CS348a: Computer Graphics --Geometric Modeling and Processing

Leonidas Guibas Computer Science Department Stanford University

Leonidas Guibas Laboratory

The Principals

- Leonidas (Leo) Guibas (CS & EE)
 - Instructor (Clark S293)

- Jingwei Huang (CS)
 - Course Assistant (Clark S297)

- Carrie Petersen
 - Admin (Gates 150)

http://cs348a.stanford.edu http://graphics.stanford.edu/courses/cs348a-20-winter

Where CS348a Fits In

Graphics sequence

CS348a vs. CSxxx

- CS348a: Geometry modeling and processing
 - Tools: geometry, topology shape representations, shape design, acquisition, and processing
- CS348b: Rendering / image formation
 - Tools: light transport, signal processing how you make images once you have models
- CS233: Geometric and topological data analysis
 - Data-driven techniques --- high-level, semantic understanding of shape/motion in 2D (images) and 3D (scans)
- CS268: Geometric algorithms
 - Efficient data structures and algorithms for geometric data algorithm analysis (more theoretical CS class)
- CS448i: Computational imaging and display
 - Display and imaging hardware, with the associated algorithms
- CS468: Topics in geometric algorithms
 - Offered in spring 2020. Riemannian Methods in Computer Vision & Biomedical Imaging

History of Geometric Modeling / Processing

Geometric Modeling and Processing

What is geometric modeling? Broad goal:

To create mathematical models and practical tools for the digital representation and manipulation of 2D/3D shapes.

GM Originated in the CAD Industry ~1950

Historical Role of 3D Modeling

Beautiful synthetic imagery

Movie special effects

Computer games

Physically-based simulation

Computer Graphics

Science

Engineering

Personal 3D: Virtual / Augmented Reality

Digital 3D Geometry is Well-Established in Specialized Sectors

But, 3D Content Creation Has Been Hard

But This Is Changing ... Better Software, Hardware, and Machine Learning

Simpler 3D Modeling Software

Affordable 3D Scanners

Microsoft Kinect

Google Tango

Intel RealSense

3D Printers

Machine Learning Approaches

• Example: PointFlow

Two flows: One to create the distribution of shape feature vectors, one for the distribution of points on a shape

Shape generation flow

Image Credit: PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows, Yang et al.

How are 3D Models Created?

How Shape Models Arise

• Designed shapes: CAGD (Computer-Aided Geometric Design)

How Shape Models Arise

• Acquired shapes:

Why Geometric Modeling?

Among all digital representations of physical objects, a 3D model is closest to the physical artifact.

- A digital model allows easy manipulation
- Digital simulation is much cheaper than building the real object
- Model optimization and repair is possible
- Detailed comparison across models is possible
- Creation of new models from other ones is relatively easy

Shape Topology Optimization

ML Challenge: Multiple 3D Representations

CAD Model

...

Point Cloud

Surface Mesh

Volumetric

Multi-View Images

DeepSDF: Shapes Created by a Neural Network

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

More examples of ML Use in Computer Graphics

Sketch simplification

Real-time rendering

Colorization

BRDF estimation

Denoising

Procedural modelling

Fluid

Mesh segmentation

Learning deformations

Boxification

PCD processing

Animation

Facial animation

3D for Encoding Knowledge

3D for Encoding Knowledge

Among all digital representations we have of a real artifact, 3D is the most faithful to the actual physical object

Geometry Repositories

Shape collections are becoming widely available

ShapeNet (>3M Models)

5)

Shape Ret Search		Q (Options 🗸			Ho	me About	Download	Statistics
chair a seat for one person, with a support for the back ImageNet MetaData	; 'he put his coat ov	ver the ba	ack of the chai	r and sat dowi	יי				
Choose a taxonomy:	Synse	et mode	ls						
ShapeNetCore	•								
 airplane,aeroplane,plane(12,4501) aquarium,fish tank,marine museum(0,4) ashcan,trash can,garbage can,wastebin,ash b bag,traveling bag,travelling bag,grip,suitcase(10,100,100,100,100,100,100,100,100,100,		2 3 4	5 6 7 8	9 10 11 7	12 13 177	7 >	club chair	deck chair	rex chair
bcd(10,000) bbench(5,1953) birdhouse(0,79) bboat(12,1635) bookshelf(0,495) bbottle(6,550)	۲ straig	ht chair	club chair	club chair	swivel chair	butterfly chair	armchair	armchair	club chair
bowl(1,234) bus,autobus,coach,charabanc,double-decker, cabinet(9,1644) camera,photographic camera(4,134) can,tin,tin can(2,108) can(4,81)	rec	cliner	cantilever chair	swivel chair	swivel chair	armchair	folding chair	rocking chair	club chair
<pre>cap(4,01)</pre>		X						×	

Models, with Semantic Annotations

A repository of 3D models organized according to the WordNet taxonomy, with

- geometric info (parts, symmetries)
- semantic info (keywords, part names, affordances, functionality)

Leonidas Guibas Pat Hanrahan Silvio Savarese

Qixing Huang

Tom Funkhouser Jianxiong Xiao

Shape Affordances

Connections

High-Level Semantic Properties

Object symmetries

Object weight / grasps

Annotation Pipeline: Humans + Algorithms

3D at the Center

 Arc de Triomphe, Paris [HD] ► by WorldSiteGuides • 2 years ago • 27,509 views Arc de Triomphe - HD footage, information and facts on the Arch of Triumph. Arc de Triomphe is one of France's most famous ... HD CC

Q

Upload 🔻

About 40,100 results

Arc de Triomphe - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Arc_de_Triomphe -The Arc de Triomphe de l'Étoile is one of the most famous monuments in Paris. It stands in the centre of the Place Charles de Gaulle (originally named Place de ... Arc de Triomphe du Carrousel - Arch of Triumph (Pyongyang) - Champs-Élysées

Arc De Triomphe www.arcdetriompheparis.com/ -Arc de Triomphe Paris information in amazing detail with breathtaking photos. Everything you need to know about one of Paris' top attractions - Arc de Triomphe.

Visitor Information - Facts - History - Arc de Triomphe Gallery

News - Arc de triomphe - Centre des monuments nationaux

arc-de-triomphe.monuments-nationaux.fr/en/ - Translate this page Come and visit the Arc de Triomphe at Place de l'Étoile at the top of the Champs-Élysées. A symbol of the French nation, it links old and new Paris, standing on ...

Arc de triomphe - Centre des monuments nationaux

arc-de-triomphe.monuments-nationaux.fr/ - Translate this page Présentation du monument et informations pratiques par le Centre des monuments nationaux, Paris (75), France, 4.4 ★★★★ 215 Google reviews · Write a review

 Place Charles de Gaulle 75008 Paris, France +33 1 55 37 73 77

Arc de Triomphe

Directions

The Arc de Triomphe de l'Étoile is one of the most famous monuments in Paris. It stands in the centre of the Place Charles de Gaulle, at the western end of the Champs-Élysées. Wikipedia

Construction started: August 15, 1806 Opened: 1806 Height: 164' (50 m) Address: Place Charles de Gaulle, 75008 Paris, France Architectural style: Neoclassicism Architect: Jean Chalgrin

The Arch of Triumph in... by <u>rafa</u> The Arch of Triumph in... View in Google Earth ****

The Time is Now for 3D + ML

New forms of media are constantly being acquired

Growing demand for acquisition, processing and analysis of 3D geometric data

Course Content

The Course Content I

- Projective geometry and projective spaces
- Some linear algebra: matrices and transformations
- Polynomial algebra
- Algebraic tricks: homogenization and polarization
- 2D and 3D smooth shape models: splines
- Basic topology and mesh representations for shapes

The Course Content II

- 3D reconstruction from scanner data
- Geometry processing (remeshing, smoothing)
- Mesh parametrization
- Mesh simplification

- Machine Learning Approaches to Shape Analysis
- Generative Models Based on Learned Shape Representations and Applications

Course Schedule I

CS348a Class Schedule, Winter Quarter 2019-20

Below are the key dates for the class.

Monday	Wednesday				
January 06	January 08				
Class Introduction; Homogeneous Coordinates; The Projective Plane and Space	Oriented Projective Geometry; Euclidean, Affine and Projective Transformations; Matrix Representations				
Read: Lecture Slides Read: <u>N08</u> , <u>N15</u> , <u>N16</u> ; Chapters 1 and 2 of <u>Stolfi's thesis</u>	Read: Lecture Slides Read: <u>N09, N11</u>				
January 13	January 15				
	Shape Modeling: Parametric and Implicit Representations; Classification of Parametric Cubics				
Rotations and Quaternions	Homework 1 out				
Read: <u>N12, N13, N17</u>	Read: Lecture Slides				
	Read: <u>N18</u> (Section 5), <u>N19</u> , <u>N20</u> ; for parametric/implicit see also the Hoffmann <u>report/slides</u>				

January 20	January 22				
Martin Luther King, Jr., Day (holiday, no classes)	Polar Forms of Plynomials				
	Read: <u>N19</u> , <u>N20</u> , <u>N21</u>				
January 27	January 29				
Derivatives and Polar Forms;	Splines and B-Splines				
Continuity Constraints	Homework 1 due; Homework 2 out				
Read: <u>N22, N23, N24, N27</u>	Read: <u>N22, N23, N24, N27</u>				
February 03	February 05				
Rational Curves	Subdivision Curves				
Read: N25	Read: <u>Siggraph 99 Notes</u>				
<u>Taubin paper</u>					

Course Schedule II

		February 24	February 26	
February 10	February 12		Scan Alignment and Registration; Surface Reconstruction	
	Triangle Meshes and their		Homework 3 due	
Tensor-Product and Total Degree Parametric Surfaces	Representation; the Quad-Edge Data Structure	In-class Midterm	Read: Lecture Slides	
Read: <u>N25</u> , <u>N26</u> , Lecture Slides1, Lecture Slides2	Homework 2 due; Homework 3 out		Read: <u>BeslMcKay</u> , <u>ChenMedioni</u> , PottmanHofer, <u>MitraEtAl</u>	
	Read: <u>N30</u> , <u>N31</u>	March 02	March 04	
February 17	February 19	Learned Shape Representations	Mesh Simplification	
Presidents' Day (holiday, no classes)	Introduction to Geometry Processing	Read: Lecture Slides	Read: <u>L08, L12, L13, L15</u>	
		March 09	March 11	
	In-class Midterm; Homework 4 out Read: Lecture Slides	Building and Improving Meshes	Mesh Parametrization; Course Summary	
		Read: Lecture Slides	Homework 4 due	

Read:Lecture Slides

Course Mechanics

- Course web page: http://cs348a.stanford.edu, http://graphics.stanford.edu/courses/cs348a-20-winter
- No formal required text we'll use class notes from previous course offerings
- Recommended:
 - Gerald Farin, Curves and Surfaces for CAGD, Fifth Edition: A Practical Guide, Morgan Kaufmann, 2001
 - Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy, Polygon Mesh Processing, A K Peters, 2010
- Homeworks: a combination of paper-and-pencil (math) in the first half, some programming and a project assignment in the second half – four in total
- There will be a late midterm, but no final
- We'll use Piazza (<u>www.piazza.com</u>) as the class discussion forum

Course Recitation

• Recitation section: Gates B21, Fridays, 4:00 – 5:00 pm (starting 20 January 2020)

On to the Nitty-Gritty

Homogeneous Coordinates and Real Projective Spaces

