CS348a:

Geometry Processing

Registration and Matching

3D Point Cloud Processing

Triangulation Scanners
physical model

Structured Light Computrer Vision
acquired point cloud

Normal Estimation
Implicit Function Construction Meshing: Marching Cubes
reconstructed model

3D Acquisition Pipeline

3D Point Cloud Processing

This lecture

Registration Pipeline

Steps:

1. Initial registration
2. Pairwise refinement
3. Global relaxation to distribute error
4. Generation of surface

Registration Pipeline

Steps:

1. Initial registration
2. Pairwise registration
3. Global relaxation to distribute error
4. Generation of surface

Registration Pipeline

Steps:

1. Initial registration
2. Pairwise registration
3. Global relaxation to distribute error
4. Generation of surface

Source: Rusinkiewicz et al.

Registration Pipeline

point cloud

Normal Estimation
Normal Function Construction Implicit Function Construction
Meshing: Marching Cubes
reconstructed model

Steps:

1. Initial registration
2. Pairwise registration
3. Global relaxation to distribute error
4. Generation of surface

Fundamental Registration Problem

Given two shapes with partially overlapping geometry, find an alignment between them

Measuring Success: Shape Distances

Given two shapes A and B, we are interested in defining a distance or (dis-)similarity measure

$$
\min _{T} \delta(A, T(B)) \quad \text { [extrinsic] }
$$

Such measures are crucial in shape similarity search, shape classification, etc.

As another example, shape registration and matching is very important in modern structural biology

Issues about Distance Metrics

- We are all familiar with function norms (L_{2}, etc.). The common parametrization establishes correspondences. We don't have that for structures or shapes.
- Partial matches need to be considered -- notion of support σ for the match.
- What group of aligning transforms is to be considered?

- Is the resulting distance a metric?

$$
\delta(A, C) \leq \delta(A, B)+\delta(B, C)
$$

Simultaneous Estimation

- We are given two shapes A and B, each in its own coordinate system
- We must establish correspondences between certain parts (the alignment supports) of A and B
- We must find an optimal transform that best aligns the supports of A and B
- We must score this choice of supports and transform to produce a distance measure δ

In computing the score, how do we

1. aggregate distances?
2. trade-off larger supports for larger aggregate distance?

Degrees of Freedom

- Transform estimation
- A rigid motion has 6 degrees of freedom (3 for translation and 3 for rotation)
- We typically estimate the motion using many more pairs of corresponding points, so the problem is overdetermined (which is good, given noise, outliers, etc - use least squares approaches)
- More general transforms require more degrees of freedom. When shape deformations are allowed, the degrees of freedom can grow very rapidly

Other Applications of Alignments

© Manufacturing / Quality Control:
One shape is a model and the other is a scan of a product. Useful for finding defects.
(c) Medicine:

Finding correspondences between 3D MRI scans of the same person to diagnose or monitor disease.
© Animation Reconstruction \& 3D Video.
© Statistical Shape Analysis:
Building models for a collection of shapes.

Applications - Statistical Analysis of Shape Variations

© Scan many people. Learn a deformation model (e.g. PCA).
© Find the principal variation modes; create new random instances.
© Requires alignment.

female, $1.6 \mathrm{~m}, 65 \mathrm{~kg}$

Method Taxonomy

Local vs. Global
refinement (e.g. ICP) | alignment (search)

Rigid vs. Deformable

rotation, translation | general deformation

Pair vs. Collection
two shapes | multiple shapes

Method Taxonomy

Local Is. Global
refinement (e.g. ICP) alignment (search)
\section*{Today}
Rigid s . Deformable
rotation, translation general deformation
Pair vs. Collection
two shapes/ multiple shapes

Local Alignment

- Simplest instance of the registration problem

Given two shapes that are approximately aligned (e.g. by a human, or via prior knowledge) we want to find the optimal rigid transformation that brings them into correspondence.

Local Alignment

-What does it mean for an alignment to be good?

Intuition: we want "corresponding points" to be close after transformation.
Problems

1. We don't know what points correspond.
2. We don't know the optimal alignment.

How to Get Correspondences?

A chicken-and-egg problem: if we knew the optimal aligning transform, then we could get correspondences by proximity (possibly with the aid of some global adjustment, e.g., dynamic programming)

Transform

Guess one, estimate the other, and iterate!

EM like

- Correspondences from proximity (Iterated Closest Pair)
- Correspondences from local shape descriptors (Shape Features)
- Transform from voting schemes (Geometric Hashing)
- Combinations

Iterative Closest Point (ICP)

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find rigid motion \mathbf{R}, t minimizing:

$$
\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}
$$

Iterative Closest Point (ICP)

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find rigid motion \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}$

Iterative Closest Point

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}$

Iterative Closest Point

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}$

Iterative Closest Point

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{24}^{2}$

Iterative Closest Point

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{25}^{2}$

Iterative Closest Point

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}$

Iterative Closest Point

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}$

Iterative Closest Point

- Approach: iterate between finding correspondences and finding the transformation:

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{28}^{2}$

Iterative Closest Point

- Requires two main computations:

1. Computing nearest neighbors
2. Computing the optimal transformation

ICP: Nearest Neighbor Computation

Closest points

$$
y_{i}=\arg \min _{y \in Y}\left\|y-x_{i}\right\|
$$

- How to find closest points efficiently?
- Straightforward complexity: $\mathcal{O}(M N)$
M number of points on X, N number of points on Y.
- More sophisticated: X divides the space into Voronoi cells

$$
V(y \in Y)=\left\{z \in \mathbb{R}^{3}:\|y-z\|<\left\|y^{\prime}-z\right\| \forall y^{\prime} \in Y \neq y\right\}
$$

- Given a query point y, determine to which cell it belongs.

Closest Points: Voronoi Cells

$V(y \in Y)=\left\{z \in \mathbb{R}^{3}:\|y-z\|<\left\|y^{\prime}-z\right\| \forall y^{\prime} \in Y \neq y\right\}$

Closest Points: Voronoi Cells

Approximate nearest neighbors

M. Bronstein

- To reduce search complexity, approximate Voronoi cells.
- Use binary space partition trees (e.g. kd-trees or octrees).
- Approximate nearest neighbor search complexity: $\mathcal{O}(N \log M)$.

Closest Points: Voronoi Cells

Approximate nearest neighbors

ICP: Optimal Transformation

Problem Formulation:

1. Given two sets points: $\left\{x_{i}\right\},\left\{y_{i}\right\}, i=1 . . n$ in \mathbb{R}^{3}. Find the rigid transform:
\mathbf{R}, t that minimizes:

$$
\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}
$$

Simplest Case: Rigid Alignment, Given Correspondences

- We are given two sets of corresponding points $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{\mathrm{n}}$ in \Re^{3}. We wish to compute the rigid transform T that best aligns x_{1} to y_{1}, x_{2} to y_{2}, \ldots, and x_{n} to y_{n}.
- We define the error to be minimized by
$\min _{T} \sum_{i=1}^{n}\left\|T\left(x_{i}\right)-y_{i}\right\|^{2}$
MSE error, RMS distance, ...
- Old Problem:
- Known and solved as the orthogonal Procrustes problem in Factor Analysis (Statistics) [Shönemann, 1966]

SVD-Based Solution

- A rigid motion T is a combination of a translation a and a rotation R, so that $T(x)=R(x)+a$.
- The quantity to be minimized is:

$$
\min _{a, R}\left(\sum_{i=1}^{n}\left|R\left(x_{i}\right)+a-y_{i}\right|^{2}\right)
$$

SVD-Based Solution

- A rigid motion T is a combination of a translation a and a rotation R, so that $T(x)=R(x)+a$.
- If we place the origin of our coordinate system at the mean of the x_{i} 's, then the quantity to be minimized simplifies to (up to some constants):

- Note that the translational and rotational parts factor. The translational part a can easily be seen to be optimized by

$$
a=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

The centroids of the two point sets have to be aligned!

The Rotation Part

- Now compute the SVD*

$$
\begin{aligned}
\bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\bar{y} & =\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
X & =\left[x_{1}-\bar{x}, \ldots x_{n}-\bar{x}\right]^{T} \\
Y & =\left[y_{1}-\bar{y}, \ldots y_{n}-\bar{y}\right]^{T}
\end{aligned}
$$

- Here X and Y are 3 by n matrices.

$$
X Y^{T}=U D V^{T}
$$

$$
(3 \times 3)
$$

- U and V are 3 by 3 orthogonal matrices, and D is a diagonal matrix with decreasing nonnegative entries along the diagonal (the singular values).
- Define S by
$S=\left\{\begin{array}{l}I, \quad \text { if } \operatorname{det} U \operatorname{det} V=1 \\ \operatorname{diag}(1, \ldots, 1,-1), \\ \quad \text { otherwise }\end{array}\right.$
- Then

$$
R=U S V^{T}
$$

*SVD = singular value decomposition

ICP: Optimal Transformation

Problem Formulation:

1. Given two sets points: $\left\{x_{i}\right\},\left\{y_{i}\right\}, i=1 . . n$ in \mathbb{R}^{3}. Find the rigid transform: \mathbf{R}, t that minimizes: $\quad \sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}$
2. Closed form solution:
3. Construct: $C=\sum_{i=1}^{N}\left(y_{i}-\mu^{Y}\right)\left(x_{i}-\mu^{X}\right)^{T}$, where $\mu^{X}=\frac{1}{N} \sum_{i} x_{i}$,
4. Compute the SVD of C: $C=U \Sigma V^{T} \quad \mu^{Y}=\frac{1}{N} \sum_{i} y_{i}$
5. If $\operatorname{det}\left(U V^{T}\right)=1, R_{\mathrm{opt}}=U V^{T}$
6. Else $R_{\text {opt }}=U \tilde{\Sigma} V^{T}, \tilde{\Sigma}=\operatorname{diag}(1,1, \ldots,-1)$
7. Set $t_{\mathrm{opt}}=\mu^{Y}-R_{\mathrm{opt}} \mu^{X}$

Note that C is a 3×3 matrix. SVD is very fast.

Iterative Closest Point

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing: $\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}$

Convergence:

- at each iteration $\sum_{i=1}^{N} d^{2}\left(x_{i}, Y\right)$ decreases.
- Converges to local minimum
- Good initial guess: global minimum.

Variations of ICP

1. Selecting source points (from one or both scans): sampling
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. the transformation

Iterative Closest Point

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing:

$$
\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}
$$

Iterative Closest Point

Given a pair of shapes, X and Y , iterate: 1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing:

$$
\sum_{i=1}^{N}\left\|\mathbf{R} x_{i}+t-y_{i}\right\|_{2}^{2}
$$

Problem:
uneven sampling

Iterative Closest Point

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing:

$$
\sum_{i=1}^{N} d\left(\mathbf{R} x_{i}+t, P\left(y_{i}\right)\right)^{2}=\sum_{i=1}^{N}\left(\left(\mathbf{R} x_{i}+t-y_{i}\right)^{T} \mathbf{n}_{y_{i}}\right)
$$

Solution:
Minimize distance to the tangent plane

Iterative Closest Point.

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing:

$$
\sum_{i=1}^{N} d\left(\mathbf{R} x_{i}+t, P\left(y_{i}\right)\right)^{2}=\sum_{i=1}^{N}\left(\left(\mathbf{R} x_{i}+t-y_{i}\right)^{T} \mathbf{n}_{y_{i}}\right)
$$

Solution:
Minimize distance to the tangent plane

Iterative Closest Point

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing:

$$
\mathbf{R}_{\mathrm{opt}}, t_{\mathrm{opt}}=\underset{\underbrace{\mathbf{R}^{T} \mathbf{R}=\mathrm{Id},} t}{\arg \min } \sum_{i=1}^{N}\left(\left(\mathbf{R} x_{i}+t-y_{i}\right)^{T} \mathbf{n}_{y_{i}}\right)
$$

Question:
How to minimize the error?
Challenge:
Although the error is quadratic (linear derivative), the space of rotation matrices is not linear.
Problem:
No closed form solution.

Iterative Closest Point

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation \mathbf{R}, t minimizing:

$$
\mathbf{R}_{\mathrm{opt}}, t_{\mathrm{opt}}=\underset{\underset{\mathbf{R}^{T} \mathbf{R}=\mathrm{Id},}{ }}{\arg \min } \sum_{i=1}^{N}\left(\left(\mathbf{R} x_{i}+t-y_{i}\right)^{T} \mathbf{n}_{y_{i}}\right)
$$

Common Approach:
Linearize rotation. Assume rotation angle is small.

$$
\begin{gathered}
\mathbf{R} x_{i} \approx x_{i}+r \times x_{i} \quad \text { axis, } \\
\|r\|_{2}: \text { angle of rotation. }
\end{gathered}
$$

Note: follows from

$$
R(r, \alpha) x_{i}=x_{i} \cos (\alpha)+\left(r \times x_{i}\right) \sin (\alpha)+r\left(r^{T} x_{i}\right)(1-\cos (\alpha))
$$

Rodrigues's formula And first order approximations: $\sin (\alpha) \approx \alpha, \cos (\alpha) \approx 1$

Iterative Closest Point

Given a pair of shapes, X and Y , iterate:

1. For each $x_{i} \in X$ find nearest neighbor $y_{i} \in Y$.
2. Find deformation r, t minimizing:

$$
\begin{aligned}
E(r, t) & =\sum_{i=1}^{N}\left(\left(x_{i}+r \times x_{i}+t-y_{i}\right)^{T} \mathbf{n}_{y_{i}}\right) \\
& =\sum_{i=1}^{N}\left(\left(x_{i}-y_{i}\right)^{T} \mathbf{n}_{y_{i}}+r^{T}\left(x_{i} \times \mathbf{n}_{y_{i}}\right)+t^{T} \mathbf{n}_{y_{i}}\right)^{2}
\end{aligned}
$$

Setting: $\frac{\partial}{\partial r} E(r, t)=0$ and $\frac{\partial}{\partial t} E(r, t)=0$ leads to a 6×6 linear system

$$
A x=b
$$

$$
x=\binom{r}{t} \quad A=\sum\binom{x_{i} \times \mathbf{n}_{y_{i}}}{\mathbf{n}_{y_{i}}}\binom{x_{i} \times \mathbf{n}_{y_{i}}}{\mathbf{n}_{y_{i}}}^{T} \quad b=\sum\left(y_{i}-x_{i}\right)^{T} \mathbf{n}_{y_{i}}\binom{x_{i} \times \mathbf{n}_{y_{i}}}{\mathbf{n}_{y_{i}}}_{48}
$$

Iterative Closest Point

Aligning the bunny to itself:
Point-to-plane always wins in the end-game.

Distance Fields for Registration

"尺ravitatinnal" Dntantial

Robot motion planning via potential fields

"Gravitational" Potential

Given two related shapes, the "data" A and the "model" B, create a potential field that pulls B to the correct alignment with A

- Key tasks
-Define the potential field
-Formulate the optimization problem
*Do gradient descent using approximate

Squared Distance Function (F)

Typically A is a point cloud
We want to approximate the squared distance function to the underlying object
$\mathbf{F}\left(\mathbf{x}, \Phi_{\mathbf{P}}\right)=\mathrm{d}^{2}$

Approximata Snisaren Distance

$\mathbf{F}\left(\mathbf{x}, \Phi_{\mathrm{P}}\right) \quad$ valid in the neighborhood of \mathbf{x}

Aim for $2^{\text {nd }}$ order approximation, because we want to take derivatives.

Pairwise Rigid Correspondence

Geometry of the square distance function

For a curve Ψ, around point x.

To second order:

$$
y=\left(x_{1}, x_{2}\right)
$$

$$
d^{2}(y, \Psi) \approx \frac{d}{d-\rho_{1}} x_{1}^{2}+x_{2}^{2} \text { in the Frenet frame at } p
$$

[Pottmann and Hofer 2003]

Approximate Squared Distance

For a curve Ψ, to second order:

$$
d^{2}(y, \Psi) \approx \frac{d}{d-\rho_{1}} x_{1}^{2}+x_{2}^{2}
$$

For a surface Φ, to second order:

$$
\begin{gathered}
d^{2}(y, \Phi) \approx \frac{d}{d-\rho_{1}} x_{1}^{2}+\frac{d}{d-\rho_{2}} x_{2}^{2}+x_{3}^{2} \\
\rho_{1}=1 / \kappa_{1} \text { and } \rho_{2}=1 / \kappa_{2} \text { are inverse principal curvatures }
\end{gathered}
$$

[Pottmann and Hofer 2003]

Approximate Squared Distance

For a surface Φ, to second order:

$$
\begin{gathered}
d^{2}(y, \Phi) \approx \frac{d}{d-\rho_{1}} x_{1}^{2}+\frac{d}{d-\rho_{2}} x_{2}^{2}+x_{3}^{2} \\
\rho_{1}=1 / \kappa_{1} \text { and } \rho_{2}=1 / \kappa_{2} \text { are inverse principal curvatures }
\end{gathered}
$$

Note that as $d \rightarrow 0, \quad d^{2}(y, \Phi) \rightarrow x_{3}^{2} \quad$ point-to-plane

$$
d \rightarrow \infty, \quad d^{2}(y, \Phi) \rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \quad \text { point-to-point }
$$

In general neither metric guarantees second order consistency

ICP Without Correspondences

- ICP without correspondences
- define a quadratic approximant to the square distance function
[Pottman \& Hofer, 02]

$$
F\left(x_{1}, x_{2}\right)=\frac{d}{d-\rho} x_{1}^{2}+x_{2}^{2}
$$

- perform iterative gradient-descent in this field
- point to foot-point distance
- case d is large: classical ICP
- case d is small: point-to-plane ICP

$d^{2}\left(\mathrm{y}, \Phi_{\mathrm{P}}\right)$ Using d2 Tree

Partition the space into cells where each cell stores a quadratic approximant of the squared distance function.

2D

Registration Using d2 Tree

Build using bottom-up approach: fit a quadratic approximation to a fine grid.

Merge cells if they have similar approximations.

Funnel of convergence:

Translation in x-z plane. Rotation about y-axis.

Matching the Bunny to Itself

Registration of Point Cloud Data from a Geometric Optimization Perspective

Mitra et al., SGP 2004

Matching the Bunny to Itself

Well-aligned

Noisy, far away

Registration of Point Cloud Data from a Geometric Optimization Perspective

Mitra et al., SGP 2004

Local Rigid Matching - ICP

The upshot is that
© Locally, the point-to-plane metric provides a second order approximation to the squared distance function.
© Optimization based on point-to-plane will converge quadratically to a local minimum.
© Convergence funnel can be narrow, but can improve it with either d2tree or point-to-point.

What if we are outside the convergence funnel?

Global Matching

Given shapes in arbitrary positions, find their alignment:

Can be approximate, since will refine later using e.g. ICP

Global Matching - Approaches

Several classes of approaches:

1. Exhaustive Search
2. Normalization
3. Random Sampling
4. Invariance

Exhaustive Search:

Compare (ideally) all alignments

- Sample the space of possible initial alignments.
Correspondence is determined by the alignment at which models are closest.

Very common in biology: e.g., protein docking ${ }_{66}$

Exhaustive Search:

Compare at all alignments

- Sample the space of possible initial alignments
- Correspondence is determined by the alignment at which models are closest
- Provides optimal result
- Can be unnecessarily slow
- Does not generalize to non-rigid deformations

Normalization - Canonical Poses

There are only a handful of initial configurations that are important.

Can center all shapes at the origin and use PCA to find the principal directions of the shape.

In addition sometimes try all permutations of $x-y-$ Z.

PCA-Based Alignment

- Use PCA to place models into canonical coordinate frames
- Then align those frames

Normalization - Canonical Poses

There are only a handful of initial configurations that are important.

Works well if we have complete shapes and no noise.

Fails for partial scans, outliers, high noise, etc.

Problems with PCA

- Principal axes are not consistently oriented

- Axes are unstable when principal values are similar

- Partial similarity

Random Sampling (RANSAC)

ICP only needs 3 point pairs!
Robust and simple approach. Iterate between:

1. Pick a random pair of 3 points on model \& scan
2. Estimate alignment, and check for error.

Guess and verify

Random Sampling (RANSAC)

ICP only needs 3 point pairs!
Robust and simple approach. Iterate between:

1. Pick a random pair of 3 points on model \& scan
2. Estimate alignment, and check for error.

Guess and verify

Random Sampling (RANSAC)

ICP only needs 3 point pairs!
Robust and Simple approach. Iterate between:

1. Pick a random pair of 3 points on model \& scan
2. Estimate alignment, and check for error.

Guess and verify

Random Sampling (RANSAC)

ICP only needs 3 point pairs!
Robust and simple approach. Iterate between:

1. Pick a random pair of 3 points on model \& scan
2. Estimate alignment, and check for error.

Guess and verify

Random Sampling (RANSAC)

ICP only needs 3 point pairs!
Robust and simple approach. Iterate between:

1. Pick a random pair of 3 points on model \& scan
2. Estimate alignment, and check for error.

P

Can also refine the final result. Picks don't have to be exact.

Random Sampling (RANSAC)

A pair of triples (from \mathbf{P} and \mathbf{Q}) are enough to determine a rigid transform, resulting in $O\left(n^{3}\right)$ RANSAC.

Surprisingly, a special set of 4 points, congruent sets, makes the problem simpler leading to $O\left(n^{2}\right)$!

Co-planar points remain coplanar

4-points Congruent Sets for Robust Surface Registration,

Method Overview

On the source shape, pick 4 (approx.) coplanar points.

Compute

$$
r_{1}=\frac{\|a-e\|}{\|a-b\|} \quad r_{2}=\frac{\|d-e\|}{\|d-c\|}
$$

For every pair $\left(q_{1}, q_{2}\right)$ of points on the destination compute

$$
\begin{aligned}
& p_{1}=q_{1}+r_{1}\left(q_{2}-q_{1}\right) \\
& p_{2}=q_{1}+r_{2}\left(q_{2}-q_{1}\right)
\end{aligned}
$$

Those pairs $\left(q_{1}, q_{2}\right),\left(q_{3}, q_{4}\right)$ for which $p_{1_{\left(q_{1}, q_{2}\right)}}=p_{2_{\left(q_{3}, q_{4}\right)}}$ are a good candidate correspondence for (a, b, c, d).

Under mild assumptions the procedure runs in $O\left(n^{2}\right)$ time.

Method Overview

Can pick a few base points for partial matching.

Random sampling
and outliers

Method Overview

Can pick a few base points for partial matching.

Partial matches

Global Matching - Approaches

Several classes of approaches:

1. Exhaustive Search
2. Normalization
3. Random Sampling
4. Invariant Features

Global Matching - Invariant Features

Try to characterize the shape using properties that are invariant under the desired set of transformations.

Conflicting interests - invariance vs. informativeness.

The most common pipeline:

1. identify salient feature points
2. compute informative and commensurable descriptors.

Matching Using Feature Points

1. Find feature points on the two scans (we'll come back to that issue)

Approach

1. (Find feature points on the two scans)
2. Establish correspondences

Partially Overlapping Scans

Approach

1. (Find feature points on the two scans)
2. Establish correspondences
3. Compute the aligning transformation

Correspondence

Goal:

Identify when two points on different scans represent the same feature

Correspondence

Goal:

Identify when two points on different scans represent the same feature:

Are the surrounding regions similar?

Correspondence

Goal:

Identify when two points on different scans represent the same feature:

Are the surrounding regions similar?

Main Question

How to compare regions on the shape in an invariant manner?

A large variety of descriptors have been suggested.

To give an example, we describe two.

Spin Images

Creates an image associated with a neighborhood of a point.

Compare points by comparing their spin images (2D).

Given a point and a normal, every other point is indexed
 by two parameters:
β distance to tangent plane α distance to normal line

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes Johnson et al, PAMI 99

Integral Volume Descriptor

Integral invariant signatures, Manay et al. ECCV 2004 Integral Invariants for Robust Geometry Processing, Pottmann et al. 2007-2009

$$
V_{r}(p)=\int_{B_{r}(p) \cap S} d x
$$

Relation to mean curvature

$$
V_{r}(\mathbf{p})=\frac{2 \pi}{3} r^{3}-\frac{\pi H}{4} r^{4}+O\left(r^{5}\right)
$$

Robust Global Registration, Gelfand et al. 2005

Feature Based Methods

Once we have a feature descriptor, we can find the most unusual_one: feature detection.

Establish correspondences by first finding reliable ones. Propagate the matches everywhere.

To backtrack use branch-and bound.

Robust Global Registratgian, Gelfand et al. 2005

Method Taxonomy

Local vs. Global
refinement (e.g. ICP) | alignment (search)

Rigid vs. Deformable

rotation, translation | general deformation

Pair vs. Collection
two shapes | multiple shapes

Conclusion

© Shape matching is an active area of research.
© Local rigid matching works well. Many approaches to global matching. Works well, depending on the domain.
(0) Non-rigid matching is much harder. Isometric deformation model is common and useful, but limiting.
© Research problems: other deformation models, consistent matching with many shapes, robust deformable matching.

