplacian Lc(vi)
Normal

vi

vj

α
β
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Effect of the Discretization
Uniform Laplacian Lu(vi) 
Cotangent Laplacian Lc(vi) 
Normal 

For nearly equal edge 
lengths  
Uniform ≈ Cotangent

vi

vj

α
β
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Effect of the Discretization
Uniform Laplacian Lu(vi) 
Cotangent Laplacian Lc(vi) 
Normal 

For nearly equal edge 
lengths  
Uniform ≈ Cotangent

vi

vj

α
β

Cotan Laplacian allows computing discrete normal

60

Nice property: gives zero for planar 1-rings!



Effect of the Discretization

61

Uniform Laplacian: Frequency Mixup!



How to use curvature relation for smoothing?

Smooth H, obtain  
Find a surface that has     
as mean curvature 

H doesn’t define the surface 
n nonlinear in p

goal: or

62



Another idea: 
Keep the old n 
“Flow” along n to 

decrease H

63

goal: or

How to use curvature relation for smoothing?



Diffusion Flow on Height Fields

Diffusion equation
diffusion constant

Laplace operator

64



Diffusion flow on Meshes

65



Diffusion flow on Meshes

Model smoothing as a diffusion process
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Diffusion flow on Meshes

Model smoothing as a diffusion process
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Diffusion flow on Meshes

Model smoothing as a diffusion process

Discretize in time, forward differences:
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Diffusion flow on Meshes

Model smoothing as a diffusion process

Discretize in time, forward differences:
Explicit 
integration! 
Unstable 
unless time 
step dt is 
small

65



Diffusion Flow on Meshes

Iterate

0 Iterations 5 Iterations 20 Iterations

66



Effect of Laplace Discretization
Uniform Laplace smooths 
geometry and triangulation 

Can be non-zero even for 
planar triangulations 

Vertex drift can lead to 
distortions 

Might be desired for mesh 
regularization

Desbrun et al., Siggraph 1999
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Comparison
Original Uniform Laplace Laplace-Beltrami

68



Remeshing
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Remeshing

69

Improved geometry (positions) 
How about connectivity?



Remeshing

69

Improved geometry (positions) 
How about connectivity?

Remeshing:  Given a 3D mesh, improve its triangulation 
while preserving its geometry.



Remeshing

69

Improved geometry (positions) 
How about connectivity?

Remeshing:  Given a 3D mesh, improve its triangulation 
while preserving its geometry.

Meshing Quality Checklist 
Equal edge lengths 
Equilateral triangles 
Valence close to 6 
Uniform vs. adaptive sampling 
Feature preservation 
Alignment to curvature lines 
Isotropic vs. anisotropic 
Triangles vs. quadrangles



Two Fundamental Approaches

70



Two Fundamental Approaches
Parametrization based 
• map to 2D domain / 2D problem 
• computationally more expensive 
• works even for coarse resolution remeshing
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Two Fundamental Approaches
Parametrization based 
• map to 2D domain / 2D problem 
• computationally more expensive 
• works even for coarse resolution remeshing

Surface oriented 
• operate directly of the surface 
• treat surface as a set of points / polygons in 

space 
• efficient for high resolution remeshing

70



Parametrization Based
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Parametrization Based
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Parametrization Based
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Parametrization Based

74



Parametrization Based
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Surface Oriented
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Surface Oriented
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Surface Oriented
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Surface Oriented
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Parameterization-Based 
Approach

Motivation: 2D remeshing is much easier 
• Sample distribution 
• Delaunay triangulation 
• Centroidal Voronoi diagram 

 Which parameterization method to choose? 
Next time!
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Parameterization- Based 
Isotropic Remeshing

81

Alliez et al. 2002, 

Interactive Geometry Remeshing
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Parameterization- Based 
Isotropic Remeshing

Weighted Centroidal Voronoi tessellation
81

Alliez et al. 2002, 

Interactive Geometry Remeshing



Parameterization- Based 
Isotropic Remeshing

Weighted Centroidal Voronoi tessellation
81

Alliez et al. 2002, 

Interactive Geometry Remeshing



Need disk-like topology

Introduce cuts on the mesh

82



Distortion-Based Sampling

Randomly sample triangles 
• Weighted by area and density 
• Density: curvature or user-

defined sizing field 

Compensate area distortion 
when sampling in the 
parameter domain 
• Distortion = 3D area / 2D area

83



Distortion-Based Sampling

Compose importance map

Importance mapMean curvatureArea stretch

⋅ =

84

At parameterization time: Keep track of where 
each point/triangle lands!



Distortion-Based Sampling

2D error diffusion on importance map 
• Half-toning, dithering

85

Floyd-Steinberg 
dithering



Distortion-Based Sampling

2D error diffusion on importance map 
• Half-toning, dithering

85

Floyd-Steinberg 
dithering



Connecting the samples

2D constrained Delaunay triangulation

86



Uniform vs. Adaptive

87
Alliez et al. 2003, Anisotropic Polygonal Remeshing



Limitations
Closed genus 0 
• May need a good cut 
• Stitch seams afterwards 

Protruding legs 
• Sampling 
• Numerical problems

88



Direct Surface Remeshing

Avoid global parametrization 
• Numerically very sensitive 
• Topological restrictions 

Use local operators & back-
projections 
• Resampling of 100k triangles in < 5s

89

Botsch et al. 2004, “A Remeshing Approach to Multiresolution Modeling”



Local Remeshing Operators

Edge 
Collapse
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Local Remeshing Operators

Edge 
Split

Edge 
Collapse
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Local Remeshing Operators

Edge 
Split

Edge 
Collapse

Edge 
Flip

90



Local Remeshing Operators

Edge 
Split

Vertex 
Shift

Edge 
Collapse

Edge 
Flip

90



Isotropic Remeshing

Specify target edge length L 

Iterate: 
1. Split edges longer than Lmax

2. Collapse edges shorter than Lmin

3. Flip edges to get closer to valence 6 
4. Vertex shift towards neighbor average by 

tangential relaxation 
5. Project vertices onto reference mesh

91



Remeshing Results

Original

92



Next Time

Parameterization!

93



EXTRAS  

94

Moving Least Squares (Reconstruction) 
Implicit integration (Smoothing)  
Vertex areas (Laplace-Beltrami) 
More details on Remeshing Ops (Remeshing)



Moving Least Squares (MLS)
Do purely local approximation of the SDF 
Weights change depending on where we are evaluating 

The beauty: the “stitching” of  
all local approximations, seen as  
one function F(x), is  
smooth everywhere! 

We get a globally smooth  
function but only do  
local computation

0

0

0 0

“Interpolating and Approximating Implicit Surfaces from Polygon Soup”, Shen et al., 
ACM SIGGRAPH 2004 
http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html

95

http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html
http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html
http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html
http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html
http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html


Moving Least Squares (MLS)
Do purely local approximation of the SDF 
Weights change depending on where we are evaluating 

The beauty: the “stitching” of  
all local approximations, seen as  
one function F(x), is  
smooth everywhere! 

We get a globally smooth  
function but only do  
local computation

0

0

0 0

96



Moving Least Squares (MLS)
Do purely local approximation of the SDF 
Weights change depending on where we are evaluating 

The beauty: the “stitching” of  
all local approximations, seen as  
one function F(x), is  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0

0
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Do purely local approximation of the SDF 
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Moving Least Squares (MLS)
Do purely local approximation of the SDF 
Weights change depending on where we are evaluating 

The beauty: the “stitching” of  
all local approximations, seen as  
one function F(x), is  
smooth everywhere! 

We get a globally smooth  
function but only do  
local computation

0

0

0 0
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Least-Squares Approximation
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Least-Squares Approximation

100



Least-Squares Approximation
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Least-Squares Approximation
Polynomial least-squares approximation 

Choose degree, k 

Find a that minimizes sum of squared differences
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Least-Squares Approximation
Polynomial least-squares approximation 

Choose degree, k 

Find a that minimizes sum of squared differences
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MOVING Least-Squares Approximation
Polynomial least-squares approximation 

Choose degree, k 

Find ax that minimizes WEIGHTED sum of squared 
differences

101



MOVING Least-Squares Approximation
Polynomial least-squares approximation 

Choose degree, k 

Find ax that minimizes WEIGHTED sum of squared 
differences 
The value of the SDF is the obtained approximation 
evaluated at x:

102



MLS – 1D Example
Global approximation in 
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MLS – 1D Example
MLS approximation using functions in 

104

Evaluation of the SDF now involves a small optimization problem (linear system)
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MLS – 1D Example
MLS approximation using functions in 

104

Evaluation of the SDF now involves a small optimization problem (linear system)



Weight Functions
Gaussian 

h is a smoothing parameter 

Wendland function 
Defined in [0, h] and 

Singular function 

For small ε, weights large near r=0 (interpolation)

105



Dependence on Weight Function
Global least squares  
with linear basis 

MLS with (nearly)  
singular weight function 

MLS with approximating 
weight function

106



Dependence on Weight Function

The MLS function F is continuously 
differentiable if and only if the weight 
function θ is continuously differentiable 
In general, F is as smooth as θ

107



Global RBF vs. Local MLS

RBF:  
sees the whole data set, can make for very 

smooth surfaces 
global (dense) system to solve – expensive  

MLS: 
sees only a small part of the dataset, can get 

confused by noise 
local linear solves – cheap



Vertex Area - Barycentric
Barycentric area 

Connect edge midpoints and triangle barycenters 
Each of the incident triangles contributes 1/3 of its  area to 
all its vertices, regardless of the placement

109

+  Simple to compute 
+ Always positive weights 
- Heavily connectivity dependent 
- Changes if edges are flipped



Vertex Area - Voronoi 

Unfold the triangle flap onto the plane 
(without distortion)

θ

vi

vj

110



Voronoi Vertex Area

θ

vi

cjvj

cj+1

Flattened flap
vi
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Voronoi Vertex Area

θ

vi

cjvj

cj+1

Flattened flap
vi

111



112

Smoothing and Numerical 
Integration



112

Smoothing and Numerical 
Integration

Explicit integration of diffusion can be unstable
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Smoothing and Numerical 
Integration
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Smoothing and Numerical 
Integration

Explicit integration of diffusion can be unstable

Implicit integration is unconditionally stable

… boils down to a sparse symmetric positive definite 
system solve 
• Iterative conjugate gradients, sparse Cholesky



Edge Collapse / Split

113



Edge Flip
Improve valences 
• Avg. valence is 6 (Euler) 
• Reduce variation 
Optimal valence is 
• 6 for interior vertices 
• 4 for boundary vertices
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Edge Flip
Improve valences 
• Avg. valence is 6 (Euler) 
• Reduce variation 
Optimal valence is 
• 6 for interior vertices 
• 4 for boundary vertices 
Minimize valence excess

Edge 
Flip

+1 +1

-1

-1
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Vertex Shift
Local “spring” relaxation 
• Uniform Laplacian smoothing 
• Bary-center of one-ring neighbors

Vertex 
Shift
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Vertex Shift
Local “spring” relaxation 
• Uniform Laplacian smoothing 
• Bary-center of one-ring neighbors 

Keep vertex (approx.) of surface 
• Restrict movement to tangent plane project

tangent
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Vertex Projection
Project vertices onto 

original reference mesh 
• Static reference mesh 
• Precompute BSP 

Assign position & 
interpolated normal

project
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