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Surface Models

• B-Spline surfaces
– NURBS surfaces

• Subdivision surfaces
– Theory
– Zoo

Images from:  3drender.com ,  sunflow.sourceforge.net , www.tsplines.com
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Reminder: B-Spline Curves

B-Spline Curve

Decouple number of control points from degree of 
curve

“Glue” a few degree p Bézier curves, with continuity 
conditions

Applet (Curve)

3

http://www.vis.uni-stuttgart.de/%7Ekraus/LiveGraphics3D/cagd/chap8fig4.html
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Reminder: B-Spline Curves

B-Spline Curve

Building blocks:
n + 1 control points Pi
Knot vector U = { u0 , u1 , … , um }
The degree p
m, n, p satisfy m = n + p - 1

Applet (Basis functions)

P0
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P3 P4
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P7
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http://www.vis.uni-stuttgart.de/%7Ekraus/LiveGraphics3D/cagd/chap8fig17.html
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B-Spline Surfaces

A collection of Bezier patches, with continuity 
conditions

Decoupling the degree and the number of 
control points
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B-Spline Surfaces

B-Spline surface - tensor product 
surface of B-Spline curves

Building blocks:
Control net, m + 1 rows, n + 1 columns: Pij

Knot vectors U = { u0 , u1 , … , uh }, 
V = { v0 , v1 , … , vk }
The degrees p and q for the u and v directions
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Cubic × Quadratic basis functions:

Basis Functions
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Properties

• Non negativity

• Partition of unity

• Affine invariance
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Properties

• If n = p, m = q, U = { 0,…,0,1,…,1} 
and V = {0,…,0,1,…,1} then 

and S(u,v) is a Bézier surface

• S(u,v) is Cp-k continuous in the u
direction at a u knot of multiplicity 
k, and similar for v direction
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Properties

• Compact support

• Local modification scheme
– Moving Pij affects the surface only in 

the rectangle
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Properties

• Local definition 
– In any rectangle                              the only non-zero 

basis functions are

• Strong convex hull property
– If                                      then S(u,v) is in the convex 

hull of the control points Pij and
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Reminder: NURBS Curves

• B-spline curves cannot represent exactly 
circles and ellipses

• Generalize to rational polynomials
p = 2 p = 3 p = 5 p = 10
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Reminder: NURBS Curves

A weight per control point allows to change the 
influence of a point on the curve, without 
moving the point
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NURBS Surfaces

Add a weight for every control point of a B-
spline surface, and normalize

Is not a tensor product patch 
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NURBS Surface Example

Control net NURBS Surface

wij(      ) = 10, wij(     ) = 1
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NURBS Surfaces
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Problems with NURBS

• A single NURBS patch is either a topological 
disk, a tube or a torus

• Must use many NURBS 
patches to model 
complex geometry

• When deforming a surface made of NURBS 
patches, cracks arise at the seams
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Subdivision 
“Subdivision defines a smooth curve or surface 

as the limit of a sequence of successive 
refinements”
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Subdivision Rules

• How the connectivity changes

• How the geometry changes
– Old points
– New points
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Design Goals for Subd Rules
• Efficiency

• Compact support

• Local definition

• Affine invariance

• Simplicity

• Smoothness

Same properties NURBS 
have, but will work for 
any topology
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An Example – Loop Scheme
• Connectivity

• Geometry

• Analysis?
– Does it converge?
– Is the limit surface smooth?
– Any problems at extraordinary (valence != 6) vertices?
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Parameterization of Subd Surfaces

• B-spline curves and surfaces are parameterized

• To analyze subd schemes, we need a similar 
parameterization

• Which domain to use? A planar rectangle cannot 
work

• Solution: Use initial control mesh as the domain
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Parameterization of Subd Surfaces

• Apply subd rules to initial mesh, without 
updating the geometry

• Use resulting polyhedron 
as the domain
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Smoothness of Surfaces
C1 continuity

A surface f :|K|→ R3 is C1 continuous if for every point 
x ∈ |K| there exists a regular parameterization
π : D → f(Ux), over a unit disk D in the plane, where 
Ux is the neighborhood in |K| of x.

A regular parameterization π is one that is continuously 
differentiable, one-to-one, and has a Jacobi matrix of 
maximum rank.
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Subdivision Properties

• How can we prove properties of a subdivision 
scheme?

• Express the subdivision as a local matrix 
operation

• Prove properties (convergence, continuity, 
affine invariance, etc.) using eigen-analysis.
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Subdivision Matrix
• Look at the local neighborhood of an extraordinary 

vertex v

• Let Uj be the set of 
vertices in the 2-ring 
neighborhood of v after j
Loop subdivision steps

• Let pi 
j be the corresponding control points

• We can compute pi 
j+1 using only pi 

j
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Subdivision Matrix

• An extraordinary vertex of degree k has 
vertices in its 2-ring neighborhood

• S depends on k
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Subdivision Matrix

• Assume S has a full set of eigenvectors {ϕi} with 
corresponding real eigenvalues {λi}, arranged in 
non-increasing order

• We can express p0 in terms of the eigenvectors of S:

• Where:
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Subdivision Matrix

• Now we can express p j using only ai and the 
eigenvalues and eigenvectors of S:

• We used the fact: 
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Subdivision Properties

• Convergence: We need |λi| ≤ 1 for all i (and 
only one eigenvalue can be exactly 1)

• Affine invariance: If for all A,B:

For affine invariance we need 
→ λ0 = 1 
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Subdivision Properties
• Limit position:

Since |λi| < 1 for all i > 0, we have:

In the limit the 2-neighborhood of v is mapped to the 
same position: a0

We can compute the limit positions without 
recursively applying the subdivision
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Subdivision Properties

• Limit tangent plane:
Since scheme is translation invariant, fix a0 = 0
Assume λ = λ1 = λ2 > λ3

For large enough j, the 2-neighborhood of v is 
mapped to linear combinations of a1 and a2

a1 and a2 span the tangent plane of the limit surface 
at v
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Piecewise Smooth Surfaces

• So far, only considered closed smooth surfaces
• Surfaces have boundaries and creases
• A subdivision scheme should have rules for all 

the following cases:

Interior Smooth 
boundary

Convex 
boundary

Concave
boundary

Crease



34

Subdivision Zoo
• Can be classified according to:

• Many more...

Primal (face split)

Triangular meshes Quad Meshes

Approximating Loop(C2) Catmull-Clark(C2)

Interpolating Mod. Butterfly (C1) Kobbelt (C1)

Dual (vertex split)

Doo-Sabin, Midedge(C1)

Biquartic (C2)
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Terminology

• Regular vertices
– Tri meshes 

• In the interior - degree 6
• On the boundary – degree 4 

– Quad meshes
• In the interior - degree 4
• On the boundary – degree 3

• Extraordinary vertices – all the rest
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Terminology

• Odd vertices – new vertices at current 
subdivision level

• Even vertices – vertices inherited from 
previous level

• Face vertices – odd vertices inserted in a face

• Edge vertices – odd vertices inserted on an 
edge
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Boundaries and Creases

• Special subdivision rules will be given for each 
scheme for the boundary vertices

• The boundary curve of the limit surface:
– Should not depend on interior control vertices

• In case two surfaces will be merged along the boundary
– Should be C1 or C2

• Use boundary rules for edges tagged as creases
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Odd vertices Even vertices

Loop Scheme

• Possible choices for β
– Original (by Loop):

– Or (by Warren):
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Loop Scheme
• Limits for interior vertex v

(using control points from any subd level j )
– Position

– Tangents

Where vi 
j for i = {0,..,k – 1} are the one ring neighbors of the 

vertex v at subd level j, and pi 
j are the corresponding control 

points
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Modified Butterfly Scheme

• Interpolating scheme
– Even vertices don’t move
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Butterfly
(not C1)

Modified Butterfly
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Catmull-Clark Quad Scheme

41
Can be modified to work on general polygons



42

Kobbelt Scheme
Main observation - to compute a face control point:

• compute all edge control points

• compute face control points using the edge rule applied to edge control 
points on same level
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Scheme Comparison

43

• Subdividing a cube
– Loop result is asymetric, because cube was triangulated 

first
– Both Loop and Catmull-Clark are better then Butterfly (C2

vs. C1 )
– Interpolation vs. smoothness
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Scheme Comparison

• Subdividing a tetrahedron
– Same insights
– Severe shrinking for approximating schemes
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Scheme Comparison
• Spot the difference?
• For smooth meshes with uniform triangle size, different 

schemes provide very similar results
• Beware of interpolating schemes for control polygons with 

sharp features
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So Who Wins?
• Loop and Catmull-Clark best when interpolation is not 

required
• Loop best for triangular meshes
• Catmull-Clark best for quad meshes

– Don’t triangulate and then use Catmull-Clark
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The Dark Side of Subd Surfaces

• Problems with curvature continuity
– Requires either very large support, or forces 0 

curvature at extraordinary vertices
– Generates ripples near vertices of large degree
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The Dark Side of Subd Surfaces

• Decreased smoothness 
with degree
– For large degrees, third 

eigenvalue approaches 
second and first 
eigenvalues

– Generates creases

• Can fix by modifying 
scheme
– Creates more ripples
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