CS348a: Computer Graphics -Geometric Modeling and Processing

Surface Parameterization

Chengcheng Tang
Computer Science Dept. Stanford University

A WARNING

PARTLY BORROWED

Maks Ovsjanikov Raif Rustamov Justin Solomon Mirela Ben-Chen
Julien Tierny SIGGRAPH 2008 Course Others...

Today

- Painting on Surfaces

Painting directly on the 3d object
Mari software
Substance 3D Painter

What we would like to do

The Basic Problem

Solution

Parameterization is ...

Why Parameterize?

R.I.P.
Really
Interested in
Parameterization

Why Parameterize?

http://www.blender.org/development/release-logs/blender-246/uv-editing/

Texture Mapping

Parameterization Problem

Given a surface (mesh) S in R^{3} and a domain Ω (e.g. plane): Find a bijective map $U: \Omega \leftrightarrow S$.

Parameterization for Texture

 Mapping

Parameterization for Texture Mapping

Rendering workflow:

Parameterization - Typical Domains

Parameterization - Boundary Problem

Source: Mirela Ben-Chen

Parameterization - Many Possibilities

Source: Mirela Ben-Chen

Parameterization - Applications

Recall Mesh simplification:

- Approximate the geometry using few triangles

Idea:

- Decouple geometry from appearance

~600k triangles

Parameterization - Applications

Recall Mesh simplification:

- Approximate the geometry using few triangles

Idea:

- Decouple geometry from appearance

Observation: appearance (light reflection) depends on the geometry + normal directions.

Parameterization - Applications

Normal Mapping

Idea:

- Decouple geometry from appearance
- Encode a normal field inside each triangle

simplified mesh 500 triangles

simplified mesh and normal mapping 500 triangles

Parameterization - Applications

Normal Mapping with parameterization:

- Store normal field as an RGB texture.

Parameterization - Applications

- Remeshing

source: Mirela Ben-Chen

Parameterization - Applications

Parameterization - Applications

- Compression

Stanford Bunny

Gu, Gortler, Hoppe. Geometry Images. SIGGRAPH 2002

Parameterization - Applications

General Idea: Things become easier in a canonical domain
(e.g. on a plane).

Other Applications:

- Surface Fitting
- Editing
- Mesh Completion
- Mesh Interpolation
- Morphing and Transfer
- Shape Matching
- Visualization

Parameterization onto the plane

General problem:

- Given a mesh (T, P) in 3D find a bijective mapping

$$
\begin{gathered}
g: P \rightarrow \mathbf{R}^{2} \\
g\left(\mathbf{p}_{i}\right)=\mathbf{u}_{i}=\left(u_{i}, v_{i}\right)
\end{gathered}
$$

Parameterization onto the plane

General problem:

- Given a mesh (T, P) in 3D find a bijective mapping

$$
\begin{gathered}
g: P \rightarrow \mathbf{R}^{2} \\
g\left(\mathbf{p}_{i}\right)=\mathbf{u}_{i}=\left(u_{i}, v_{i}\right)
\end{gathered}
$$

Parameterization onto the plane

Simplified problem:

- Given a mesh (T, P) in 3D find a bijective mapping

$$
\begin{gathered}
g: P \rightarrow \mathbf{R}^{2} \\
g\left(\mathbf{p}_{i}\right)=\mathbf{u}_{i}=\left(u_{i}, v_{i}\right)
\end{gathered}
$$

under some boundary constraints:

$$
g\left(\mathbf{b}_{j}\right)=\mathbf{u}_{j} \text { for some }\left\{\mathbf{b}_{j}\right\}
$$

Parameterization onto the plane

Recall a related problem.
Mapping the Earth: find a parameterization of a 3d object onto a plane.

Mapping the earth

Stereographic projection

Maps circles to circles

Mapping the earth

Mercator

Maps loxodromes to lines

Mapping the earth

Mercator (preserves angles, but distorts areas)

Maps loxodromes to lines

THE TRUE SIZE OF
 $\bullet \bullet$

eg...Ghana

About

f
Clear Map

ezuela

HOTUAL STLE

 1
The size of Westeros compared to the USA

Mapping the earth

Lambert (preserves areas, but distorts angles)

Johann Heinrich Lambert (1772)

Mapping the earth

Lambert (preserves areas, but distorts angles)

Johann Heinrich Lambert (1772)

Different kinds of Parameterization

Various notions of distortion:

1. Equiareal: preserving areas (up to scale)
2. Conformal: preserving angles of intersections
3. Isometric: preserving geodesic distances (up to scale)

Theorem: Isometric $=$ Conformal + Equiareal

Different kinds of Parameterization

Intrinsic properties:
Those that depend on angles and distances on the surface. E.g.
Intrinsic: geodesic distances
Extrinsic: coordinates of points in space

Remark:

Intrinsic properties are preserved by isometries.

Bad news:

Gauss's Theorema Egregium: curvature is an intrinsic property. There is no isometric mapping between a sphere and a plane.

Different kinds of Parameterization

orthographic

Mercator

Lambert
stereographic
 $\boldsymbol{\uparrow}$
preserves area = equiareal

Different kinds of Parameterization

Mollweide-Projeltion

Peters-Projektion

Senkrechte Umgebungsperspektive

Gnomonische Projektion

Mescator-Projektion

Langentreue Azimuthalprojektion

Mobinson-Projektion

Alachentreue Kegelprojektion

Zytinderprojestion nach Miller

Hotine Oblique Mercasor-Projektion

Transverse Mercator Projektion

Sehrmann-Projetion

Hammer-Aitol-Projeltion

Sinusoidale Projektion

Cassini-Soldner Procektion

Different kinds of Parameterization

Since we are dealing with a triangle mesh, we first need to ensure a bijective map

Spring Model for Parameterization

Given a mesh (T, P) in 3D find a bijective mapping $g\left(\mathbf{p}_{i}\right)=\mathbf{u}_{i}$ given constraints: $g\left(\mathbf{b}_{j}\right)=\mathbf{u}_{j}$ for some $\left\{\mathbf{b}_{j}\right\}$

Model: imagine a spring at each edge of the mesh. If the boundary is fixed, let the interior points find an equilibrium.

Spring Model for Parameterization

Recall: potential energy of a spring stretched by distance x :

$$
E(x)=\frac{1}{2} k x^{2}
$$

k : spring constant.

Spring Model for Parameterization

Given an embedding (parameterization) of a mesh, the potential energy of the whole system:

$$
\begin{aligned}
E & =\sum_{e} \frac{1}{2} D_{e}\left\|\mathbf{u}_{e 1}-\mathbf{u}_{e 2}\right\|^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in \mathcal{N}_{i}} \frac{1}{2} D_{i j}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|^{2}
\end{aligned}
$$

Where $D_{e}=D_{i j}$ is the spring constant of edge e between i and j
Goal: find the coordinates $\left\{\mathbf{u}_{i}\right\}$ that would minimize E.
Note: the boundary vertices prevent the degenerate solution.

Parameterization with Barycentric Coordinates

Finding the optimum of:

$$
E=\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in \mathcal{N}_{i}} \frac{1}{2} D_{i j}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|^{2}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial \mathbf{u}_{i}}=0 & \Rightarrow \quad \sum_{j \in \mathcal{N}_{i}} D_{i j}\left(\mathbf{u}_{i}-\mathbf{u}_{j}\right)=0 \\
& \Rightarrow \quad \mathbf{u}_{i}=\sum_{j \in \mathcal{N}_{i}} \lambda_{i j} \mathbf{u}_{j}, \text { where } \lambda_{i j}=\frac{D_{i j}}{\sum_{j \in \mathcal{N}_{i}} D_{i j}}
\end{aligned}
$$

l.e. each point \mathbf{u}_{i} must be an convex combination of its neighbors. Hence: barycentric coordinates.

Parameterization with Barycentric Coordinates

To find the solution in practice:

1. Fix the boundary points $\mathbf{b}_{i}, i \in \mathcal{B}$
2. Form linear equations

$$
\begin{array}{ll}
\mathbf{u}_{i}=\mathbf{b}_{i}, & \text { if } i \in \mathcal{B} \\
\mathbf{u}_{i}-\sum_{j \in \mathcal{N}_{i}} \lambda_{i j} \mathbf{u}_{j}=0, & \text { if } i \notin \mathcal{B}
\end{array}
$$

1. Assemble into two linear systems (one for each coordinate):

$$
L U=\bar{U}, \quad L V=\bar{V} \quad L_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j \\
-\lambda_{i j} & \text { if } j \in \mathcal{N}_{i}, i \notin \mathcal{B} \\
0 & \text { otherwise }
\end{array}\right.
$$

1. Solution of the linear system gives the coordinates: Note: system is very sparse, can solve efficiently. $\mathbf{u}_{i}=\left(u_{i}, v_{i}\right)$

Parameterization with Barycentric Coordinates

Does this work?

- Theorem (Maxwell-Tutte)

If $G=\langle V, E\rangle$ is a 3-connected planar graph (triangular mesh) then any barycentric drawing is a valid embedding.

Laplacian Matrix

Our system of equations (forgetting about boundary):

$$
\begin{aligned}
& \mathbf{u}_{i}=\sum_{j \in \mathcal{N}_{i}} \lambda_{i j} \mathbf{u}_{j}, \text { where } \lambda_{i j}=\frac{D_{i j}}{\sum_{j \in \mathcal{N}_{i}} D_{i j}} \\
& L U=0 \quad L_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j \\
-\lambda_{i j} & \text { if } j \in \mathcal{N}_{i} \\
0 & \text { otherwise }
\end{array} \quad L\right. \text { is not symmetric }
\end{aligned}
$$

Alternatively, if we write it as:

$$
\mathbf{u}_{i} \sum_{j \in \mathcal{N}_{i}} D_{i j}=\sum_{j \in \mathcal{N}_{i}} D_{i j} \mathbf{u}_{j}
$$

We get:

$$
L U=0 \quad L_{i j}=\left\{\begin{array}{cl}
\sum_{k \in \mathcal{N}_{i}} D_{i j} & \text { if } i=j \\
-D_{i j} & \text { if } j \in \mathcal{N}_{i} \\
0 & \text { otherwise }
\end{array} \quad L\right. \text { is symmetric }
$$

Parameterization with Barycentric Coordinates

Example:
Uniform weights:

$$
D_{i j}=1
$$

Laplacian Matrix

$$
W=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & -5 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & -5 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & -5
\end{array}\right)
$$

$b_{I}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 3 \\ 2 \\ 0 \\ 0 \\ 0\end{array}\right) \quad b_{y}=\left(\begin{array}{l}2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$

Alternative: Simple realization

Fix (u, v) coordinates of boundary.
Want interior vertices to be at the center of mass of neighbors:

$$
u_{i}=\frac{1}{|N(i)|} \sum_{j \in N(i)} u_{j} \quad v_{i}=\frac{1}{|N(i)|} \sum_{j \in N(i)} v_{j}
$$

Iterative Algorithm

Fix (u, v) coordinates of boundary. Initialize (u, v) of interior points (e.g. using naïve). While not converged: for each interior vertex, set:

$$
u_{i} \leftarrow \frac{1}{|N(i)|} \sum_{j \in N(i)} u_{j} \quad v_{i} \leftarrow \frac{1}{|N(i)|} \sum_{j \in N(i)} v_{j}
$$

$$
\begin{aligned}
& u_{1} \leftarrow \frac{u_{2}+u_{3}+u_{4}+u_{5}+u_{6}+u_{7}}{6} \\
& v_{1} \leftarrow \frac{v_{2}+v_{3}+v_{4}+v_{5}+v_{6}+v_{7}}{6}
\end{aligned}
$$

What do you think?

Some random planar mesh

Expectation

It is already planar: best parameterization = itself

Reality... Why? How to avoid?

Converges to a somewhat uniform grid!

Triangle shapes and sizes are not preserved!

Parameterization with Barycentric Coordinates

Linear Reproduction:

- If the mesh is already planar we want to recover the original coordinates.

Problem:

- Uniform weights do not achieve linear reproduction
- Same for weights proportional to distances.

Parameterization with Barycentric Coordinates

Linear Reproduction:

- If the mesh is already planar we want to recover the original coordinates.
Problem:
- Uniform weights do not achieve linear reproduction
- Same for weights proportional to distances.

Solution:

- If the weights are barycentric with respect to original points:

$$
\mathbf{p}_{i}=\sum_{j \in \mathcal{N}_{i}} \lambda_{i j} \mathbf{p}_{j}, \quad \sum_{j \in \mathcal{N}_{i}} \lambda_{i j}=1
$$

The resulting system will recover the planar coordinates.

Parameterization with Barycentric Coordinates

Solution:

- Barycentric coordinates with respect to original points:

$$
\mathbf{p}_{i}=\sum_{j \in \mathcal{N}_{i}} \lambda_{i j} \mathbf{p}_{j}, \quad \sum_{j \in \mathcal{N}_{i}} \lambda_{i j}=1
$$

- If a point \mathbf{p}_{i} has 3 neighbors, then the barycentric coordinates are unique.
- For more than 3 neighbors, many possible choices exist.

Conformal Mappings

Some good news.

Riemann Mapping Theorem:
Any surface topologically equivalent to a disk, can be conformally mapped to a unit disk.

Cauchy-Riemann equations:

If a map $(x, y) \rightarrow(u, v)$ is conformal
 then $u(x, y)$ and $v(x, y)$ satisfy:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
\end{aligned}
$$

Conformal Mappings

Some good news.

Riemann Mapping Theorem:
Any surface topologically equivalent to a disk, can be conformally mapped to a unit disk.

Cauchy-Riemann equations:
If a map $(x, y) \rightarrow(u, v)$ is conformal then both u and v are harmonic:

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u=0 \\
& \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) v=0
\end{aligned}
$$

Conformal Mappings

Some good news.

Riemann Mapping Theorem:
Any surface topologically equivalent to a disk, can be conformally mapped to a unit disk.

Cauchy-Riemann equations:
If a map $(x, y) \rightarrow(u, v)$ is conformal then both u and v are harmonic:

$$
\begin{aligned}
& \Delta u=0 \\
& \Delta v=0
\end{aligned}
$$

Conformal Mappings

Some good news.

Riemann Mapping Theorem:

Any surface topologically equivalent to a disk, can be conformally mapped to a unit disk.

If a map $S \rightarrow(u, v)$ is conformal then both u and v are harmonic:

$$
\begin{aligned}
\Delta_{S} u & =0 \\
\Delta_{S} v & =0
\end{aligned}
$$

Δ_{S} : Laplace-Beltrami operator.

Harmonic Mappings

Recap:
Isometric => Conformal => Harmonic
Harmonic mappings easiest to compute, but may not preserve angles. May not be bijective.

Harmonic maps minimize Dirichlet energy:

$$
E_{D}(f)=\frac{1}{2} \sum_{S}\left\|\nabla_{S} f\right\|^{2}
$$

Given the boundary conditions.

Harmonic Mappings

Theorem (Rado-Kneser-Choquet):
If $f: S \rightarrow R^{2}$ is harmonic and maps the boundary ∂S onto the boundary ∂S^{*} of some convex region $S^{*} \subset R^{2}$, then f is bijective.

Recall the General Method:

To find the solution in practice:

1. Fix the boundary points $\mathbf{b}_{i}, i \in \mathcal{B}$
2. Assemble two linear systems (one for each coordinate):

$$
L U=\bar{U}, \quad L V=\bar{V} \quad L_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j, i \in \mathcal{B} \\
\sum_{j \in \mathcal{N}_{i}} D_{i j} & \text { if } i=j, i \notin \mathcal{B} \\
-D_{i j} & \text { if } j \in \mathcal{N}_{i}, i \notin \mathcal{B} \\
0 & \text { otherwise }
\end{array}\right.
$$

1. Solution of the linear system gives the coordinates: $\mathbf{u}_{i}=\left(u_{i}, v_{i}\right)$

Barycentric Coordinates: Harmonic

$$
D_{i j}=\frac{\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)}{2}
$$

- Weights can be negative - not always valid
- Weights depend only on angles - close to conformal
- 2D reproducible

Barycentric Coordinates: Mean-value

$$
D_{i j}=\frac{\tan \left(\gamma_{i j} / 2\right)+\tan \left(\delta_{i j} / 2\right)}{2\left\|V_{i}-V_{j}\right\|}
$$

- Result visually similar to harmonic

- No negative weights - always valid
- 2D reproducible

Results

Barycentric Coordinates

Conformal Mappings

Most commonly used in practice.

Conformal Mappings

Fixing the boundary:

- Simple convex shape (triangle, square, circle)
- Distribute points on boundary
- Use chord length parameterization
- Fixed boundary can create high distortion

Conformal Mappings

Fixing the boundary:

- Simple convex shape (triangle, square, circle)
- Distribute points on boundary
- Use chord length parameterization
- Fixed boundary can create high distortion

"Free" boundary is better: harder to optimize for.

Fixed vs Free boundary

Free boundary methods

General approach:

Let the coordinates of the vertices be unknowns, construct an energy that measures distortion.

$$
\left(u_{\mathrm{opt}}, v_{\mathrm{opt}}\right)=\underset{f=(u, v)}{\arg \min } E(f) \quad \begin{aligned}
& \text { given boundary } \\
& \text { conditions }
\end{aligned}
$$

Free boundary methods

For a any triangle:

$$
\left(u_{3}, v_{3}\right)-\left(u_{1}, v_{1}\right)=\frac{\sin \alpha_{2}}{\sin \alpha_{3}} R^{\alpha_{1}}\left[\left(u_{2}, v_{2}\right)-\left(u_{1}, v_{1}\right)\right]
$$

If the mapping is conformal, the angles shouldn't change. Keep the angles, let the coordinates be unknown. Leads to a least squares problem.

Free boundary methods

More generally:

$\operatorname{distortion}(t \mid f)=H\left(J_{f}(t)\right)$
$J_{f}(t)$: Jacobian of the transformation

Free boundary methods

More generally:

$$
\operatorname{distortion}(t \mid f)=H\left(J_{f}(t)\right)
$$

$J_{f}(t)$: Jacobian of the transformation

$$
J_{f}(t)=U \Sigma V^{T}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T}
$$

1. Isometric mapping: $\sigma_{1}=\sigma_{2}=1$
2. Conformal mapping: $\sigma_{1} / \sigma_{2}=1$
3. Equiareal mapping: $\sigma_{1} \sigma_{2}=1$

Free boundary methods

More generally:

$$
\operatorname{distortion}(t \mid f)=H\left(J_{f}(t)\right)
$$

$J_{f}(t)$: Jacobian of the transformation

$$
\begin{gathered}
J_{f}(t)=U \Sigma V^{T}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T} \\
H\left(J_{f}(t)\right)=H\left(\sigma_{1}, \sigma_{2}\right), \text { e.g.: } \\
H_{\operatorname{MIPS}}\left(\sigma_{1}, \sigma_{2}\right)=\frac{\sigma_{1}}{\sigma_{2}}+\frac{\sigma_{2}}{\sigma_{1}}
\end{gathered}
$$

Non-linear, difficult to optimize for.

Free boundary methods

More generally:

$$
\operatorname{distortion}(t \mid f)=H\left(J_{f}(t)\right)
$$

$J_{f}(t)$: Jacobian of the transformation

$$
J_{f}(t)=U \Sigma V^{T}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T}
$$

Can show that:

$$
\sigma_{1}^{2}+\sigma_{2}^{2} \quad \text { and } \sigma_{1} \sigma_{2} \text { are quadratic in the target vertex coordinates. }
$$

Thus, e.g. $H\left(\sigma_{1}, \sigma_{2}\right)=\left(\sigma_{1}-\sigma_{2}\right)^{2}$ leads to a linear system of equations.

Free boundary methods

More generally:

$$
\operatorname{distortion}(t \mid f)=H\left(J_{f}(t)\right)
$$

$J_{f}(t)$: Jacobian of the transformation

$$
J_{f}(t)=U \Sigma V^{T}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T}
$$

Can show that:

$$
\sigma_{1}^{2}+\sigma_{2}^{2} \quad \text { and } \sigma_{1} \sigma_{2} \text { are quadratic in the target vertex coordinates. }
$$

Thus, e.g. $H\left(\sigma_{1}, \sigma_{2}\right)=\left(\sigma_{1}-\sigma_{2}\right)^{2}$ leads to a linear system of equations.

Some results

Linear Methods:

mean value

Some results

Non-linear Methods:

circle patterns

MIPS

Conclusions

Surface parameterization:

- No perfect mapping method
- A very large number of techniques exists
- Conformal model:
* Nice theoretical properties
- Leads to a simple (linear) system of equations
- Closely related to the Poisson equation and Laplacian operator
- More general methods
* Can get smaller distortion using non-linear optimization
- Very difficult to guarantee bijectivity in general

Breathing Type: Normal

Comparing Real vs. Animated Breathing

$$
505
$$

5e

$$
8
$$

