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Registration and Matching



3D Point Cloud Processing
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3D Acquisition Pipeline



3D Point Cloud Processing
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This lecture

Registration

registered 
point clouds!



Registration Pipeline
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Steps:

1. Initial registration
2. Pairwise refinement
3. Global relaxation to 

distribute error 
4. Generation of surface

Source: Rusinkiewicz et al.
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4. Generation of surface 



Fundamental Registration Problem
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Given two shapes with partially overlapping geometry, find an alignment 
between them  



Measuring Success: Shape Distances

Given two shapes A and B, we are interested in defining a 
distance or (dis-)similarity measure under a transform T

Such measures are crucial in shape similarity search, shape 
classification, etc. 

As another example, shape registration
and matching is very important in modern 
structural biology

Human (red)  and fly (yellow) thierodoxins, compared

[extrinsic]
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• We are all familiar with function norms (L2, etc.). The 
common parametrization establishes 
correspondences. We don’t have that for structures 
or shapes.

• Partial matches need to be considered  -- notion of 
support σ for the match.

• What group of aligning transforms is to be 
considered?

• Is the resulting distance a metric?
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Issues about Distance Metrics
f

g

Not for 
partial matches



• We are given two shapes A and B, each in its own 
coordinate system

• We must establish correspondences between certain 
parts (the alignment supports) of A and B

• We must find an optimal transform that best aligns the 
supports of A and B

• We must score this choice of supports and transform to 
produce a distance measure δ

13

Simultaneous Estimation

In computing the score, how do we
1. aggregate distances?
2. trade-off larger supports for larger aggregate distance?



• Transform estimation
• A rigid motion has 6 degrees of freedom (3 for translation and 3 for rotation)
• We typically estimate the motion using many more pairs of corresponding points, so the problem is 

overdetermined (which is good, given noise, outliers, etc – use least squares approaches)
• More general transforms require more degrees of freedom. When shape deformations are allowed, the 

degrees of freedom can grow very rapidly
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Degrees of Freedom



Other Applications of Alignments
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Manufacturing / Quality Control:
One shape is a model and the other is a scan of a 
product. Useful for finding defects.

Medicine:
Finding correspondences between 3D MRI scans of the 

same person to diagnose or monitor disease.

Animation Reconstruction & 3D Video.

Statistical Shape Analysis:
Building models for a collection of shapes.



Applications – Statistical Shape Analysis
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Scan many people. Learn a
deformation model (e.g. PCA).

Find the principal variation modes;
create new random instances.
Requires alignment.

A Statistical Model of Human Pose and Body Shape ,
Hasler et al. Eurographics 09

female, 1.6 m, 65kg



Method Taxonomy
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Local vs. Global
refinement (e.g. ICP)  |  alignment  (search)   . .

Rigid vs. Deformable
rotation, translation  |  general deformation.

Pair vs. Collection
two shapes  |  multiple shapes 



Method Taxonomy
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Local vs. Global
refinement (e.g. ICP)  |  alignment  (search)   . .

Rigid vs. Deformable
rotation, translation  |  general deformation.

Pair vs. Collection
two shapes  |  multiple shapes 

Today



Local Rigid Alignment
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Local Rigid Alignment

• Simplest instance of the registration problem

Given two shapes that are approximately aligned (e.g. by a human, or 
via prior knowledge) we want to find the optimal rigid transformation 
that brings them into correspondence.

20



• What does it mean for an alignment to be good?

Local Rigid Alignment

21

Intuition: we want “corresponding points” to be close after transformation.

Problems
1. We don’t know what points correspond.
2. We don’t know the optimal alignment. 



How to Get Correspondences?

A chicken-and-egg problem: if we knew the optimal aligning 
transform, then we could get correspondences by proximity
(possibly with the aid of some global adjustment, e.g., dynamic 
programming)

Transform Correspondences

Guess one, estimate the other, and iterate!

Correspondences from proximity (Iterated Closest Pair)

Correspondences from local shape descriptors (Shape Features)

Transform from voting schemes (Geometric Hashing)

Combinations

EM like

22



• Approach: iterate between finding correspondences and finding the 
transformation:

Iterative Closest Point (ICP)
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:
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Iterative Closest Point

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .

2. Find rigid motion          minimizing:
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Given a pair of shapes, X and Y, iterate:
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• Approach: iterate between finding correspondences and finding the 
transformation:

Iterative Closest Point
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .

2. Find rigid motion          minimizing:



• Requires two main computations:

Iterative Closest Point
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1. Computing nearest neighbors

2. Computing the optimal transformation 



ICP: Nearest Neighbor Computation
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Closest points

o How to find closest points efficiently?

o Straightforward complexity:                                

o number of points on      ,       number of points on     .     

o More sophisticated:       divides the space into Voronoi cells

o Given a query point     , determine to which cell it belongs.



Closest Points: Voronoi Cells  (→CS268)

34Source: 
M. Bronstein

Computational
Geometry



Closest Points: Voronoi Cells

35

Approximate nearest neighbors

o To reduce search complexity, approximate Voronoi cells.

o Use binary space partition trees (e.g. kd-trees or octrees).

o Approximate nearest neighbor search complexity:                             .

M. Bronstein



ICP: Optimal Transformation
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Problem Formulation:

1. Given two sets points:                                           in      .          Find the rigid transform:                

that minimizes:



• We are given two sets of corresponding points x1, x2, ..., xn and y1, y2, ..., yn in ℜ3. We wish to compute the 
rigid transform T that best aligns x1 to y1, x2 to y2, ..., and xn to yn.

• We define the error to be minimized by
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Simplest Case: Rigid Alignment, Given Correspondences

• Old Problem:
• Known and solved as the orthogonal 

Procrustes problem in Factor Analysis 
(Statistics) [Shönemann, 1966]

• Known and solved as the absolute 
orientation problem in Photogrammetry 
[Horn, 1986]

• Also in robotics, graphics, medical 
image analysis, statistical theories of 
shape, etc ...

MSE error, RMS distance, …



• A rigid motion T is a combination of a translation a and a rotation R, so that T(x) = R(x) + a.

• The quantity to be minimized is:

SVD-Based Solution

38

The unknowns



• A rigid motion T is a combination of a translation a and a rotation R, so that T(x) = R(x) + a.

• If we place the origin of our coordinate system at the mean of the xi’s, then the quantity to be minimized 
simplifies to (up to some constants):

• Note that the translational and rotational parts separate. The translational part a can easily be seen to be 
optimized by

SVD-Based Solution

The centroids of the two
point sets have to be
aligned!

T R



• Define

• Here X and Y are 3 by n matrices.
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The Rotation Part via SVD

• Now compute the SVD*

• U and V are 3 by 3 orthogonal matrices, 
and D is a diagonal matrix with 
decreasing non-negative entries along 
the diagonal (the singular values).

• Define S by

• Then

*SVD = singular value decomposition

X YT

O(n) algorithm!

3x3



ICP: Optimal Transformation
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Problem Formulation:

1. Given two sets points:                                            in      .   Find the rigid transform:                      

that minimizes:

2. Closed form solution:

1. Construct: ,   where

2. Compute the SVD of C: 

1. If

2. Else  

3. Set

Note that C is a 3x3 matrix. SVD is very fast. Arun et al., Least-Squares Fitting of 
Two 3-D Point Sets



Iterative Closest Point
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor              .
2. Find rigid motion          minimizing:

Convergence: 
• at each iteration                                 decreases. 
• Converges to local minimum
• Good initial guess: global minimum.

[Besl&McKay92]



Variations of ICP
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1. Selecting source points (from one or both scans): sampling 

2. Matching to points in the other mesh

3. Weighting the correspondences

4. Rejecting certain (outlier) point pairs 

5. Assigning an error metric to the current transform 

6. Minimizing the error metric w.r.t. the transformation 



Iterative Closest Point
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:



Iterative Closest Point
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Problem: 
uneven sampling

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:



Solution: 
Minimize distance to   
the tangent plane

Iterative Closest Point
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Chen, Medioni, ’91
[non-linear least squares]

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:



Iterative Closest Point
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Kok-Lim Low, ’04
[linear least squares]

Solution: 
Minimize distance to   
the tangent plane

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:



Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:

Iterative Closest Point
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Question:
How to minimize the error?

Challenge:
Although the error is quadratic (linear derivative), the space of 
rotation matrices is not linear.

Problem:
No closed form solution.



Iterative Closest Point
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Common Approach:
Linearize rotation. Assume rotation angle is small.

: axis,       
: angle of rotation. 

Note: follows from Rodrigues’s formula formula

and first order approximations: 

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:



Iterative Closest Point
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Setting: and leads to a 6x6 linear system

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion         minimizing:



Iterative Closest Point
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Aligning the bunny to itself:
Point-to-plane always wins in the end-game.



Distance Fields for 
Registration
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“Gravitational” Potential

53Robot motion planning via potential fields



• Given two related shapes, the “data” A and the “model” B, create a 
potential field that pulls B to the correct alignment with A

• Key tasks
• Define the potential field
• Formulate the optimization problem
• Do gradient descent using approximate linearization
• Iterative approach

“Gravitational” Potential

54



Squared Distance Function (F)

x

2d),( =ΦPxF

d
PΦ

Typically A is a point cloud

We want to approximate the
squared distance function to
the underlying object



Approximate Squared Distance

Aim for 2nd order approximation, because we want to 
take derivatives.

)F(x, PΦ valid in the neighborhood of x



Pairwise Rigid Correspondence
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Geometry of the square distance function

[Pottmann and Hofer 2003]

For a curve Ψ,
around point    . 

Ψ

in the Frenet frame at p

1x

2x

To second order: 



Approximate Squared Distance
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[Pottmann and Hofer 2003]

For a curve Ψ, to second order:

For a surface Φ, to second order:

and                             are inverse principal curvatures



Approximate Squared Distance
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For a surface Φ, to second order:

Note that as

and                            are inverse principal curvatures

point-to-point

point-to-plane



• ICP without correspondences
• define a quadratic approximant to the square distance function

• perform iterative gradient-descent in this field
• point to foot-point distance

• case d is large: classical ICP
• case d is small: point-to-plane ICP

60

ICP Without Correspondences

[Pottman & Hofer, 02]

curvature



d2(y, ΦP) Using d2 Tree
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Partition the space into cells where each cell stores a 
quadratic approximant of the squared distance function.

2D

3D

Leopoldseder S et al.  d2-tree: A hierarchical 
representation of the squared distance function



Registration Using d2 Tree
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Build using bottom-up approach: fit a quadratic 
approximation to a fine grid.

Merge cells if they have similar approximations.

Funnel of convergence:

Translation in x-z plane. Rotation 
about y-axis.

Converges

Does not 
converge



Matching the Bunny to Itself
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point-to-plane d2Tree

Registration of Point Cloud Data from a 
Geometric Optimization Perspective

Mitra et al., SGP 2004



Matching the Bunny to Itself
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Registration of Point Cloud Data from a 
Geometric Optimization Perspective

Mitra et al., SGP 2004

Well-aligned Noisy, far away



Local Rigid Matching – ICP
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The upshot is that

Locally, the point-to-plane metric provides a second order 
approximation to the squared distance function.

Optimization based on point-to-plane will converge 
quadratically to a local minimum.

Convergence funnel can be narrow, but can improve it with 
either d2tree or point-to-point.

What if we are outside the convergence funnel? 



Global Matching
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Global Matching
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Given shapes in arbitrary positions, find their alignment:

Can be approximate, since will refine later using e.g. ICP

Robust Global Registration
Gelfand et al. SGP 2005 



Global Matching – Approaches

68

Several classes of approaches:
1. Exhaustive Search

2. Normalization (PCA)

3. Random Sampling (RANSAC)

4. Invariant Features



Compare (ideally) all alignments
• Sample the space of possible initial alignments. 
• Correspondence is determined by the alignment at which models are 

closest.

Exhaustive Search:

69Very common in biology: e.g., protein docking

angle

ICP
result



Compare at all alignments
• Sample the space of possible initial alignments
• Correspondence is determined by the alignment at which models are 

closest

• Provides optimal result
• Can be unnecessarily slow
• Does not generalize to non-rigid deformations

Exhaustive Search:

70



There are only a handful of initial configurations
that are important. 

Can center all shapes at the origin and use PCA to find the principal directions of 
the shape.

In addition sometimes try all permutations of x-y-z.

Normalization – Canonical Poses

71
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PCA-Based Alignment

Use PCA to place models into canonical 
coordinate frames
Then align those frames

Covariance 
matrix computation

Principal axes 
alignment



There are only a handful of initial configurations
that are important. 

Works well if we have complete shapes and no noise.

Fails for partial scans, outliers, high noise, etc.

Normalization – Canonical Poses

73
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Problems with PCA

Principal axes are not consistently 
oriented

Axes are unstable when principal 
values are similar

Partial similarity



ICP only needs 3 point pairs!

Robust and simple approach. Iterate between: 
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Random Sampling (RANSAC)

75

Guess and 
verify
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Guess and 
verify
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1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Random Sampling (RANSAC)
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Guess and 
verify
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Guess and 
verify



Random Sampling (RANSAC)

ICP only needs 3 point pairs!

Robust and simple approach. Iterate between: 
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Guess and 
verify

Can also refine the final 
result. Picks don’t have 
to be exact.

79



A pair of triples (from P and Q) are enough to determine a rigid transform, 

resulting in RANSAC. 

Surprisingly, a special set of 4 points, congruent sets, makes the problem 

simpler leading to               !

Random Sampling (RANSAC)

80

Co-planar points 
remain coplanar

4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008



On the source shape, pick 4 (approx.) coplanar points.

Method Overview

81
4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008

Compute 

For every pair        of points on the 
destination compute 

Those pairs , for which are a 
good candidate correspondence for                   .

Under mild assumptions the procedure runs in time.



Can pick a few base points for partial matching.

Method Overview
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4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008

and outliersRandom sampling 
handles noise



Can pick a few base points for partial matching.

Method Overview
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4-points Congruent Sets for Robust 
Surface Registration, 
Aiger et al., SIGGRAPH 2008

Partial matches



Global Matching – Approaches
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Several classes of approaches:
1. Exhaustive Search

2. Normalization

3. Random Sampling

4. Invariant Features



Global Matching – Invariant Features
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Try to characterize the shape using properties that are invariant 
under the desired set of transformations.

Conflicting interests – invariance vs. informativeness. 

The most common pipeline: 
1. identify salient feature points
2. compute informative and

commensurable descriptors.



1. Find feature points on the two scans (we’ll come back to that issue)

Matching Using Feature Points

86Partially Overlapping Scans



1. (Find feature points on the two scans)
2. Establish correspondences

Approach

87Partially Overlapping Scans



1. (Find feature points on the two scans)
2. Establish correspondences
3. Compute the aligning transformation

Approach

88
Aligned ScansPartially Overlapping Scans



Correspondence

Goal:
Identify when two points on different scans represent the same feature

?

89



Goal:
Identify when two points on different scans represent the same feature:

Are the surrounding regions similar?

Correspondence

90

?



Goal:
Identify when two points on different scans represent the same feature:

Are the surrounding regions similar?

Correspondence

91

?



How to compare regions on the shape in an invariant manner? 

A large variety of descriptors have been suggested.

To give an example,  we describe two.

Main Question

92

table by Will Chang



Creates an image associated
with a neighborhood of a point.

Compare points by comparing
their spin images (2D).

Given a point and a normal, 
every other point is indexed
by two parameters:

distance to tangent plane
distance to normal line

Spin Images

93

Using Spin Images for Efficient Object 
Recognition in Cluttered 3D Scenes 
Johnson et al, PAMI 99



Integral Volume Descriptor

94

Integral invariant signatures, Manay et al. ECCV 2004
Integral Invariants for Robust Geometry Processing,  Pottmann et al. 2007-2009

Robust Global Registration,  
Gelfand et al. 2005



Once we have a feature descriptor, we can find the most unusual one: feature 
detection.

Establish correspondences by first finding reliable ones. Propagate the matches 

everywhere. 

To backtrack use branch-and bound.

Feature Based Methods

95Robust Global Registration,  
Gelfand et al. 2005



Method Taxonomy

96

Local vs. Global
refinement (e.g. ICP)  |  alignment  (search)   . .

Rigid vs. Deformable
rotation, translation  |  general deformation.

Pair vs. Collection
two shapes  |  multiple shapes 



Conclusion

Shape matching is an active area of research.

Local rigid matching works well. Many approaches to global 
matching. Works well, depending on the domain.

Non-rigid matching is much harder. Isometric deformation 
model is common and useful, but limiting.

Research problems: other deformation models, consistent 
matching with many shapes, robust deformable matching.
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