
1

Differential Geometry
of Curves

Thanks to Mirela Ben-Chen
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• Good intro to differential geometry on surfaces

• Nice theorems

• Applications

Planar and Space Curves

From “Discrete Elastic Rods” by Bergou et al.
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• Good intro to differential geometry on surfaces

• Nice theorems

• Applications

Planar and Space Curves

From Geometric Computer Vision by Ron Kimmel
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Parameterized Curves
Intuition

A particle is moving in space (E2, E3)

At time t its position is given by 
α(t) = (x(t), y(t), z(t))

t α(t)
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Parameterized Curves
Definition

A parameterized differentiable curve is a 
differentiable map α: I → R3 of an interval 
I = (a,b) of the real line R into R3

α maps t ∈ I into a point α(t) = (x(t), y(t), z(t)) ∈ R3

such that x(t), y(t), z(t) are differentiable 

A function is differentiable if it has, at all points, 
derivatives of all orders

R α(I)a bI
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Parameterized Curves
A Simple Example

t

a
α1(t) = (a cos(t), a sin(t))
t ∈ [0,2π] = I
α2(t) = (a cos(2t), a sin(2t))
t ∈ [0,π] = I

α(I) ⊂ R3 is the trace of α (the tire tracks …)

→ Different curves can have same trace
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More Examples

α(t) = (a cos(t), a sin(t), bt), t ∈ R

b = 0

x

y

z

b = 1
b = 2



8

More Examples

α(t) = (t3, t2), t ∈ R

x

y

Is this “OK”?
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The Tangent Vector

Let 
α(t) = (x(t), y(t), z(t)) ∈ R3

Then
α'(t) = (x'(t), y'(t), z'(t)) ∈ R3

is called the tangent vector (or velocity vector) 
of the curve α at t
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Back to the Circle

t
α(t) = (cos(t), sin(t))

α'(t) = (-sin(t), cos(t))

α'(t) 

α'(t)    - direction of movement

½α'(t)½ - speed of movement
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Back to the Circle

t
α1(t) = (cos(t), sin(t))

α2(t) = (cos(2t), sin(2t))

α1'(t) 

α2'(t) 

Same direction, different speed
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Back to the Circle

t
α1(t) = (cos(t), sin(t))

α2(t) = (cos(-t), sin(-t))

α1'(t) 

α2'(t) 

Same speed, different direction
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The Tangent Line

Let α: I → R3 be a parameterized differentiable 
curve. 

For each t ∈ I s.t. α'(t) ≠ 0 the tangent line to α
at t is the line which contains the point α(t) 
and the vector α'(t)

α(t0) 

α'(t0) 

Tangent line at t0
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Regular Curves

If α'(t) = 0, then t is a singular point of α.

α(t) = (t3, t2), t ∈ R

A parameterized differentiable curve  α: I → R3

is regular if α'(t) ≠ 0 for all t ∈ I

x

y

t = 0
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Spot the Difference

α1(t) = (t3, t2)
Differentiable

Not regular

x

y

t = 0

x

y

t = 0

α2(t) = (t, ½t½)
Not differentiable

Which differentiable curve has the same trace as α2 ?
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Arc Length of a Curve

How long is this curve?

y

x

Approximate with straight lines
Sum lengths of lines:

Δx

Δy
Δs
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Arc Length

Let α: I → R3 be a parameterized differentiable 
curve. The arc length of α from the point t1 is:

The arc length is an intrinsic property of the curve – does 
not depend on choice of parameterization
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Examples

α(t) = (a cos(t), a sin(t)), t ∈ [0,2π]
α'(t) = (-a sin(t), a cos(t))
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Examples

α(t) = (a cos(t), b sin(t)), t ∈ [0,2π]
α'(t) = (-a sin(t), b cos(t))

No closed form expression for an ellipse
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Closed-Form Arc Length Gallery

Cycloid
α(t) = (at – a sin(t), a – a cos(t))

L(α) = 8a

Catenary
α(t) = (t, a/2 (et/a + e-t/a))

= (t, a cosh 𝑡𝑡
𝑎𝑎

)Logarithmic Spiral
α(t) = (aebt cos(t), aebt sin(t))
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Curves with Infinite Length

The integral                             does not always 
converge 

→ Some curves have infinite length

Koch Snowflake
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Arc Length Parameterization

A curve α: I → R3 is parameterized by arc length
if ½α'(t)½ =1, for all t

For such curves we have

'
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Arc Length Re-Parameterization
Let α: I → R3 be a regular parameterized curve, and s(t)

its arc length. 
Then the inverse function t(s) exists, and

β(s) = α(t(s))
is parameterized by arc length.

Proof:
α is regular → s'(t) = ½α'(t)½ > 0
→ s(t) is a monotonic increasing function
→ the inverse function t(s) exists
→
→ ½β'(s)½ = 1
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The Local Theory of Curves

Defines local properties of curves

Local = properties which depend only on 
behavior in neighborhood of point

We will consider only curves parameterized by 
arc length
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Curvature

Let α: I → R3 be a curve parameterized by arc 
length s. The curvature of α at s is defined by:

½α''(s)½ = κ (s)

α'(s) – the tangent vector at s
α''(s) – the change in 

the tangent vector at s

R(s) = 1/κ (s) is called the radius of curvature at s.

Small curvature

Large curvature
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Examples

Straight line
α(s) = us + v,  u,v∈ R2

α'(s) = u
α''(s) = 0    → κ (s) = |α''(s)| = 0

Circle
α(s) = (a cos(s/a), a sin(s/a)), s ∈ [0,2πa]
α'(s) = (-sin(s/a), cos(s/a))
α''(s) = (-cos(s/a)/a, -sin(s/a)/a) → κ (s) = |α''(s)| = 1/a
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Examples

Cornu Spiral 
A curve for which κ (s) = s

Generalized Cornu Spiral 
A curve for which κ (s) is a 
polynomial function of s

κ (s) = s2

κ (s) = s2-2.19

κ (s) = s2 + 1 κ (s) = 5s4-18s2+5



29

The Normal Vector

|α'(s)| is the speed (derivative of arc length) 
α'(s) is the tangent vector

|α''(s)| is the curvature
α''(s) is ?
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Detour to Vector Calculus

Lemma:
Let f,g: I → R3 be differentiable maps which 

satisfy f (t)⋅g(t) = const for all t. 

Then:
f '(t) ⋅g(t) = -f (t) ⋅g'(t)

And in particular by taking g = f: 
f (t)= const if and only if f (t) ⋅f '(t)=0 for all t
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Detour to Vector Calculus

Proof:
If f ⋅g is constant for all t, then (f ⋅g)' = 0.

From the product rule we have:
(f ⋅g)'(t) = f (t)'⋅g(t) + f (t)⋅g'(t) = 0

→ f '(t) ⋅g(t) = -f (t) ⋅g'(t)

Taking f = g we get:
f '(t) ⋅f(t) = -f (t) ⋅f '(t)

→ f '(t) ⋅f(t) = 0
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Back to Curves

α is parameterized by arc length
→ α'(s)·α'(s) = 1

Applying the Lemma

→ α''(s)·α'(s) = 0

→ α''(s) is orthogonal to the tangent vector 
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The Normal Vector

α'(s) = T(s) - tangent direction
|α'(s)| - speed

α''(s) = T'(s) - normal direction 
|α''(s)| - curvature

If |α''(s)| ≠ 0, define N(s) = T'(s)/|T'(s)|
Then α''(s) = T'(s) = κ(s)N(s)

α'(s) 

α''(s) 

α'(s) 

α''(s) 
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The Osculating Plane

The plane determined by 
the unit tangent and normal 
vectors T(s) and N(s) is 
called the osculating plane
at s

T

N

N

T



35

The Binormal Vector

For points s, s.t. κ(s) ≠ 0, the 
binormal vector B(s) is defined 
as:

B(s) = T(s) × N(s)

The binormal vector defines the 
osculating plane 

T

N

B
N

T

B

T

N

N

T



36

The Frenet Frame

{T(s), N(s), B(s)} form 
an orthonormal basis 
for R3 called the 
Frenet frame

How does the frame 
change when the 
particle moves?

What are T', N', B' in 
terms of T, N, B ?
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T ' (s)

Already used it to define the curvature:

T'(s) = κ(s)N(s)

Since in the direction of the normal, its 
orthogonal to B and T
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N ' (s)

What is N'(s)  as a combination of N,T,B ?
We know: N(s) · N(s) = 1
From the lemma → N'(s) · N (s) = 0

We know: N(s) · T(s) = 0
From the lemma → N'(s) · T (s) = -N(s) · T'(s)
From the definition → κ(s) = N(s) T'(s)
→ N'(s) · T (s) = - κ(s)
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The Torsion

Let α: I → R3 be a curve parameterized by arc 
length s. The torsion of α at s is defined by:

τ (s) = N'(s) · B(s) 

Now we can express N'(s) as:

N'(s) = -κ(s) T (s) + τ (s) B(s) 
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Curvature vs. Torsion
The curvature indicates how much the 

normal changes, in the direction tangent
to the curve

The torsion indicates how much the normal
changes, in the direction orthogonal to 
the osculating plane of the curve

The curvature is always positive, the torsion 
can be negative

Both properties do not depend on the 
choice of parameterization

N'(s) = -κ(s) T (s) + τ (s) B(s) 
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B ' (s)
What is B'(s) as a combination of N,T,B ?
We know: B(s) · B(s) = 1
From the lemma → B'(s) · B (s) = 0

We know: B(s) · T(s) = 0, B(s) · N(s) = 0
From the lemma →

B'(s) · T (s) = -B(s) · T'(s) = -B(s) · κ(s)N(s) = 0
From the lemma →

B'(s) · N (s) = -B(s) · N'(s) = -τ (s)

Now we can express B'(s) as:

B'(s) = -τ (s) N(s) 
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The Frenet Formulas

In matrix form:
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An Example – The Helix

α(t) = (a cos(t), a sin(t), bt)

In arc length parameterization:
α(s) = (a cos(s/c), a sin(s/c), bs/c), where 

Curvature: Torsion:

Note that both the curvature and torsion are constants  
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A Thought Experiment

Take a straight line
Bend it to add curvature
Twist it to add torsion
→ You got a curve in R3

Can we define a curve in R3 by specifying its 
curvature and torsion at every point?
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The Fundamental Theorem 
of the Local Theory of Curves

Given differentiable functions κ(s) > 0 and τ(s), 
s ∈I, there exists a regular parameterized curve 
α: I → R3 such that s is the arc length, κ(s) is the 
curvature, and τ(s) is the torsion of α. 

Moreover, any other curve β, satisfying the same 
conditions, differs from α only by a rigid motion.
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