
CS348a:
Geometry Processing

Registration and Matching
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3D Point Cloud Processing

3D Acquisition Pipeline
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3D Point Cloud Processing

This lecture

Registration

registered 
point clouds!
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Registration Pipeline

Steps:
1. Initial registration
2. Pairwise refinement
3. Global relaxation to 

distribute error 
4. Generation of surface

Source: Rusinkiewicz et al.
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Fundamental Registration 
Problem

Given two shapes with partially overlapping geometry, find an 
alignment between them  
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Measuring Success:
Shape Distances

Given two shapes A and B, we are interested in 
defining a distance or (dis-)similarity measure

Such measures are crucial in shape similarity search, 
shape classification, etc. 

As another example, shape registration
and matching is very important in 
modern structural biology

Human (red)  and fly (yellow) thierodoxins, compared

[extrinsic]
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Issues about Distance Metrics

We are all familiar with function 
norms (L2, etc.). The common 
parametrization establishes 
correspondences. We don’t have 
that for structures or shapes.
Partial matches need to be 
considered  -- notion of support σ
for the match.
What group of aligning 
transforms is to be considered?
Is the resulting distance a metric?

f

g

Not for 
partial matches
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Simultaneous Estimation
We are given two shapes A and B, 
each in its own coordinate system
We must establish correspondences
between certain parts (the alignment 
supports) of A and B
We must find an optimal transform
that best aligns the supports of A and 
B
We must score this choice of supports 
and transform to produce a distance 
measure δ

In computing the score, how do we
1. aggregate distances?
2. trade-off larger supports for larger aggregate distance?
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Degrees of Freedom
Transform estimation

A rigid motion has 6 degrees of freedom (3 for translation and 3 for 
rotation)
We typically estimate the motion using many more pairs of 
corresponding points, so the problem is overdetermined (which is 
good, given noise, outliers, etc – use least squares approaches)
More general transforms require more degrees of freedom. When 
shape deformations are allowed, the degrees of freedom can grow 
very rapidly
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Other Applications of Alignments
Manufacturing / Quality Control:

One shape is a model and the other is a scan of a 
product. Useful for finding defects.

Medicine:
Finding correspondences between 3D MRI scans of 
the same person to diagnose or monitor disease.

Animation Reconstruction & 3D Video.

Statistical Shape Analysis:
Building models for a collection of shapes.
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Applications – Statistical 
Analysis of Shape Variations

Scan many people. Learn a
deformation model (e.g. PCA).

Find the principal variation modes;
create new random instances.
Requires alignment.

A Statistical Model of Human Pose and Body Shape ,
Hasler et al. Eurographics 09

female, 1.6 m, 65kg
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Method Taxonomy

Local vs. Global
refinement (e.g. ICP)  |  alignment  (search)   . .

Rigid vs. Deformable
rotation, translation  |  general deformation.

Pair vs. Collection
two shapes  |  multiple shapes 
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Method Taxonomy

Local vs. Global
refinement (e.g. ICP)  |  alignment  (search)   . .

Rigid vs. Deformable
rotation, translation  |  general deformation.

Pair vs. Collection
two shapes  |  multiple shapes 

Today
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Local Alignment

Simplest instance of the registration problem

Given two shapes that are approximately aligned (e.g. by a 
human, or via prior knowledge) we want to find the optimal rigid 
transformation that brings them into correspondence.
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Local Alignment

What does it mean for an alignment to be good?

Intuition: we want “corresponding points” to be close after transformation.

Problems
1. We don’t know what points correspond.
2. We don’t know the optimal alignment. 18



How to Get Correspondences?
A chicken-and-egg problem: if we knew the optimal 
aligning transform, then we could get correspondences by 
proximity (possibly with the aid of some global 
adjustment, e.g., dynamic programming)

Transform Correspondences

Guess one, estimate the other, and iterate!

Correspondences from proximity (Iterated Closest Pair)

Correspondences from local shape descriptors (Shape Features)

Transform from voting schemes (Geometric Hashing)

Combinations

EM like
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Iterative Closest Point (ICP)
Approach: iterate between finding 
correspondences and finding the transformation:

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find rigid motion         minimizing:
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Iterative Closest Point

Requires two main computations:
1. Computing nearest neighbors

2. Computing the optimal transformation 
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ICP: Nearest Neighbor 
Computation

Closest points

 How to find closest points efficiently?

 Straightforward complexity:                                

number of points on      ,       number of points on     .

 More sophisticated:       divides the space into Voronoi cells

 Given a query point     , determine to which cell it belongs. 30



Closest Points: Voronoi Cells

Source: 
M. Bronstein
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Closest Points: Voronoi Cells
Approximate nearest neighbors

 To reduce search complexity, approximate Voronoi cells.

 Use binary space partition trees (e.g. kd-trees or octrees).

 Approximate nearest neighbor search complexity:                           .

M. Bronstein
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ICP: Optimal Transformation

Problem Formulation:

1. Given two sets points:                                     in      .  Find the rigid transform:                        

that minimizes:
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Simplest Case: Rigid Alignment,
Given Correspondences

We are given two sets of 
corresponding points x1, x2, ..., xn
and y1, y2, ..., yn in ℜ3. We wish to 
compute the rigid transform T that 
best aligns x1 to y1, x2 to y2, ..., 
and xn to yn.
We define the error to be 
minimized by

Old Problem:
Known and solved as the 
orthogonal Procrustes 
problem in Factor Analysis 
(Statistics) [Shönemann, 
1966]
Known and solved as the 
absolute orientation problem
in Photogrammetry [Horn, 
1986]
Also in robotics, graphics, 
medical image analysis, 
statistical theories of shape, 
etc ...

MSE error, RMS distance, …
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SVD-Based Solution

A rigid motion T is a combination of a translation a and a rotation R, so 
that T(x) = R(x) + a.
The quantity to be minimized is:

36

The unknowns



SVD-Based Solution

A rigid motion T is a combination of a translation a and a rotation R, so 
that T(x) = R(x) + a.
If we place the origin of our coordinate system at the mean of the xi’s, then 
the quantity to be minimized simplifies to (up to some constants):

Note that the translational and rotational parts factor. The translational part 
a can easily be seen to be optimized by The centroids of the two

point sets have to be
aligned!

T R



The Rotation Part

Define

Here X and Y are 3 by n matrices.

Now compute the SVD*

U and V are 3 by 3 orthogonal 
matrices, and D is a diagonal 
matrix with decreasing non-
negative entries along the 
diagonal (the singular values).
Define S by

Then

*SVD = singular value decomposition

X YT

O(n) algorithm! 38



ICP: Optimal Transformation

Problem Formulation:

1. Given two sets points:                                     in      .  Find the rigid transform:                        

that minimizes:

2. Closed form solution:

1. Construct: ,   where

2. Compute the SVD of C: 

1. If

2. Else  

3. Set

Note that C is a 3x3 matrix. SVD is very fast. Arun et al., Least-Squares Fitting 
of Two 3-D Point Sets 39



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:

Convergence: 
• at each iteration                        decreases. 
• Converges to local minimum
• Good initial guess: global minimum.

[Besl&McKay92]
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Variations of ICP

1. Selecting source points (from one or both scans): sampling 

2. Matching to points in the other mesh

3. Weighting the correspondences

4. Rejecting certain (outlier) point pairs 

5. Assigning an error metric to the current transform 

6. Minimizing the error metric w.r.t. the transformation 

41



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:
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Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:

Problem: 
uneven sampling
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:

Solution: 
Minimize distance to   
the tangent plane

Iterative Closest Point

Chen, Medioni, ‘91
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:

Iterative Closest Point.

Kok-Lim Low, ‘04

Solution: 
Minimize distance to   
the tangent plane
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:

Iterative Closest Point

Question:
How to minimize the error?

Challenge:
Although the error is quadratic (linear derivative), the space of 
rotation matrices is not linear.

Problem:
No closed form solution.
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:

Iterative Closest Point

Common Approach:
Linearize rotation. Assume rotation angle is small.

: axis,       
: angle of rotation. 

Note: follows from 
Rodrigues’s formula And first order approximations: 47



Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor            .
2. Find deformation         minimizing:

Iterative Closest Point

Setting: and leads to a 6x6 linear system
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Iterative Closest Point

Aligning the bunny to itself:
Point-to-plane always wins in the end-game.

49



Distance Fields for 
Registration

50



“Gravitational” Potential

51Robot motion planning via potential fields



“Gravitational” Potential

Given two related shapes, the “data” A 
and the “model” B, create a potential field 
that pulls B to the correct alignment with 
A

Key tasks
Define the potential field
Formulate the optimization problem
Do gradient descent using approximate 52



Squared Distance Function (F)

x

2d),( =ΦPxF

d
PΦ

Typically A is a point cloud

We want to approximate the
squared distance function to
the underlying object



Approximate Squared Distance

Aim for 2nd order approximation, because we want to 
take derivatives.

)F(x, PΦ valid in the neighborhood of x



Pairwise Rigid Correspondence

Geometry of the square distance function

[Pottmann and Hofer 2003]

For a curve Ψ,
around point    . 

Ψ

in the Frenet frame at p

1x

2x

To second order: 
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Approximate Squared Distance

[Pottmann and Hofer 2003]

For a curve Ψ, to second order:

For a surface Φ, to second order:

and                         are inverse principal curvatures
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Approximate Squared Distance

For a surface Φ, to second order:

Note that as

In general neither metric guarantees second order 
consistency 

and                         are inverse principal curvatures

point-to-point

point-to-plane
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ICP Without Correspondences
ICP without correspondences

define a quadratic approximant to 
the square distance function

perform iterative gradient-descent 
in this field
point to foot-point distance

case d is large: classical ICP
case d is small: point-to-plane ICP

[Pottman & Hofer, 02]

curvature
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d2(y, ΦP) Using d2 Tree

Partition the space into cells where each cell stores a 
quadratic approximant of the squared distance function.

2D
3D

Leopoldseder S et al.  d2-tree: A hierarchical 
representation of the squared distance function
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Registration Using d2 Tree

Build using bottom-up approach: fit a quadratic 
approximation to a fine grid.

Merge cells if they have similar approximations.

Funnel of convergence:

Translation in x-z plane. 
Rotation about y-axis.

Converges

Does not 
converge

60



Matching the Bunny to Itself

point-to-plane d2Tree

Registration of Point Cloud Data from a 
Geometric Optimization Perspective

Mitra et al., SGP 2004
61



Matching the Bunny to Itself

Registration of Point Cloud Data from a 
Geometric Optimization Perspective

Mitra et al., SGP 2004

Well-aligned Noisy, far away

62



Local Rigid Matching – ICP

The upshot is that

Locally, the point-to-plane metric provides a second 
order approximation to the squared distance function.

Optimization based on point-to-plane will converge 
quadratically to a local minimum.

Convergence funnel can be narrow, but can improve it 
with either d2tree or point-to-point.

What if we are outside the convergence funnel? 
63



Global Matching

Given shapes in arbitrary positions, find their alignment:

Can be approximate, since will refine later using e.g. ICP

Robust Global 
Registration
Gelfand et al. SGP 2005 
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Global Matching – Approaches

Several classes of approaches:
1. Exhaustive Search

2. Normalization

3. Random Sampling

4. Invariance

65



Exhaustive Search:
Compare (ideally) all alignments

Sample the space of possible initial 
alignments. 
Correspondence is determined by the 
alignment at which models are closest.

Very common in biology: e.g., protein docking

angle

ICP
result

66



Exhaustive Search:

Compare at all alignments
Sample the space of possible initial 
alignments
Correspondence is determined by the 
alignment at which models are closest

Provides optimal result
Can be unnecessarily slow
Does not generalize to non-rigid 
deformations 67



Normalization – Canonical 
Poses

There are only a handful of initial configurations
that are important. 

Can center all shapes at the origin and use PCA 
to find the principal directions of the shape.

In addition sometimes try all permutations of x-y-
z. 68



PCA-Based Alignment

69

Use PCA to place models into canonical 
coordinate frames
Then align those frames

Covariance 
matrix computation

Principal axes 
alignment



Normalization – Canonical 
Poses

There are only a handful of initial configurations
that are important. 

Works well if we have complete shapes and no noise.

Fails for partial scans, outliers, high noise, etc.
70



Problems with PCA

71

Principal axes are not consistently 
oriented

Axes are unstable when principal 
values are similar

Partial similarity



Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and simple approach. Iterate between: 
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Guess and 
verify

72
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Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and Simple approach. Iterate between: 
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2. Estimate alignment, and check for error.

Guess and 
verify
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Random Sampling (RANSAC)

ICP only needs 3 point pairs!
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Random Sampling (RANSAC)
ICP only needs 3 point pairs!

Robust and simple approach. Iterate between: 
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Guess and 
verify

Can also refine the 
final result. Picks don’t 
have to be exact.
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Random Sampling (RANSAC)

A pair of triples (from P and Q) are enough to determine 

a rigid transform, resulting in RANSAC. 

Surprisingly, a special set of 4 points, congruent sets, 

makes the problem simpler leading to     !

Co-planar points 
remain coplanar

4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008
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Method Overview

On the source shape, pick 4 (approx.) coplanar points.

4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008

Compute 

For every pair        of points on the 
destination compute 

Those pairs , for which are a 
good candidate correspondence for                 .

Under mild assumptions the procedure runs in time.
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Method Overview

Can pick a few base points for partial matching.

4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008

and outliersRandom sampling 
handles noise
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Method Overview
Can pick a few base points for partial matching.

4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008

Partial matches
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Global Matching – Approaches

Several classes of approaches:
1. Exhaustive Search

2. Normalization

3. Random Sampling

4. Invariant Features
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Global Matching – Invariant Features

Try to characterize the shape using properties that are invariant 
under the desired set of transformations.

Conflicting interests – invariance vs. informativeness. 

The most common pipeline: 
1. identify salient feature points
2. compute informative and

commensurable descriptors.

82



Matching Using Feature Points

1. Find feature points on the two scans (we’ll come back 
to that issue)

Partially Overlapping Scans 83



Approach
1. (Find feature points on the two scans)
2. Establish correspondences

Partially Overlapping Scans 84



Approach
1. (Find feature points on the two scans)
2. Establish correspondences
3. Compute the aligning transformation

Aligned ScansPartially Overlapping Scans 85



Correspondence

Goal:
Identify when two points on different scans 
represent the same feature

?
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Correspondence
Goal:
Identify when two points on different scans represent the 
same feature:

Are the surrounding regions similar?

?
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Correspondence
Goal:
Identify when two points on different scans represent the 
same feature:

Are the surrounding regions similar?

?
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Main Question

How to compare regions on the shape in an invariant manner? 

A large variety of descriptors have been suggested.

To give an example,  we describe two. table by Will Chang
89



Spin Images

Creates an image associated
with a neighborhood of a point.

Compare points by comparing
their spin images (2D).

Given a point and a normal, 
every other point is indexed
by two parameters:

distance to tangent plane
distance to normal line Using Spin Images for Efficient Object 

Recognition in Cluttered 3D Scenes 
Johnson et al, PAMI 99
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Integral Volume Descriptor
Integral invariant signatures, Manay et al. ECCV 2004
Integral Invariants for Robust Geometry Processing,  Pottmann et al. 2007-2009

Robust Global Registration,  
Gelfand et al. 2005
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Feature Based Methods
Once we have a feature descriptor, we can find the most 
unusual one: feature detection.

Establish correspondences by first finding reliable ones. 
Propagate the matches everywhere. 

To backtrack use branch-and bound.

Robust Global Registration,  
Gelfand et al. 2005
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Method Taxonomy

Local vs. Global
refinement (e.g. ICP)  |  alignment  (search)   . .

Rigid vs. Deformable
rotation, translation  |  general deformation.

Pair vs. Collection
two shapes  |  multiple shapes 
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Conclusion
Shape matching is an active area of research.

Local rigid matching works well. Many approaches to 
global matching. Works well, depending on the domain.

Non-rigid matching is much harder. Isometric deformation 
model is common and useful, but limiting.

Research problems: other deformation models, consistent 
matching with many shapes, robust deformable matching.
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