
CS348a: Computer Graphics Handout # 8
Geometric Modeling and Processing
Stanford University Wednesday, 26 February 2017

Homework #4: Mesh processing; 3D vision; primitive fitting; programming with deep
learning framework [100 points]

Due Date: Thursday, 12 March 2020

Theory and implementation
This is a mixed theory/implementation problem set related to point cloud segmentation [1, 3]
and building on the tools you have developed in homework 3. Problem 1 provides some practice
on primitive fitting over meshes, using geometry processing. Problem 2 gives you a chance to
segment a point cloud into primitives and estimate parameters in an alternate way, using deep
learning

You may hand in a joint write-up for these implementation problems. Recall that the maxi-
mum group size is three. You can download all helper code for this problem from the Handouts
class web page.

Problem 1. [50 points]

In this problem, we segment a triangle mesh into surface patches corresponding to different
geometric primitives, using the theory derived in problem 4 of homework 3. Examples (CA’s
implementation) are shown in figure 1.

Note that in the last assignment we are able to analyze the slippable motions for a point
cloud belonging to a single primitive. In this assignment, we will implement a region merg-
ing method to automatically segment the primitive surfaces and estimate their parameters [1],
according to their slippability. We first segment the original mesh into small regions assuming
that each belongs to a single primitive. We can assign a similarity score between two neigh-
boring regions according to the error when merging them as a single primitive. We greedily
merge regions in decreasing order of the similarity score, until the score of the most similar
neighboring regions is below a certain threshold.

Figure 1: Primitive segmentation results from CA’s implementation.

2 CS348a: Handout # 8

v1 v2

v3

v4

f1

f2
v1 v2

v3

v4

f1

f2
v5

f3

f4

Figure 2: Subdivision Operator.
Figure 3: Visualization of the
small region extraction.

1(a). [Quad-edge data structure, 5 points] Our input mesh is guaranteed to be a wa-
tertight triangle manifold. The mesh is stored as an n-by-3 vertex matrix V and an m-by-3 face
matrix F (indexing starts from zero). We use the Eigen library to store and manipulate the
matrices. Since the algorithm is strongly related to surface normals, we need to compute the
vertex normals and store them as an n-by-3 normal matrix N.

There are many operations related to searching for the vertex neighbors, where a quad-edge
data structure helps. Implement ComputeVertexNormals and BuildQuadEdges in mesh.cpp
to derive the normals and the quad-edge structure containing an array of vertices, edges and
faces. You are free to add utility functions for quad-edge operations in the Edge class to help
with your mesh processing in the following steps.

1(b). [Subdivision, 5 points] The input mesh is usually coarse and without uniformly
distributed vertices. This prevents us from extracting small regions with enough vertices. We
therefore subdivide the mesh so that the length of any edge is smaller than a threshold (set
as 1e-2 in CA’s implementation). One way to subdivide is shown in figure 2: we add the
midpoint for an edge and split the two adjacent triangles by the medians corresponding to the
midpoint. We keep subdividing the longest edge in the mesh until all edges are short enough.
With heap (std::priority_queue in CPP), this algorithm can be performed in O(e loge) where e
is the number of edges.

1(c). [Region Extraction, 5 points] The CA proposes to extract small regions with a
radius R ranging from 0.015 to 0.03. A unit operation is to find all vertices whose shortest
path to the source vertex is smaller than the radius threshold, and this set of vertices roughly
form the region specified by the radius. This can be implemented with Dijkstra’s shortest path
algorithm:

We have a candidate vertices pool where paths are found (but not necessarily shortest).
Initially the pool contains only the source vertex whose distance is zero. At every step, we
pick the vertex from the pool with the shortest distance, remove it from the pool, put all its
neighboring vertices into the pool and update their distance. The CA manages the pool with a
priority queue to help with the efficient query of the vertices with the shortest distance. More
details can be found in any standard algorithms text, such as Introduction to Algorithms, 3rd

CS348a: Handout # 8 3

Edition (The MIT Press), by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
Clifford Stein.

With this unit operation, we can use a flood-fill algorithm to extract source vertices with
small regions that cover the whole mesh. We loop over all vertices in the sequential order. If
we find a vertex as not visited, we put it into a source vertices list, extract the region whose
radius is 0.03, and mark all vertices in the region as visited.

Finally, we apply the Dijkstra algorithm with multiple sources from our source vertices
list, so that we know for each vertex in the mesh which is its nearest source vertex. Each
source vertex and all vertices closest to it form a small neighborhood. Visualization of the
CA’s implementation of the small regions is shown in figure 3.

For each region, you should compute a slippage signature including the number of points
n, the matrix A you derived from problem 4(c) of Homework 3 (consider dividing by n for
numerical stability), and the sub-spaces of acceptable motion vectors. In the original paper,
the points are normalized before computing A, which is ignored in the CA’s implementation.
When merging two regions, A of the combined region can be directly computed from A of the
two separated regions in O(1) (constant time).

1(d). [Region Merging, 15 points] The region merging algorithm is shown as lines 6-
24 of algorithm 1 in [1]. Basically, we merge pairs of adjacent regions in the decreasing order
of the number of dimensions for the slippable motions. Within the same number of dimen-
sions, we merge regions with decreasing order of similarity score (eq. 9 in [1]). In the CA’s
implementation, the only difference is line 15: The CA rejects the pair if two regions have dif-
ferent dimensions or the potential merged region has reduced dimensions of slippable motion.
You are encouraged to experiment with different choices for similarity score or threshold, to
get your best result.

1(e). [Region Refinement, 10 points] The CA maintains a priority queue of boundary
edges whose two vertices belong to different regions after the merging step. The score of
the edge is the smaller fitting error of changing the region label for the two vertices. We
keep selecting the best edge and changing the region label if the fitting error is smaller than a
threshold. Once a vertex label is changed, edges connecting to the vertices need to be updated
to the queue, since they may become the boundary edges.

1(f). [Quality and Efficiency, 10 points] By running run.sh, you should be able to
produce the results for the given data. The score will be given based on the quality of the
segmentation and the efficiency of the algorithm. Ideal quality should be as good as figure 1.
An efficient implementation can process all given meshes in around 1 minute.

Problem 2. Implement primitive fitting via a supervised deep network [50 points]

In this problem, we aim at jointly segmenting point clouds into primitive instances and esti-
mating the primitive parameters, following the theory of problem 3 in assignment 3.

The key idea is to train a neural network that associates each point with a primitive type and
instance ID, and estimates the parameters for the primitives. Figure 4 shows the architecture

4 CS348a: Handout # 8

Figure 4: The architecture for the primitive fitting network.

for the primitive fitting network. The input to the network is a point cloud with n points.
Using PointNet++ [4] as the backbone network, we extract a high-level feature for each point.
This feature is translated by three different fully connected layers respectively into primitive
instance ID, point normal, and primitive type.

Instance ID Assuming the maximum number of primitive instances one object has is K, the
instance information can be represented as a K-dimensional vector w where wi represents the
probability that the point belongs to the i-th instance. Therefore, a softmax layer is followed by
the first fully connected layer to extract such a vector, and instance information for all points
form a n×K membership matrix Ŵ , as shown in figure 4. This membership matrix can be
viewed as a classification for each point into a primitve instance.

Point Normal The point normal is simply a 3-dimensional unit vector for each point. There-
fore, a L2-normalization is followed by the second fully connected layer to extract the n× 3
normal matrix.

Primitive Type We estimate the primitive type for each point. Similar to the representation
of instance ID, we use softmax to extract a n× L matrix T̂ where L = 4 is the number of
primitive types we study.

2(a). [Loss functions, 10 points] We have a dataset with ground truth instance, prim-
itive type and parameter, and use losses to supervise the network to make reasonable estima-
tions. Specifically, for each point cloud the ground truth data contain the membership matrix
W, N, primitive types T, and for each instance with ID i≤ K the corresponding parameter Ai.
[3] proposes several losses and use the sum of them for training.

Instance Segmentation Loss As shown in figure 4, our network predicts a membership ma-
trix Ŵi j indicating possibility each point i is associated with primitive instance j. This seg-
mentation should be consistent with the ground truth W. One challenge is that the order of

CS348a: Handout # 8 5

predicted instances can be different from the ground truth, and the loss should not penalize the
reordering.

For each instance, the segmentation mask is indicated by the columns of the membership
matrix as a n-dimensional vector. For each pair of segmented instances in the prediction and
ground truth as ŵ and w, we can compute the intersection of union (IoU) score as

IoU(ŵ,w) =
ŵT w

||ŵ||1 + ||w||1− ŵT w
. (1)

We aim to find the best one-to-one matching between ŵ and w for columns of membership
matrix so that the sum of IoU scores is maximized, which can be solved by a classical hungarian
matching [2] algorithm.

Assuming the best ordering pairs each instance k in the prediction with ek in the ground
truth, the instance segmentation loss can be defined as

Lseg =
1
K

K

∑
k=1

(1− IoU(Ŵ:,k,W:,ek)) . (2)

Point Normal Loss The ground truth normal N is used to supervise the predicted normal N̂
in figure 4, where the loss is implemented as

Lnorm =
1
N

N

∑
i=1

(1−|N̂T
i Ni|) . (3)

Primitive Type Loss We penalize the errors of primitive type estimation T̂ for each point i
with the cross entropy H according to the ground truth T:

Ltype =
N

∑
i=1

H(T̂i,Ti) . (4)

Note that for points that are not associated with any primitive in the ground truth, we simply
ignore them.

Primitive Fitting Loss The primitive loss is computed as

Lres =
1
K

K

∑
k=1

E (Ak;Pk) . (5)

E (Ak;Pk) is the mean squared distance of the k-th primitive’s ground truth point cloud Pk
under the estimated parameter Ak.

Note that the primitive type for each instance is directly decided from ground truth during
training time. In test time the primitive type is inferred by

t̂k = argmax
l

N

∑
i=1

T̂i,lŴi,k . (6)

6 CS348a: Handout # 8

Axis Angle Loss When estimating the primitive axes, the SVD decomposition becomes nu-
merically unstable when the number of points is small. Therefore, we additionally add regu-
larization terms for axes estimation as

Laxis =
1
K

K

∑
k=1

(1−|âT a|) . (7)

where a is the normal of the plane or axis of the cylinder or the cone. Spheres are ignored in
this loss function.

Implement the following losses in src/evaluation.py in function evaluate (The
training loss should be sum of them). We provide test_loss.py for basic verification.

• Lseg, instance segmentation loss.

• Lnorm, point normal loss.

• Ltype, primitive type loss.

• Lres, primitive fitting loss.

• Laxis, axis angle loss.

2(b). [Network implementation, 30 points] Implement the data loader and the net-
work following the README instructions. Train the network to get decent network predic-
tions. For the data loader, run test_dataloader.py for verification.

2(c). [Colorize the result for the segmented point cloud, 10 points] Once you obtain
the segmented point cloud with primitive information, visualize them as colored pointclouds
for the different primitive types and instances

What to hand in

You are required to submit your “assignment4.zip” archive for this assignment by email to the
CA with the same file distribution as you downloaded. In it, please provide a “./report.pdf”
including names of group members, the discussion of your code/method for both problems,
and visualization of the results.

No late days are available for this assignment. All class assignments are due by Thursday,
March 12, 2020, 11:59 pm PDT.

On Friday morning, March 13, 2020, we will schedule brief demos by each team on Home-
work 4.

References
[1] Natasha Gelfand and Leonidas J Guibas. Shape segmentation using local slippage analy-

sis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing, pages 214–223. ACM, 2004.

CS348a: Handout # 8 7

[2] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[3] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas Guibas. Super-
vised fitting of geometric primitives to 3D point clouds. In Proceedings of the IEEE Con-
ferencec on Computer Vision and Image Processing. 2019.

[4] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space. In Advances in neural information
processing systems, pages 5099–5108, 2017.

