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3D Point Cloud Processing
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phySical Computrer Vision
model point cloud

3D Acquisition Pipeline



3D Point Cloud Processing
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Registration Pipeline

Steps:

1. [Initial registration

2. Pairwise refinement

3. Global relaxation to
distribute error

4. Generation of surface
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Registration Pipeline

Implicit
reconstruction
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Normal Estimation
Implicit Function Construction
Meshing: Marching Cubes reco nStrUCtEd

acquired
point cloud model

Steps:

1. Initial registration

2. Pairwise registration

3. Global relaxation to
distribute error

4. Generation of surface



Fundamental Registration Problem

Given two shapes with partially overlapping geometry, find an alignment
between them

10



Measuring Success: Shape Distances

Given two shapes A and B, we are interested in defining a
distance or (dis-)similarity measure under a transform T

mTin 0(A, T(B)) texmnsa

Such measures are crucial in shape similarity search, shape
classification, etc.

As another example, shape registration
and matching is very important in modern
structural biology

Human (red) and fly (yellow) thierodoxins, compared



Issues about Distance Metrics

A 0<f
. . : : 9
We are all familiar with function norms (L,, etc.). The 7Q —_— g

common parametrization establishes S
correspondences. We don’t have that for structures X

or shapes. ||f o gHQ

e Partial matches need to be considered -- notion of
support o for the match.

* What group of aligning transforms is to be
considered?

* Is the resulting distance a metric?
Not for
partial matches

6(A,C) <6(A,B)+46(B,C)

6(c(A),a(B)) 12



Simultaneous Estimation

* We are given two shapes A and B, each in its own
coordinate system

* We must establish correspondences between certain
parts (the alignment supports) of Aand B

* We must find an optimal transform that best aligns the
supports of A and B

* We must score this choice of supports and transform to
produce a distance measure 9

1. aggregate distances?

B2-domain

o-domain

B-domain

Additional domain

In computing the score, how do we

2. trade-off larger supports for larger aggregate distance?

13



Degrees of Freedom

* Transform estimation

* Arigid motion has 6 degrees of freedom (3 for translation and 3 for rotation)

* We typically estimate the motion using many more pairs of corresponding points, so the problem is
overdetermined (which is good, given noise, outliers, etc — use least squares approaches)

* More general transforms require more degrees of freedom. When shape deformations are allowed, the
degrees of freedom can grow very rapidly

reconstruction

14



Other Applications of Alignments

O Manufacturing / Quality Control:

One shape is a model and the other is a scan of a
product. Useful for finding defects.

O Medicine:

Finding correspondences between 3D MRI scans of the
same person to diagnose or monitor disease.

) Animation Reconstruction & 3D Video.

© Statistical Shape Analysis:
Building models for a collection of shapes.

15



Applications — Statistical Shape Analysis

O Scan many people. Learn a
deformation model (e.g. PCA).

C) Find the principal variation modes;

create new random instances. 11 Y
© Requires alignment. female, 1.6 m, 65kg

A Statistical Model of Human Pose and Body Shape , 16
Hasler et al. Eurographics 09



Method Taxonomy

Local vs. Global

refinement (e.g. ICP) | alignment (search)

Rigid vs. Deformable

rotation, translation | general deformation

Pair vs. Collection

two shapes | multiple shapes

17



Method Taxonomy

Local Ws. Global

refinement (e.g. ICP) § alignment (search)

Today Rigid vp. Deformable

rotation, translation § general deformation

Pair vp. Collection

two shapes F multiple shapes

18



Local Rigid Alighment




Local Rigid Alignment

* Simplest instance of the registration problem

Given two shapes that are approximately aligned (e.g. by a human, or
via prior knowledge) we want to find the optimal rigid transformation
that brings them into correspondence.

20



Local Rigid Alignment

 What does it mean for an alignment to be good?

Intuition: we want “corresponding points” to be close after transformation.

Problems
1. We don’t know what points correspond.
2. We don’t know the optimal alignment. 2]



How to Get Correspondences?

A chicken-and-egg problem: if we knew the optimal aligning
transform, then we could get correspondences by proximity
(possibly with the aid of some global adjustment, e.g., dynamic

programming)

Transform

=)

Correspondences

Guess one, estimate the other, and iterate! ﬁ
EM like

@ Correspondences from proximity (lterated Closest Pair)

@ Correspondences from local shape descriptors (Shape Features)

@ Transform from voting schemes (Geometric Hashing)

@ Combinations

22



Iterative Closest Point (ICP)

» Approach: iterate between finding correspondences and finding the
transformation:

L1
Y2
Given a pair of shapes, X and Y, iterate:

1. Foreach zx; € X find nearest neighbory; € Y.
2. Find rigid motion R, t minimizing:

N
> IRz +t—yill3

1=1 23
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Iterative Closest Point

» Approach: iterate between finding correspondences and finding the
transformation:

Given a pair of shapes, X and Y, iterate:
1. For each ; € X find nearest neighbory; € Y.

N
2. Find rigid motion R, ¢ minimizing: Z IRz +t — yi3
i—1 31



Iterative Closest Point

* Requires two main computations:

1. Computing nearest neighbors

2. Computing the optimal transformation

32



ICP: Nearest Neighbor Computation

Closest points

y; = argmin |y — ;]

How to find closest points efficiently?
Straightforward complexity:  O(MN)
M number of points on X, N number of pointson Y.

More sophisticated: X divides the space into Voronoi cells
ViyeY)={zeR ly—z[ <y —2IVy €Y #y}

Given a query point y, determine to which cell it belongs.

33



Closest Points: Voronoi Cells (—CS268)

Computational
Geometry

ViyeY)={zeR’:|ly—z|| <y —z2[| VY €Y # y}

34



Closest Points: Voronoi Cells

Approximate nearest neighbors

To reduce search complexity, approximate Voronoi cells.
Use binary space partition trees (e.g. kd-trees or octrees).

Approximate nearest neighbor search complexity: O(N log M). 35



ICP: Optimal Transformation

Problem Formulation:

Given two sets points:{; }, {¥; },7 = 1..n in R3  Find the rigid transform:

N
Z IRz + 1t — i[5
i=1

R, t that minimizes:

36



Simplest Case: Rigid Alignment, Given Correspondences

* We are given two sets of corresponding points xy, X, ..., X, and y;, ¥, ..., ¥, in R3. We wish to compute the
rigid transform T that best aligns x, toy,, x,toy,, ...,and x, to y,.

* We define the error to be minimized by
* Old Problem:

* Known and solved as the orthogonal

n Procrustes problem in Factor Analysis
. 2 (Statistics) [Shénemann, 1966]
rT%ln Z ’ ’T(CCZ) yz ‘ ‘ * Known and solved as the absolute
=1 orientation problem in Photogrammetry

[Horn, 1986]

* Also in robotics, graphics, medical
image analysis, statistical theories of
shape, etc ...

MSE error, RMS distance, ...

37




SVD-Based Solution

* Arigid motion T is a combination of a translation a and a rotation R, so that T(x) = R(x) + a.

e The quantity to be minimized is:

n

min [ 3 |R(z;) + a — y;|?
a, R —1 3 .

The unknowns

38



SVD-Based Solution

* Arigid motion T is a combination of a translation a and a rotation R, so that T(x) = R(x) + a.

* If we place the origin of our coordinate system at the mean of the x/s, then the quantity to be minimized
simplifies to (up to some constants):

a,R i~

* Note that the translational and rotational parts separate. The translational part a can easily be seen to be
optimized by

T
]- The centroids of the two

a — — E Y; point sets have to be

n i=1 aligned!



The Rotation Part via SVD

* Define « Now compute the SVD*
o 1 ¢ T T
aszgzm xy"'=ubv!l (3x3)
1=1
1 " * Uand Vare 3 by 3 orthogonal matrices,
g = = Z Y and D is a diagonal matrix with
n : t decreasing non-negative entries along
=1 the diagonal (the singular values).
_ — T
X = [#1—7,...xp — T
Y = [y1—7,...yn — y]T * Define S by
I, ifdetUdetV =1
* Here X and Y are 3 by n matrices. S =< diag(1,...,1,-1),
otherwise
X < — * Then T
> R=USV

O(n) algorithm!
*SVD = singular value decomposition 40



ICP: Optimal Transformation

Problem Formulation:

Given two sets points: {z; },{yi}, i = 1..nin R3 Find the rigid transform:

N
Z IRz +t — |5

1=1

R, t that minimizes:

Closed form solution:

Construct: C' =S (y; — pu¥ ) (xi — pX)T where  pX = L5 o,

N
ComputetheSVDofC: (' = UX V7T =Ly
If det(UV?) =1, Ropy = UV
Else Rop = UXVT, Y = diag(1,1,...,—1)

Set topt — MY — Ropt:U’X

Note that Cis a 3x3 matrix. SVD is very fast.
4]



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each x; € X find nearest neighbor y; € Y.
2. Find rigid motion R, ¢ minimizing: i IRxz; +t — 5|2
1=1
Convergence:
e ateachiteration Zi\; dQ(ZUi,Y) decreases.
 Converges to local minimum

 Good initial guess: global minimum.

42



Variations of ICP

Selecting source points (from one or both scans): sampling
Matching to points in the other mesh

Weighting the correspondences

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform
Minimizing the error metric w.r.t. the transformation
N

L?‘P"PP"!\)!—‘J

.\o

! h 43



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each x; € X find nearest neighbor y; € Y.
2. Find rigid motion R, t minimizing:

N
Z IRz +t — i[5
1=1

A

S T
—_ .
—_ e I
— \
—
\\7"\'



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each x; € X find nearest neighbor y; € Y.
2. Find rigid motion R, t minimizing:

N
Z IRz +t — i[5
1=1

Problem: N, —
uneven sampling — —
—_ —
—
— \

- 45



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each x; € X find nearest neighbor y; € Y.

2. Find rigid motion R, t minimizing:
N N
Z d(Rx; +t, P(y;))* = Z (Rz; +t—y;)' my,)

Solution:
Minimize distance to
the tangent plane

46



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each x; € X find nearest neighbor y; € Y.
2. Find rigid motion R, t minimizing:

N N
> AR+, Py)* =) ((Rai+t—y) ny,)
1=1 1=1
destination <«—___tangent destination

point

g surface
Solution:
Minimize distance to

the tangent plane

5
source
point

f

source

surface
47



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. Foreach x; € X find nearest neighbory; € Y.
2. Find rigid motion R, t minimizing:

N
R tt t:ar,qmin Rx—|—t— -Tn,
opt»y *Op RTR—1Id) ¢ Z (( 1 yz) yz)
=1
Question:
How to minimize the error?
Challenge:

Although the error is quadratic (linear derivative), the space of
rotation matrices is not linear.
Problem:

No closed form solution.
48



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each x; € X find nearest neighbor y; € Y.
2. Find rigid motion R, t minimizing:
N

Ro 7to — I ; — )t
pe fopy, = Argniny Zl (Ra; +t — y:)"my,)
1=

Common Approach:
Linearize rotation. Assume rotation angle is small.

T i
Ra; ~ 71+ 7 X 7 axis |
|7|l2: angle of rotation.

Note: follows from Rodrigues’s formula formula
R(r,a)z; = z; cos(a) + (r x x;)sin(a) + r(r! z;)(1 — cos(a))
1

, N 49
and first order approximations:  sin(a) ~ «, cos(a) ~



Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each x; € X find nearest neighbor y; € Y.

2. Find rigid motion 7, ¢ minimizing:
N

E(r, t) Z ((a:, +rXxz+1t— yi)Tnyi)

1=1
N

Z( yz ny + T (xzxny)+tTny )2

Setting: aﬁE(r, t) =0 and %E(r, t) = 0 leads to a 6x6 linear system
r

Ax =0
(0 A — Z(az X 1, )(xixﬂyi )T b= 3" (s — )" (xixnyi>
v t nyi B vi i v nyi 50



Iterative Closest Point

—4
352 —
5 point—point ICP
. —— point—plane ICP
S
5 2
E
=
2 15¢
4]
o
‘|_
05
T T T S e T
0 2 4 6 8 0 12 14 16

Iteration Count

Aligning the bunny to itself:
Point-to-plane always wins in the end-game.

51



Distance Fields for
Registration




III

“Gravitational” Potential

Motion Planning for single Robot with Two Obstacles

—
o
T

y position

10

-5 0 5 10 15 20
X position

Robot motion planning via potential fields 53



III

Potential

“Gravitationa

* Given two related shapes, the “data” A and the “model” B, create a
potential field that pulls B to the correct alignment with A

* Key tasks
e Define the potential field
* Formulate the optimization problem
* Do gradient descent using approximate linearization
* |terative approach

54



Squared Distance Function (F)

F(x,0,)=d"

Dp

Typically A is a point cloud

We want to approximate the
squared distance function to
the underlying object



Approximate Squared Distance

F(x, ®.) valid in the neighborhood of x

Aim for 2" order approximation, because we want to
take derivatives.



Pairwise Rigid Correspondence

Geometry of the square distance function

For a curve W,
around point =«

y = (1, 22)

P1

To second order:

d
dz(y, V) ~ a;% + x%
d— p1

in the Frenet frame at p

[Pottmann and Hofer 2003] 57



Approximate Squared Distance

For a curve W, to second order:

d
d*(y, W) ~ 23 + o3
d— p1

For a surface @, to second order:
d > d
d— p1 d— p2

dz(y, D) ~ :c% + x%

p1 = 1/k1 and po = 1//-4;2 are inverse principal curvatures

[Pottmann and Hofer 2003]

58



Approximate Squared Distance

For a surface @, to second order:
d - d o, -
L1 I Lo + £U3
d—p1 d— p2

2 ~
d (ya (D) ~
p1 = 1/Kk1 and po = 1//-4;2 are inverse principal curvatures

Note thatas d — O, dz(y, Pd) — :c% point-to-plane

d— oo, d?°(y,®) — ZE% + CU% + CB% point-to-point

59



|ICP Without Correspondences

e ICP without correspondences
* define a quadratic approximant to the square distance function [Pottman & Hofer, 02]

< curvature

» perform iterative gradient-descent in this field
* point to foot-point distance

* casedis large: classical ICP
* case d is small: point-to-plane ICP

60



d?(y, ®,) Using d2 Tree

Partition the space into cells where each cell stores a
guadratic approximant of the squared distance function.

st T
] = ,
1
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/] I nic | I
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i 1 um 1T ~
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o : -] \ |
;'L yimi 1 kY
’ 3D

Leopoldseder S et al. d2-tree: A hierarchical
representation of the squared distance function
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Registration Using d2 Tree

Build using bottom-up approach: fit a quadratic
approximation to a fine grid.

Merge cells if they have similar approximations.

Funnel of convergence:

OO0 4« Translation in x-z plane. Rotation
O QC\ O O Q about y-axis.
OO0 0O0gh O ’
OO0 QD O OO

500000666

O O O O ) O O mm Converges
O O O O O [1  Does not
O Q O C O O converge

62



Matching the Bunny to Itself

ARy
& *Y . 2

A

".‘bl;’l'r

» ¥ »
o P ety
O A O O b b ¥

AR oA AAY SO0 DY D pp VDD

* 80 S D EDY B OO OO D PP e

2 DD D000 0O OO0 DA M PP DD
ey FV s 00000 OO0 »Y My d gy

v F o r’n% 2 0 L0000 ’ ,' » P
20C “ 000 LU b
point-to-plane d2Tree

Registration of Point Cloud Data from a
Geometric Optimization Perspective 63
Mitra et al., SGP 2004



Matching the Bunny to Itself

Residual Error

3.5

point—point ICP
-% - on—demand sq. dist. approx
.| -© d2Tree sq. dist. approx.
\ —+— point—plane ICP

Iteration Count

Well-aligned

Residual Error

0.025

0.021

0.015¢

001

0.0051

point—point ICP
=% on—demand sq. dist. approx
-©- d2Tree sq. dist. approx.
—— point—plane ICP

Q-

Noisy, far away

Registration of Point Cloud Data from a
Geometric Optimization Perspective

Mitra et al., SGP 2004
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Local Rigid Matching — ICP

The upshot is that

¢ Locally, the point-to-plane metric provides a second order
approximation to the squared distance function.

¢ Optimization based on point-to-plane will converge
quadratically to a local minimum.

¢) Convergence funnel can be narrow, but can improve it with
either d2tree or point-to-point.

What if we are outside the convergence funnel?
65
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Global Matching

Given shapes in arbitrary positions, find their alignment:

Robust Global Registration
Gelfand et al. SGP 2005

Can be approximate, since will refine later using e.g. ICP 47



Global Matching — Approaches

Several classes of approaches:

Exhaustive Search
Normalization (PCA)
Random Sampling (RANSAC)

R A\ =

Invariant Features

68



Exhaustive Search:

Compare (ideally) all alignments
« Sample the space of possible initial alignments.

 Correspondence is determined by the alignment at which models are
closest.

ICP
result

angle

Very common in biology: e.g., protein docking 49



Exhaustive Search:

Compare at all alignments
« Sample the space of possible initial alignments

 Correspondence is determined by the alignment at which models are
closest

* Provides optimal result

 Can be unnecessarily slow
 Does not generalize to non-rigid deformations

/70



Normalization — Canonical Poses

There are only a handful of initial configurations
that are important.

Can center all shapes at the origin and use PCA to find the principal directions of
the shape.

In addition sometimes try all permutations of x-y-z.

/1



PCA-Based Alignment

+ Use PCA to place models into canonical
coordinate frames

+Then align those frames

Covariance Principal axes
matrix computation alignment

72



Normalization — Canonical Poses

There are only a handful of initial configurations
that are important.

Fr e e
SR Y
P =
»phe

Works well if we have complete shapes and no noise.

Fails for partial scans, outliers, high noise, etc.

/3



Problems with PCA

¢+ Principal axes are not consistently
oriented

+ Axes are unstable when principal
values are similar

¢ Partial similarity

74



Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and simple approach. lterate between:
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Guess and
verify
/5




Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and simple approach. lterate between:
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Q

Guess and
verify

P 76



Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and Simple approach. Iterate between:
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Guess and
verify
/7




Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and simple approach. lterate between:
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Guess and
verify
78




Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and simple approach. lterate between:
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Can also refine the final
result. Picks don’t have
Q to be exact.

Guess and
verify

P 79



Random Sampling (RANSAC)

A pair of triples (from P and Q) are enough to determine a rigid transform,

resulting in  O(n>) RANSAC.

Surprisingly, a special set of 4 points, congruent sets, makes the problem

simpler leading to O(n?) !

Co-planar points

remain coplanar a a
d d
_O
C e c e

_ lla—e] lle—ell
N P T2 = Je=a]

b b 4-points Congruent Sets for Robust

Surface Registration, 80

Aiger et al., SIGGRAPH 2008



Method Overview

On the source shape, pick 4 (approx.) coplanar points.

Compute
_ lla—ell - — |d — el
lla — b 27 ld—<

For every pair (g1, q>)of points on the
destination compute

r1 =q1 +7r1(g2 —q1)
p2 =q1 +72(g2 — q1)

Those pairs  (q1,92), (g3,q4) for which Pli4i00) = P2(45,0,) 3T€ 3
good candidate correspondence for (a,b,c,d).

Under mild assumptions the procedure runs in O(n?) time.

4-points Congruent Sets for Robust
Surface Registration, 81
Aiger et al., SIGGRAPH 2008



Method Overview

Can pick a few base points for partial matching.

0 =20 o =4.0

10% 20% 40%

Random sampling and outliers
handles noise

4-points Congruent Sets for Robust
Surface Registration, 82
Aiger et al., SIGGRAPH 2008



Method Overview

Can pick a few base points for partial matching.

Partial matches

4-points Congruent Sets for Robust
Surface Registration, 83
Aiger et al., SIGGRAPH 2008



Global Matching — Approaches

Several classes of approaches:

Exhaustive Search
Normalization

Random Sampling

R A\ =

Invariant Features

84



Global Matching — Invariant Features

Try to characterize the shape using properties that are invariant
under the desired set of transformations.

Conflicting interests — invariance vs. informativeness.

eo
The most common pipeline: ‘ \' \“‘ |
1. identify salient feature points K | |

1

2. compute informative and \
commensurable descriptors.

—

85



Matching Using Feature Points

. Find feature points on the two scans (we’ll come back to that issue)

TR
At
XA
s
R

e A
ALV
=\ ATy

Partially Overlapping Scans | 84



Approach

. (Find feature points on the two scans)

. Establish correspondences

Partially Overlapping Scans

87



Approach

. (Find feature points on the two scans)
. Establish correspondences

. Compute the aligning transformation

LA

i
Al
DA

i
e
e

Partially Overlapping Scans | Aligned Scans 88



Correspondence

Goal:
ldentify when two points on different scans represent the same feature

e
W Y
32




Correspondence

Goal:
|Identify when two points on different scans represent the same feature:

re the surrounding regions similar?

R

iy
WA

90




Correspondence

Goal:

|Identify when two points on different scans represent the same feature:

Are the as similar?




Main Question

How to compare regions on the shape in an invariant manner?

A large variety of descriptors have been suggested.

Spherical Harmonic Heat diffusion
. Local Surface : .
Shape Signature Sionat RIFT descriptor Signature
[Kazhdan et al. 03] |.gna ure [Skelly and Sclaroff 07) [Sun et al. 09]
[Li and Guskov 05]
Point Signatures 3D Shape Context Slippage Features
[Chua & Jarvis 97] [Frome et al. 04] [Bokeloh et al. 08]
| | | Year
| | | ' -
Spin Images 3D Tensor Descriptor | | Multi-scale Scale dependent/
[Johnson 97] [Mian et al. 04] Principal Curvature Invariant features
[Yang et al. 06] [Novatnack & Nishino 08]
Multi-scale [Kalogerakis et al. 07]
Line features HMM Descriptor i
[Pauly et al. 03] [Castellani et al. 08] table by WI” Chang

To give an example, we describe two.
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Spin Images

Creates an image associated

2-D points spin-image

with a neighborhood of a point. Ap L Zomne  sivinas
p p

Compare points by comparing

their spin images (2D).

Given a point and a normal,

every other point is indexed

by two parameters:

B distance to tangent plane

¢ distance to normal line

Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes
Johnson et al, PAMI 99
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Integral Volume Descriptor

Integral invariant signatures, Manay et al. ECCV 2004
Integral Invariants for Robust Geometry Processing, Pottmann et al. 2007-2009

Vi(p) = / dx

Br(p)NS

it
B
e

-

Relation to mean curvature

2 H
Vi(p) = Sr® = 7t 4 00%)

Robust Global Registration, 94
Gelfand et al. 2005



Feature Based Methods

Once we have a feature descriptor, we can find the most unusual one: feature
detection.

Establish correspondences by first finding reliable ones. Propagate the matches

everywhere.

To backtrack use branch-and bound.

Robust Global Registration, 95
Gelfand et al. 2005



Method Taxonomy

Local vs. Global

refinement (e.g. ICP) | alignment (search)

Rigid vs. Deformable

rotation, translation | general deformation

Pair vs. Collection

two shapes | multiple shapes

26



Conclusion

C Shape matching is an active area of research.

© Local rigid matching works well. Many approaches to global
matching. Works well, depending on the domain.

© Non-rigid matching is much harder. Isometric deformation
model is common and useful, but limiting.

C Research problems: other deformation models, consistent
matching with many shapes, robust deformable matching.
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