
III.12 Edge Contraction

A triangulated surface is simpli�ed by reducing the
number of vertices. This section presents an algo-
rithm that simpli�es by repeated edge contraction.
We discuss the operation, describe the algorithm, and
introduce the error measure that controls which edges
are contracted and in what sequence.

Edge contraction. Let K be a 2-complex and as-
sume for the moment that jjK jj is a 2-manifold. The
contraction of an edge ab 2 K removes ab together
with the two triangles abx; aby and it mends the hole
by gluing xa to xb and ya to yb, as shown in Figure
III.1. Vertices a and b are glued to form a new ver-
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Figure III.1: The contraction of edge ab. Vertices a

and b are glued to a new vertex c.

tex c. All simplices in the star of c are new, and the
rest of the complex stays the same. To express this
more formally, we de�ne the cone from a point x to
a simplex � as the union of line segments connecting
x to points p 2 � , x � � = conv (fxg [ �). It is de�ned
only if x is not an aÆne combination of the vertices
of � . With this restriction, x � � is a simplex of one
higher dimension, dim (x � �) = 1+dim � . For a set of
simplices, the cone is de�ned if it is de�ned for each
simplex, and in this case x � T = fx � � j � 2 Tg.
We also need generalizations of the star and the link
from a single simplex to a set of simplices. Denote the
closure without the (�1)-simplex as T = ClT � f;g.
The star and link of T are

StT = f� 2 K j � � � 2 Tg;

LkT = Cl StT � StT :

For closed sets T , the link is simply the boundary
of the closed star. For example, in Figure III.1 the
link of the set ab = fab; a; bg is the cycle of dashed
edges and hollow vertices bounding the closed star of
ab. The contraction of the edge ab is the operation
that changes K to L = K � St ab [ c � Lk ab. This

de�nition applies generally and does not assume that
K is a manifold.

Algorithm. The surface represented by K is sim-
pli�ed by performing a sequence of edge contractions.
To get a meaningful result, we prioritize the contrac-
tions by the numerical error they introduce. Contrac-
tions that change the topological type of the surface
are rejected. Initially, all edges are evaluated and
stored in a priority queue. The process continues un-
til the number of vertices shrinks to the target number
m. Let n � m be the number of vertices in K.

while n > m and priority queue non-empty do

remove top edge ab from priority queue;
if contracting ab preserves topology then

contract ab; n--

endif

endwhile.

The priority queue takes time O(logn) per operation.
Besides extracting the edge whose contraction causes
the minimum error, we remove edges that no longer
belong to the surface and we add new edges. The
number of edges removed and added during a single
contraction is usually bounded by a small constant,
but in the worst case it can be as large as n� 1. Be-
fore performing an edge contraction, we test whether
or not it preserves the topological type of the surface.
This is done by checking all edges and vertices in the
link of ab. Precise conditions to recognize edge con-
tractions that preserve the type will be discussed in
Section ??.

Hierarchy. We visualize the actions of the algo-
rithm by drawing the vertices as the nodes of an
upside-down forest. The contraction of the edge ab

maps vertices a and b to a new vertex c. In the for-
est this is re
ected by introducing c as a new node
and declaring it the parent of a and b. The leaves
of the forest are the vertices of K, and the roots are
the vertices of the simpli�ed complex L. The forest
is illustrated in Figure III.2. We de�ne a function
g : VertK ! VertL that maps each vertex a 2 K to
the root u = g(a) of the tree in which a is a leaf. The
preimage of u 2 L is the set of leaves g�1(u) � K

of the tree with root u. The preimages of the roots
partition the set of leaves,

VertK =
[

u2L

g�1(u):
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Figure III.2: Vertices of K are shown as square nodes,

intermediate vertices as circle nodes, and vertices of the

�nal complex L as double circle nodes.

Let ab be an edge in K and set u = g(a), v = g(b). If
u 6= v then ab still exists in L, or rather it corresponds
to an edge, namely to uv 2 L. Else, ab contracts to
vertex u = v 2 L. Similarly, a triangle abd 2 K

corresponds to uvw 2 L if u = g(a), v = g(b), w =
g(d) are pairwise di�erent. If two of u; v; w are the
same then abd contracts to an edge, and if u = v = w

then abd contracts to this vertex in L.

Numerical error. As mentioned above, a vertex
u 2 VertL represents a subset g�1(u) � VertK. It
makes sense to measure the numerical error at u by
comparing u to the part of the original surface it rep-
resents. Speci�cally, we de�ne the error as the sum
of square distances of u from the planes spanned by
triangles in the star of g�1(u). Figure III.3 illustrates
this idea by showing a vertex u 2 L and the triangles
in the star of g�1(u). The preimage of u is the collec-
tion of seven solid vertices in the right half of the �g-
ure. The star of the preimage contains the �ve shaded
triangles and the ring of white triangles around them.
The shaded triangles have all their vertices in g�1(u)
and the white triangles have either one or two vertices
in the preimage.

u

Figure III.3: Vertex u and its star to the left and the

corresponding piece ofK to the right. The solid vertices

on the right are preimages of u and the hollow vertices

are preimages of the neighbors of u.

Let Hu be the set of planes spanned by triangles
in St g�1(u). The sum of square distances is de�ned
for every point in R

3 , so we can think of the error
measure as a function Eu : R3 ! R. This function has
a unique minimum, unless the normals to the planes
in Hu span less than R3 . We can therefore choose u
at the point in space where Eu attains its minimum.
If the linear subspace spanned by the normals is 2-
dimensional then there is a line of minima, and if it
is 1-dimensional then there is a plane of minima. In
both cases we add contraints to pin down u.

Inclusion-exclusion. We will see in Section ??

that Eu can be represented by a single symmet-
ric 4-by-4 matrix Q

u
, no matter how many planes

there are in Hu. De�ne Hw = Hu [Hv . We have
Ew = Eu + Ev � Euv , where Euv : R3 ! R maps a
point in R3 to the sum of square distances from planes
in Huv = Hu \Hv. We also have

Q
w

= Q
u
+Qv �Quv :

It is generally not possible to construct Quv directly
from Qu and Qv. Constructing Huv and comput-
ing Quv from this set can be expensive. Instead, we
maintain matrices Q for all vertices, edges, triangles
such that Qab = Qa \Qb and Qabd = Qa \Qb \Qd

for all edges ab and all triangles abd. We revisit
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Figure III.4: E�ect of edge contraction on sets of planes

used in computing the error.

the contraction of the edge ab. The error function
of the new vertex c is given by the matrix Qc =
Qa + Qb � Qab. For every vertex x 2 Lk ab there
is a new edge xc with error function represented by
Qxc = Qxa + Qxb � Qxab, as illustrated in Figure
III.4. We will see later that the matrices for edges are
not just useful for correctly computing the matrices
for vertices, but they represent meaningful geomet-
ric information about edges and their relation to the
original surface triangulation.
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Bibliographic notes. The problem of simplifying
a triangulated surface has its origin in computer
graphics, where rendering speed depends on the num-
ber of triangles used to represent a shape. The idea
of using edge contractions for surface simpli�cation
appeared �rst in a paper by Hoppe et al. [5]. Edge
contractions are used together with other local sur-
face modi�cation operations in an attempt to opti-
mize a measure of distance between the original and
the simpli�ed surface. Hoppe [3] revisits the idea and
shows how to use a given sequence of contractions for
eÆciently adjusting the level of detail of the surface
representation. The idea of measuring error as the
sum of square distances from gradually accumulating
planes is due to Garland and Heckbert [1]. The good
quality of the resulting simpli�cations has intensi�ed
the experimental research and lead to variations, such
as error measures that account for color and texture
of triangulated surfaces [2, 4].
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