B-Spline and Subdivision Surfaces

Slides from Mirela Ben-Chen

Surface Models

- B-Spline surfaces
 NURBS surfaces
- Subdivision surfaces
 - Theory
 - Zoo

Reminder: B-Spline Curves

B-Spline Curve

Decouple number of control points from degree of curve

"Glue" a few degree p Bézier curves, with continuity conditions

Applet (Curve)

Reminder: B-Spline Curves

B-Spline Curve

Building blocks: n + 1 control points P_i Knot vector $U = \{ u_0, u_1, \dots, u_m \}$ The degree pm, n, p satisfy m = n + p - 1

$$C(t) = \sum_{i=0}^{n} N_{i,p}(t) P_{i} \qquad ; \qquad \qquad N_{i,p}(u) = \begin{cases} 1 & u_{i} \leq u < u_{i+1} \\ 0 & otherwise \end{cases}$$
$$N_{i,p}(u) = \frac{u - u_{i}}{u_{i+p} - u_{i}} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

Applet (Basis functions)

B-Spline Surfaces

A collection of Bezier patches, with continuity conditions

Decoupling the degree and the number of control points

B-Spline Surfaces

B-Spline surface - tensor product surface of B-Spline curves

$$\boldsymbol{S}(\boldsymbol{u},\boldsymbol{v}) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(\boldsymbol{u}) N_{j,q}(\boldsymbol{v}) \boldsymbol{P}_{ij}$$

Building blocks:

Control net, m + 1 rows, n + 1 columns: P_{ij} Knot vectors $U = \{ u_0, u_1, \dots, u_h \}, V = \{ v_0, v_1, \dots, v_k \}$ The degrees p and q for the u and v directions

Basis Functions

Cubic × Quadratic basis functions:

• Non negativity

 $N_{i,p}(u)N_{j,q}(v) \ge 0$, for all i, j, p, q, u, v

• Partition of unity

$$\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) = 1, \quad \text{for all } (u,v) \in [0,1] \times [0,1]$$

• Affine invariance

$$AS_{\{P_{ij}\}}(u,v) + B = S_{\{AP_{ij}+B\}}(u,v)$$

for all $A \in R^{3x3}, B \in R^3, (u,v) \in [0,1] \times [0,1]$

• If n = p, m = q, $U = \{0, ..., 0, 1, ..., 1\}$ and $V = \{0, ..., 0, 1, ..., 1\}$ then $N_{i,p}(u)N_{j,q}(v) = B_i^n(u)B_j^m(v)$ and S(u,v) is a Bézier surface

 S(u,v) is C^{p-k} continuous in the u direction at a u knot of multiplicity k, and similar for v direction

• Compact support

 $N_{i,p}(u)N_{j,q}(v) = 0,$ for all $(u,v) \notin [u_i, u_{i+p+1}] \times [v_j, v_{j+q+1}]$

- Local modification scheme
 - Moving P_{ij} affects the surface only in the rectangle $[u_i, u_{i+p+1}] \times [v_j, v_{j+q+1}]$

- Local definition
 - In any rectangle $[u_{i_0}, u_{i_0+1}] \times [v_{j_0}, v_{j_0+1}]$ the only non-zero basis functions are

$$N_{i,p}(u)N_{j,q}(v)$$
, for $i_0 - p \le i \le i_0$ and $j_0 - q \le j \le j_0$

Strong convex hull property

- If $(u,v) \in [u_{i_0}, u_{i_0+1}] \times [v_{j_0}, v_{j_0+1}]$ then S(u,v) is in the convex hull of the control points $P_{ij} i_0 - p \le i \le i_0$ and $j_0 - q \le j \le j_0$

Reminder: NURBS Curves

 B-spline curves cannot represent exactly circles and ellipses

• Generalize to *rational polynomials*

$$\boldsymbol{C}(\boldsymbol{u}) = \frac{\sum_{i=0}^{n} N_{i,p}(\boldsymbol{u}) \boldsymbol{w}_{i} \boldsymbol{P}_{i}}{\sum_{i=0}^{n} N_{i,p}(\boldsymbol{u}) \boldsymbol{w}_{i}}$$

Reminder: NURBS Curves

A weight per control point allows to change the influence of a point on the curve, without moving the point

NURBS Surfaces

Add a weight for every control point of a Bspline surface, and normalize

$$\boldsymbol{S}(u,v) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) \boldsymbol{w}_{ij} \boldsymbol{P}_{ij}}{\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) \boldsymbol{w}_{ij}}$$

Is **not** a tensor product patch

NURBS Surface Example

NURBS Surface

Control net $U = V = \{0, 0, 0, 1/3, 2/3, 1, 1, 1\}$ $w_{ij}(\bigcirc) = 10, w_{ij}(\bigcirc) = 1$

NURBS Surfaces

Problems with NURBS

- A single NURBS patch is either a topological disk, a tube or a torus
- Must use many NURBS patches to model complex geometry

• When deforming a surface made of NURBS patches, cracks arise at the seams

Subdivision

"Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements"

Subdivision Rules

• How the connectivity changes

- How the geometry changes
 - Old points
 - New points

Design Goals for Subd Rules

- Efficiency
- Compact support
- Local definition

• Affine invariance

• Simplicity

Smoothness

Same properties NURBS have, but will work for any topology

- Analysis?
 - Does it converge?
 - Is the limit surface smooth?
 - Any problems at extraordinary (valence != 6) vertices?

Parameterization of Subd Surfaces

- B-spline curves and surfaces are *parameterized* $S(t):[t_0,t_m] \rightarrow R^2$ $S(u,v):[u_0,u_h] \times [v_0,v_k] \rightarrow R^3$
- To analyze subd schemes, we need a similar parameterization
- Which domain to use? A planar rectangle cannot work
- Solution: Use initial control mesh as the domain

Parameterization of Subd Surfaces

• Apply subd rules to initial mesh, without updating the geometry

• Use resulting polyhedron as the domain

Smoothness of Surfaces C¹ continuity

A surface $f:/K/\to R^3$ is C^1 continuous if for every point $x \in /K/$ there exists a *regular parameterization* $\pi: D \to f(U_x)$, over a unit disk D in the plane, where U_x is the neighborhood in /K/ of x.

A regular parameterization π is one that is continuously differentiable, one-to-one, and has a Jacobi matrix of maximum rank.

How can we prove properties of a subdivision scheme?

Express the subdivision as a local matrix operation

• Prove properties (convergence, continuity, affine invariance, etc.) using eigen-analysis.

- Look at the local neighborhood of an extraordinary vertex v
- Let U^j be the set of vertices in the 2-ring neighborhood of v after j Loop subdivision steps

- Let p_i^{j} be the corresponding control points
- We can compute p_i^{j+1} using only p_i^{j}

• An extraordinary vertex of degree k has $\hat{k} = 3k+1$ vertices in its 2-ring neighborhood

$$\begin{pmatrix} p_0^{j+1} \\ \vdots \\ p_{3k}^{j+1} \end{pmatrix}_{\hat{k}\times 3} = S_{\hat{k}\times \hat{k}} \begin{pmatrix} p_0^{j} \\ \vdots \\ p_{3k}^{j} \end{pmatrix}_{\hat{k}\times 3}$$

$$\boldsymbol{p}^{j+1} = S \boldsymbol{p}^{j}$$

• *S* depends on *k*

- Assume S has a full set of eigenvectors {φ_i} with corresponding real eigenvalues {λ_i}, arranged in non-increasing order
- We can express p^0 in terms of the eigenvectors of S:

$$\left(\boldsymbol{p}^{0}\right)_{\hat{k}\times3} = \sum_{i} \left(\boldsymbol{\varphi}_{i}\right)_{\hat{k}\times1} \left(\boldsymbol{a}_{i}\right)_{1\times3}$$

• Where:

$$\boldsymbol{a}_i = \boldsymbol{\varphi}_i^T \boldsymbol{p}^0$$

 Now we can express p^j using only a_i and the eigenvalues and eigenvectors of S:

$$\boldsymbol{p}^{j} = S^{j} \sum_{i} \boldsymbol{\varphi}_{i} \boldsymbol{a}_{i}$$
$$= \sum_{i} S^{j} \boldsymbol{\varphi}_{i} \boldsymbol{a}_{i}$$
$$= \sum_{i} (\lambda_{i})^{j} \boldsymbol{\varphi}_{i} \boldsymbol{a}_{i}$$

• We used the fact: $S^{j} \mathbf{\varphi}_{i} = (\lambda_{i})^{j} \mathbf{\varphi}_{i}$

 $\boldsymbol{p}^{j} = \sum (\lambda_{i})^{j} \boldsymbol{\varphi}_{i} \boldsymbol{a}_{i}$

• <u>Convergence</u>: We need $|\lambda_i| \le 1$ for all i (and only one eigenvalue can be exactly 1)

• *Affine invariance:* If for all *A*,*B*:

$$S \cdot \left(\boldsymbol{p}^{j} \cdot A_{3\times 3} + \mathbf{1}_{\hat{k}\times 1} \cdot B_{1\times 3} \right) = S \cdot \left(\boldsymbol{p}^{j} \right) \cdot A_{3\times 3} + \mathbf{1}_{\hat{k}\times 1} \cdot B_{1\times 3}$$
$$S \cdot \left(\boldsymbol{p}^{j} \right) \cdot A + S \cdot \mathbf{1} \cdot B = S \cdot \left(\boldsymbol{p}^{j} \right) \cdot A + \mathbf{1} \cdot B$$

For affine invariance we need $S \cdot 1 = 1$

$$\rightarrow \lambda_0 = 1$$

 $\boldsymbol{p}^{j} = \sum (\lambda_{i})^{j} \boldsymbol{\varphi}_{i} \boldsymbol{a}_{i}$

• Limit position:

$$\boldsymbol{p}^{\infty} = \lim_{j \to \infty} \boldsymbol{p}^{j} = \lim_{j \to \infty} \sum_{i} (\lambda_{i})^{j} \boldsymbol{\varphi}_{i} \boldsymbol{a}_{i}$$

Since $|\lambda_i| < 1$ for all i > 0, we have:

$$\boldsymbol{p}^{\infty} = (\lambda_0)^j \boldsymbol{\varphi}_0 \boldsymbol{a}_0 = \boldsymbol{1} \cdot \boldsymbol{a}_0$$

In the limit the 2-neighborhood of v is mapped to the same position: \boldsymbol{a}_0

We can compute the limit positions without recursively applying the subdivision

• <u>Limit tangent plane:</u>

Since scheme is translation invariant, fix $a_0 = 0$ Assume $\lambda = \lambda_1 = \lambda_2 > \lambda_3$

$$\frac{\boldsymbol{p}^{j}}{\left(\lambda\right)^{j}} = \boldsymbol{\varphi}_{1}\boldsymbol{a}_{1} + \boldsymbol{\varphi}_{2}\boldsymbol{a}_{2} + \sum_{i\geq3}\left(\frac{\lambda_{i}}{\lambda}\right)^{j}\boldsymbol{\varphi}_{i}\boldsymbol{a}_{i}$$

For large enough j, the 2-neighborhood of v is mapped to linear combinations of a_1 and a_2

 a_1 and a_2 span the tangent plane of the limit surface at v

Piecewise Smooth Surfaces

- So far, only considered closed smooth surfaces
- Surfaces have boundaries and creases
- A subdivision scheme should have rules for all the following cases:

Subdivision Zoo

• Can be classified according to:

Terminology

- *Regular* vertices
 - Tri meshes
 - In the interior degree 6
 - On the boundary degree 4
 - Quad meshes
 - In the interior degree 4
 - On the boundary degree 3
- Extraordinary vertices all the rest

Terminology

- Odd vertices new vertices at current subdivision level
- Even vertices vertices inherited from previous level
- *Face* vertices odd vertices inserted in a face
- Edge vertices odd vertices inserted on an edge

\pm		

Boundaries and Creases

- Special subdivision rules will be given for each scheme for the boundary vertices
- The boundary curve of the limit surface:
 - Should not depend on interior control vertices
 - In case two surfaces will be merged along the boundary
 - Should be C^1 or C^2
- Use boundary rules for edges tagged as *creases*

Loop Scheme

Possible choices for β

- Original (by Loop):

$$\beta = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$$

- Or (by Warren):

$$\beta = \begin{cases} \frac{3}{16} & n=3\\ \frac{3}{8n} & n>3 \end{cases}$$

Loop Scheme

- Limits for interior vertex v
 (using control points from any subd level j)
 - Position

$$\boldsymbol{p}^{\infty} = S_{\chi} \boldsymbol{p}^{j}$$
; $\chi = \frac{1}{3/8\beta + k}$

- Tangents

$$t_1 = \sum_{i=0}^{k-1} \cos \frac{2\pi i}{k} p_i^j$$
; $t_2 = \sum_{i=0}^{k-1} \sin \frac{2\pi i}{k} p_i^j$

Where v_i^{j} for $i = \{0,..,k-1\}$ are the one ring neighbors of the vertex v at subd level j, and p_i^{j} are the corresponding control points

Modified Butterfly Scheme

- Interpolating scheme
 - Even vertices don't move

b. Mask for odd vertices adjacent to an extraordinary vertex

Butterfly (not C^1)

Modified Butterfly

Catmull-Clark Quad Scheme

Mask for an edge vertex

Interior

 $\frac{\gamma}{k}$

Mask for a boundary odd vertex

a. Masks for odd vertices

Can be modified to work on general polygons

Kobbelt Scheme

Main observation - to compute a face control point:

- compute all *edge control points*
- compute *face control points* using the *edge rule* applied to edge control points on same level

Scheme Comparison

- Subdividing a cube
 - Loop result is asymetric, because cube was triangulated first
 - Both Loop and Catmull-Clark are better then Butterfly ($C^2\,$ vs. C^1)
 - Interpolation vs. smoothness

Butterfly

Scheme Comparison

- Subdividing a tetrahedron
 - Same insights
 - Severe shrinking for approximating schemes

Loop

Butterfly

Catmull-Clark

Scheme Comparison

- Spot the difference?
- For smooth meshes with uniform triangle size, different schemes provide very similar results
- Beware of interpolating schemes for control polygons with sharp features

Loop

Butterfly

Catmull-Clark

So Who Wins?

- Loop and Catmull-Clark best when interpolation is not required
- Loop best for triangular meshes
- Catmull-Clark best for quad meshes
 - Don't triangulate and then use Catmull-Clark

Initial mesh

Catmull-Clark

Catmull-Clark,after triangulation

The Dark Side of Subd Surfaces

- Problems with curvature continuity
 - Requires either very large support, or forces 0 curvature at extraordinary vertices
 - Generates ripples near vertices of large degree

The Dark Side of Subd Surfaces

- Decreased smoothness with degree
 - For large degrees, third eigenvalue approaches second and first eigenvalues
 - Generates creases
- Can fix by modifying scheme
 - Creates more ripples

