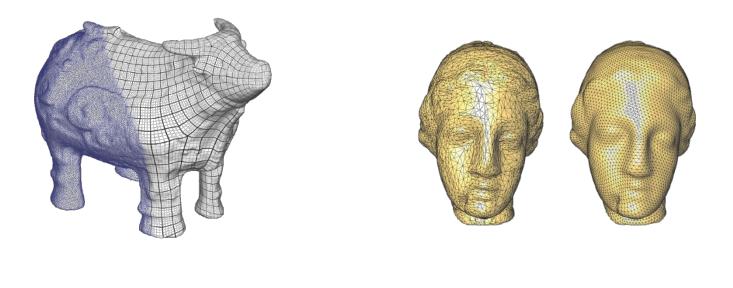
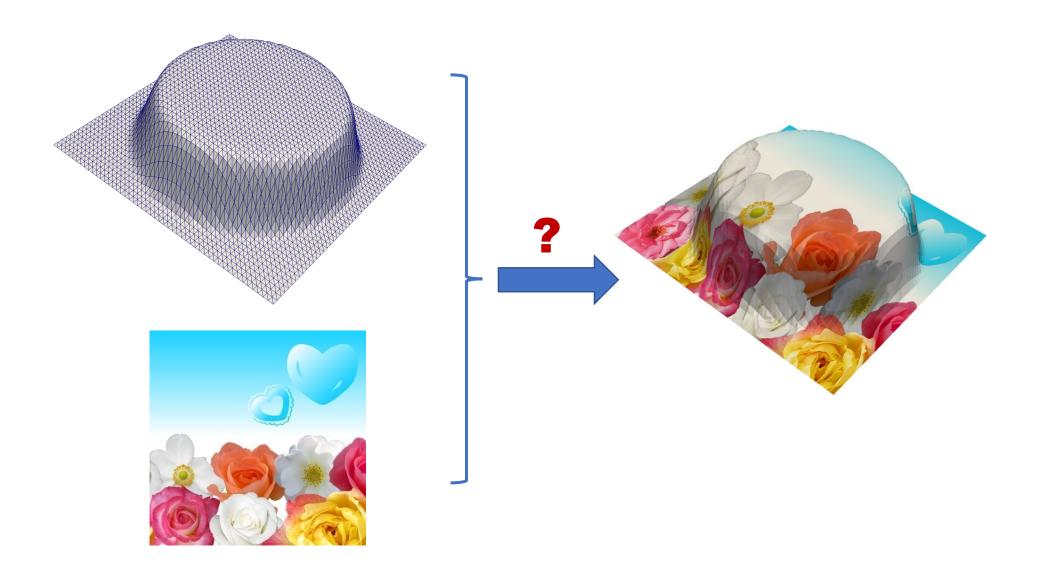
CS348a: Computer Graphics --Geometric Modeling and Processing



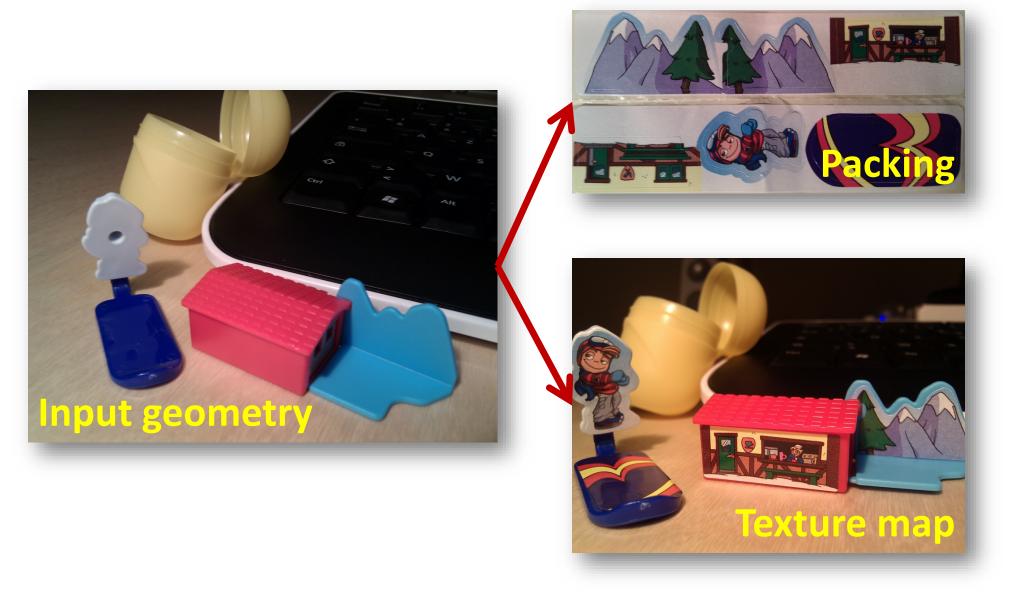
Leonidas Guibas Computer Science Department Stanford University

Leonidas Guibas Laboratory

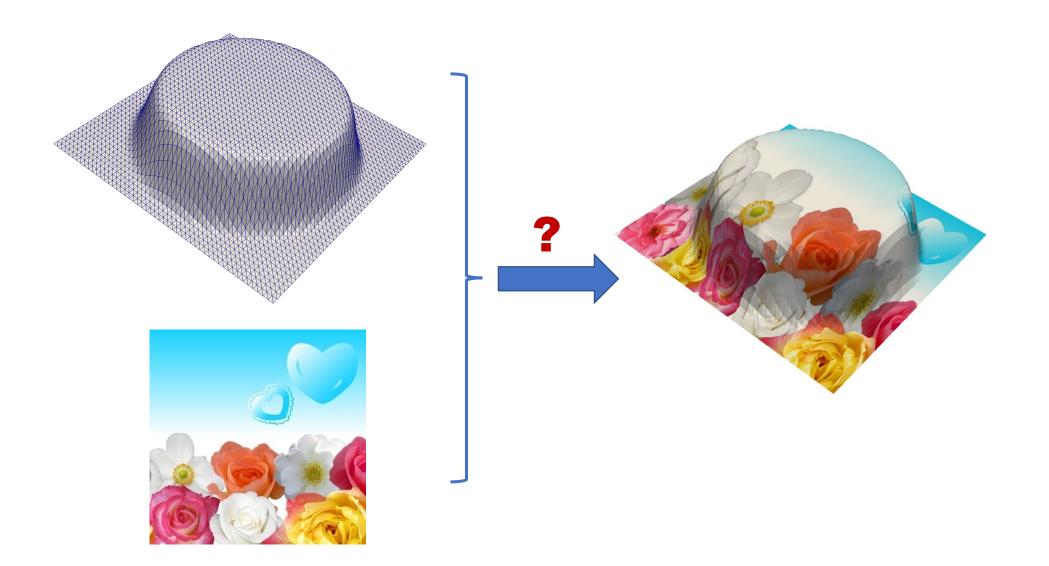
Parametrization



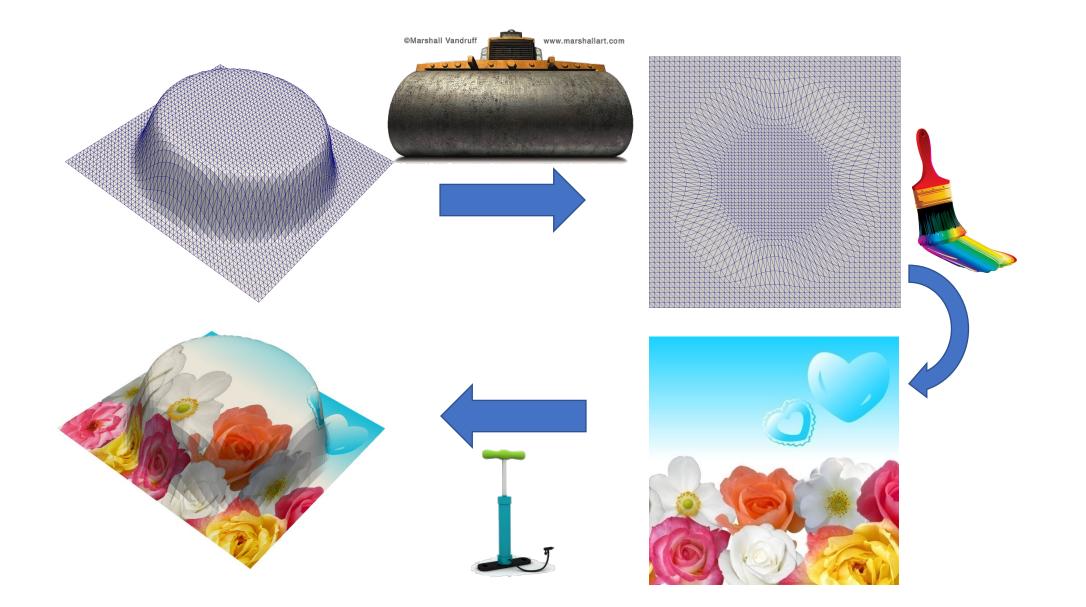
The Basic Problem



The Basic Problem

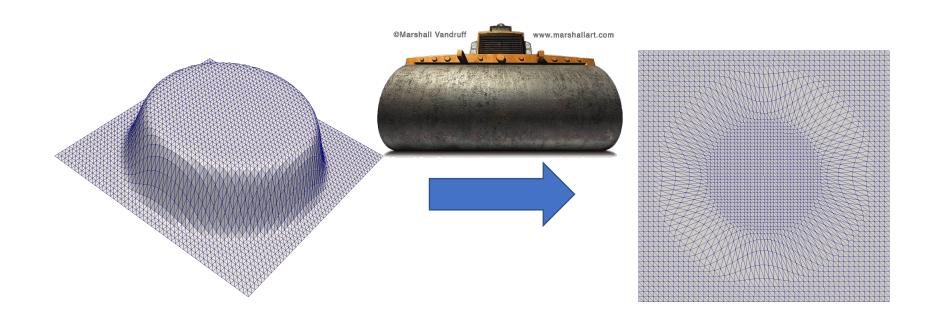


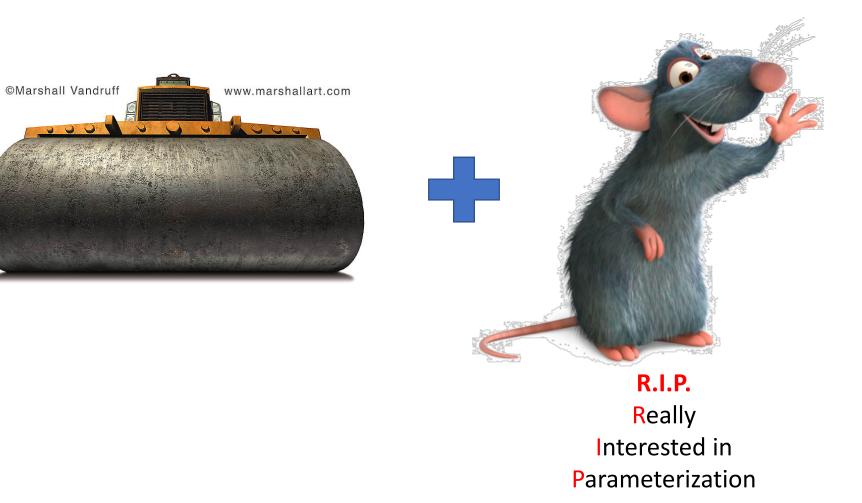
Solution

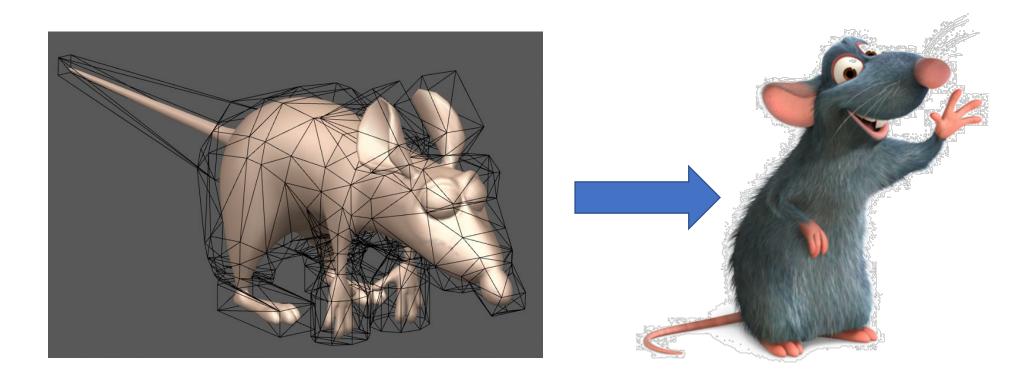


Flattening Surfaces

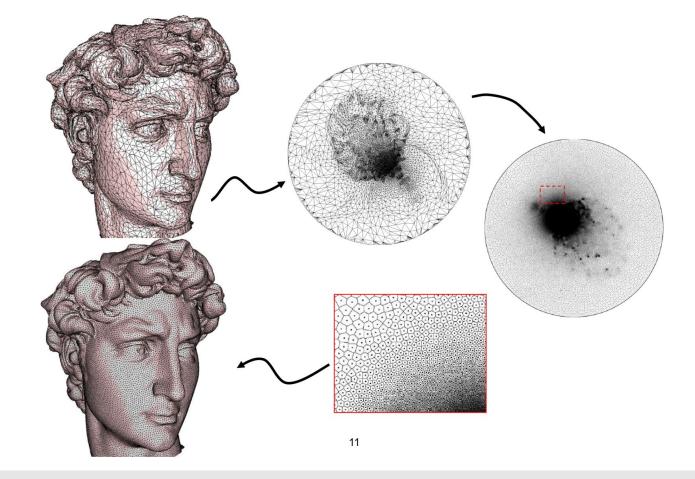
Parameterization is ...



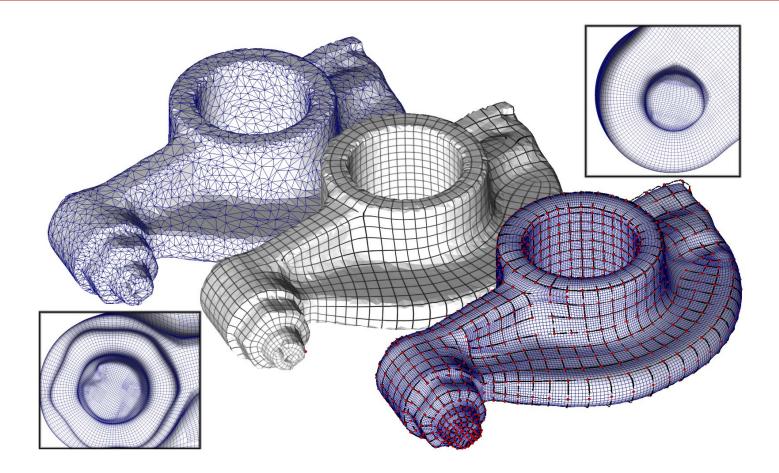




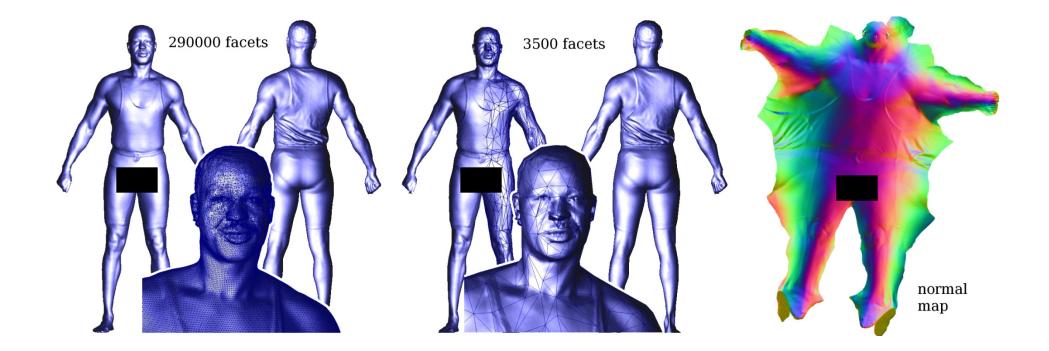
Texture Mapping



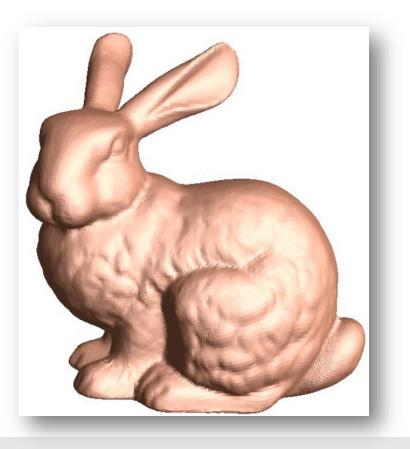
Remeshing



Alternative Representations



Simplification



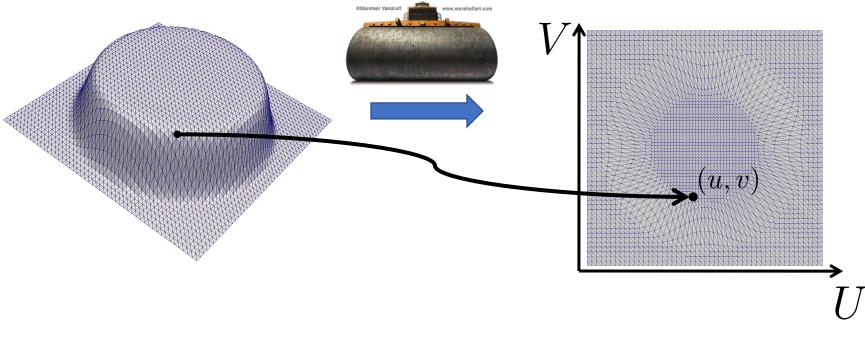
Compression

Gu, Gortler, Hoppe. Geometry Images. SIGGRAPH 2002

Outline

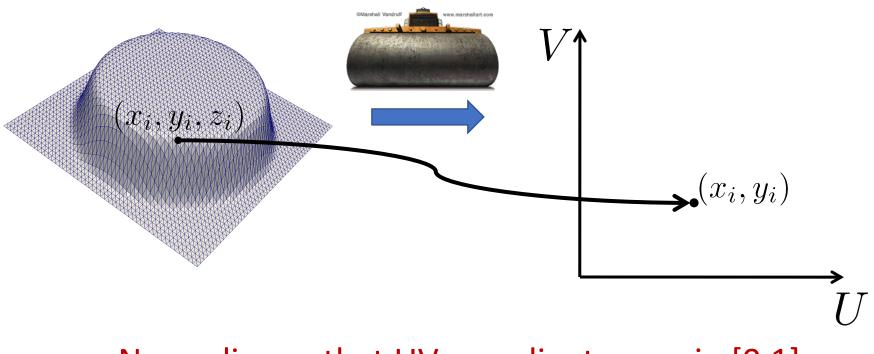
- Introduction
- Naïve approach and demonstration
- Distortion and desirable properties
- Fixed boundary: Harmonic parameterization
- Free-boundary: Eigenmap

UV-Coordinates



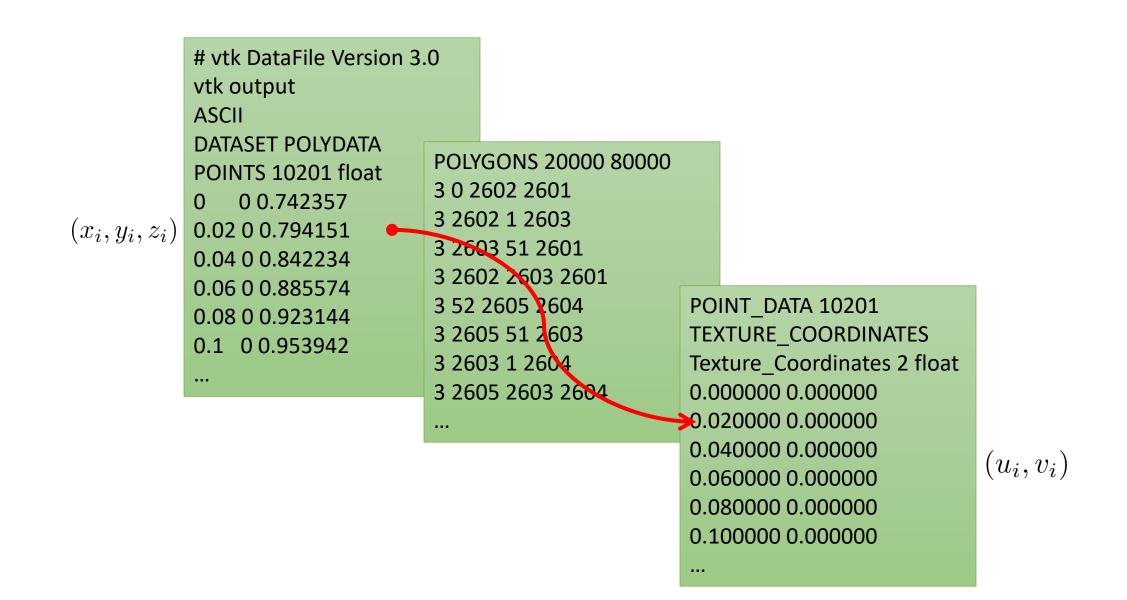
For every mesh vertex determine its (u,v) coordinates "Texture Coordinates"

Naïve Approach

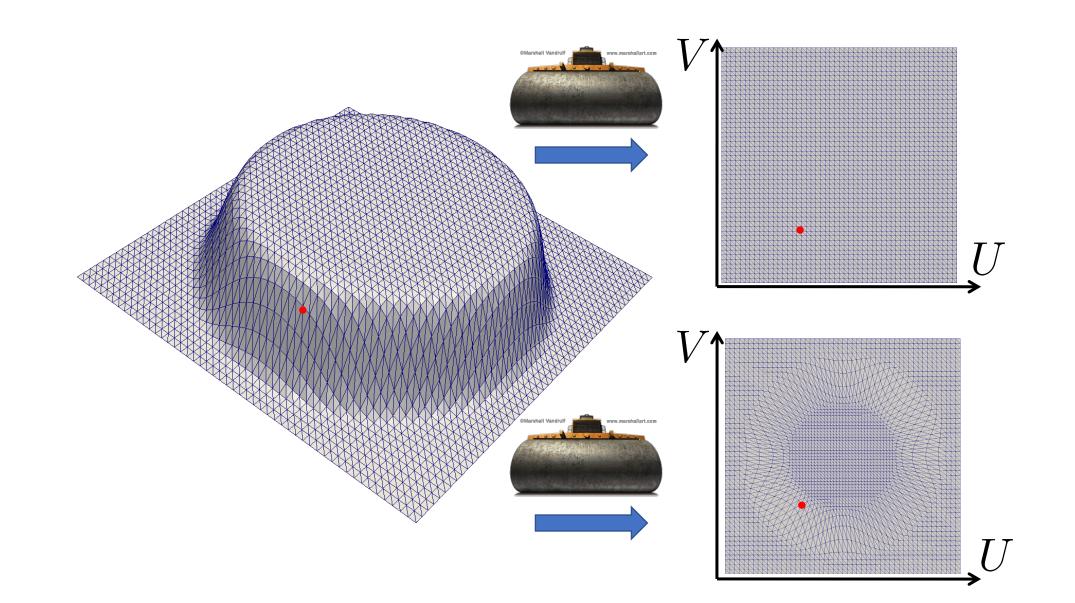


Normalize so that UV-coordinates are in [0,1]

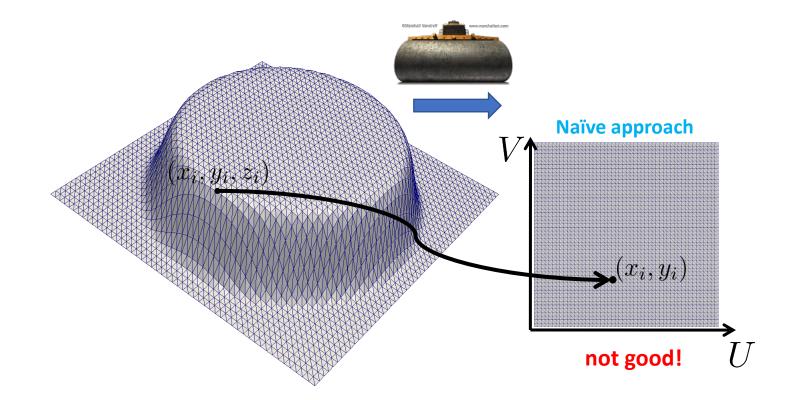
Look inside: VTK file format



Which is Better?



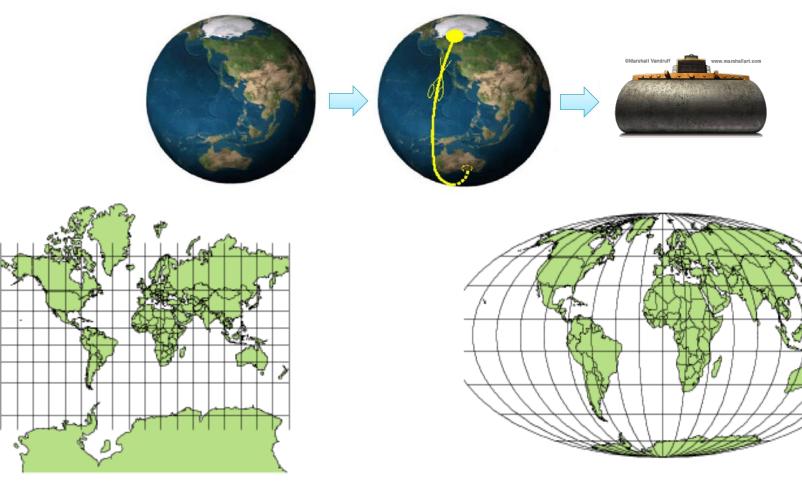
Main Issue: Distortion



Triangle shapes (angles) and sizes (area) are not preserved!

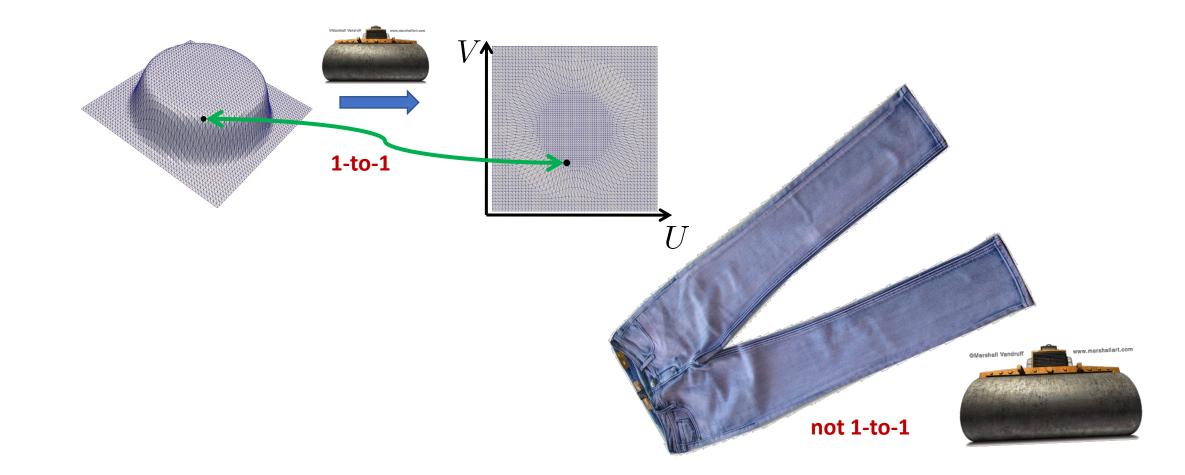
Preserve shape & size = Triangle congruence (aka isometry)

An Old Problem: Maps

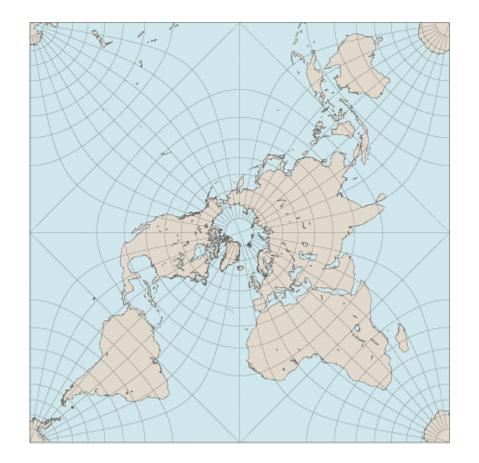


Mercator-Projektion

Mollweide-Projektion



Bijective: no fold overs



Conformal: Preserves angles

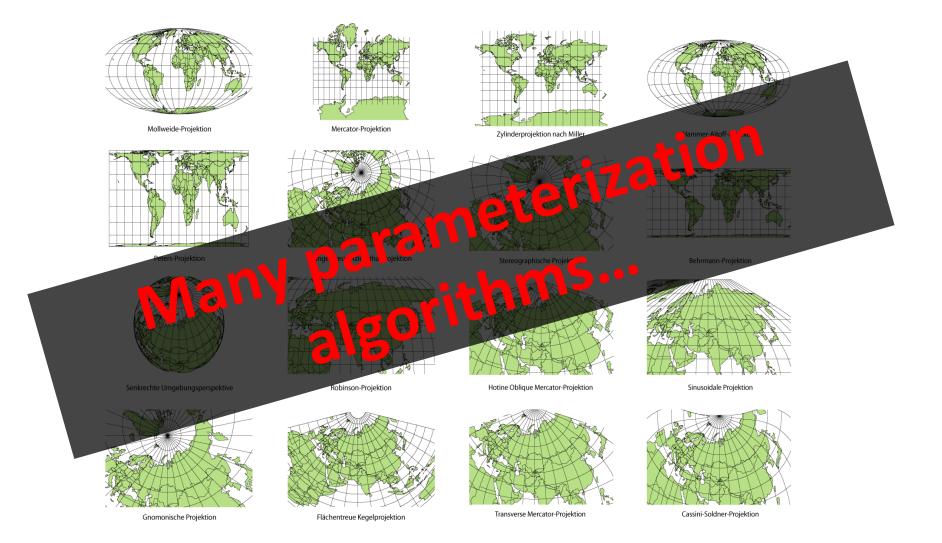
Equiareal: Preserves areas

http://en.wikipedia.org/wiki/Bonne_projection

Isometric: conformal and equiareal

Very few surfaces can be mapped **isometrically** to the plane.

Reason for so Many Types of Maps



Outline

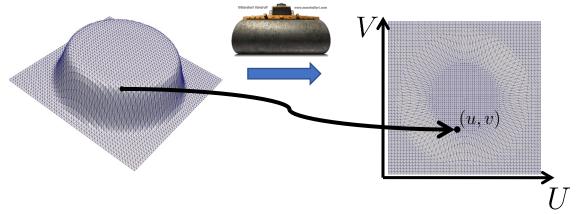
- Introduction
- Naïve approach and demonstration
- Distortion and desirable properties
- Fixed boundary: Harmonic parameterization
- Free-boundary: Eigenmap

Tutte's Theorem

 If the (u,v) coordinates at the boundary lie on a convex polygon, and if coordinates of the internal vertices are convex combination of their neighbors, then these (u,v) coordinates give a valid (bijective) parameterization.

- Convex combination = center of mass
- Can have different masses at different vertices
- Masses should be positive

Simple Realization



Goal: Assign (*u*,*v*) coordinate to each mesh vertex.

- 1. Fix (u,v) coordinates of boundary.
- 2. Want interior vertices to be at the center of mass of neighbors:

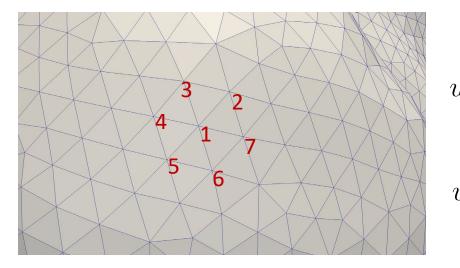
$$u_i = \frac{1}{|N(i)|} \sum_{j \in N(i)} u_j \qquad v_i = \frac{1}{|N(i)|} \sum_{j \in N(i)} v_j$$

Algorithm

- 1. Fix (u,v) coordinates of boundary.
- 2. Initialize (u,v) of interior points (e.g. using naïve).
- 3. While not converged: for each interior vertex, set:

$$u_i \leftarrow \frac{1}{|N(i)|} \sum_{j \in N(i)} u_j$$

$$v_i \leftarrow \frac{1}{|N(i)|} \sum_{j \in N(i)} v_j$$

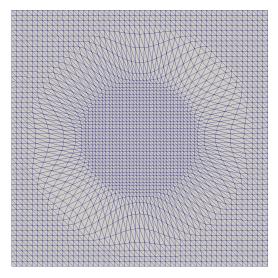


$$u_1 \leftarrow \frac{u_2 + u_3 + u_4 + u_5 + u_6 + u_7}{6}$$

$$v_1 \leftarrow \frac{v_2 + v_3 + v_4 + v_5 + v_6 + v_7}{6}$$

What do you think?

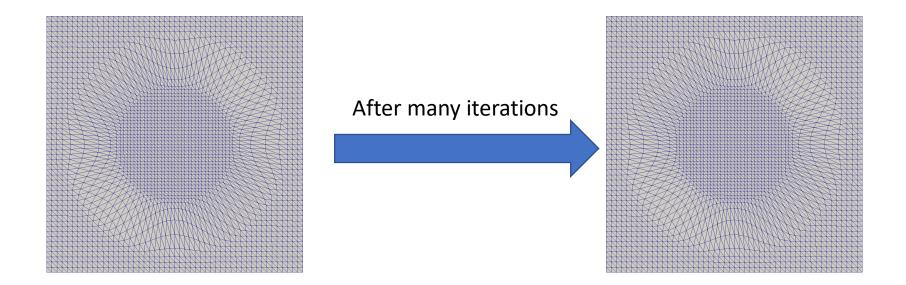
What do you think?



Some random planar mesh

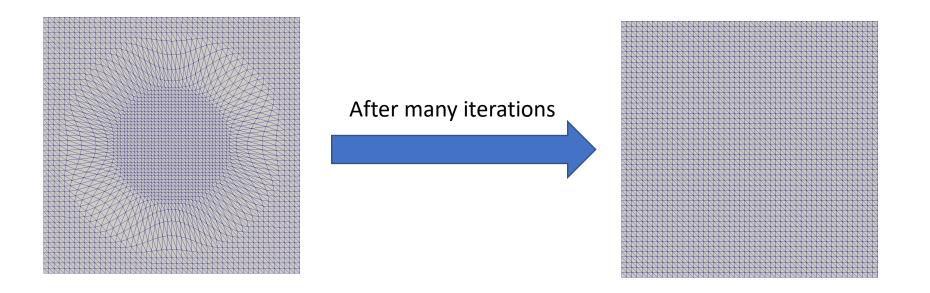
After many iterations

Expectation



It is already planar: best parameterization = itself

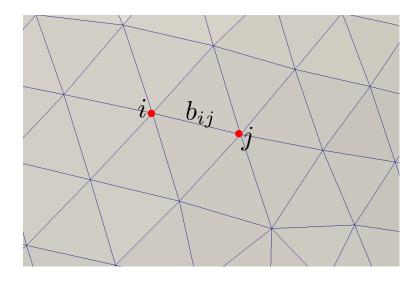
Reality... Why? How to Avoid?



Converges to a somewhat uniform grid!

Triangle shapes and sizes are not preserved!

Algorithm with Weights



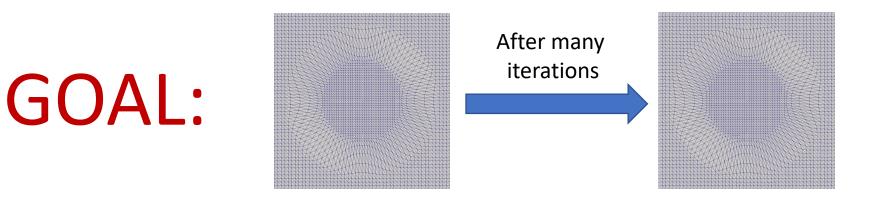
Introduce weights to capture geometric information:

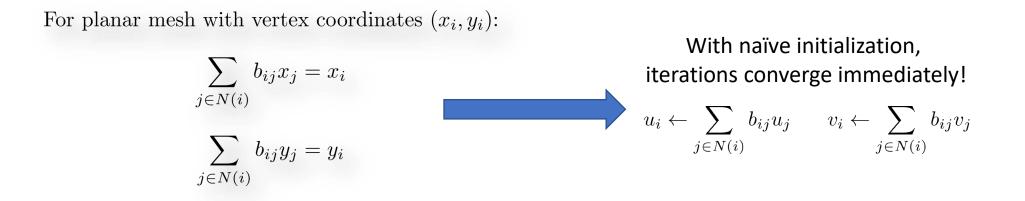
- 1. Fix (*u*,*v*) coordinates of boundary.
- 2. Initialize (u,v) of interior points (e.g. using naïve).
- 3. While not converged: for each interior vertex, set:

$$u_i \leftarrow \sum_{j \in N(i)} b_{ij} u_j \qquad \qquad v_i$$

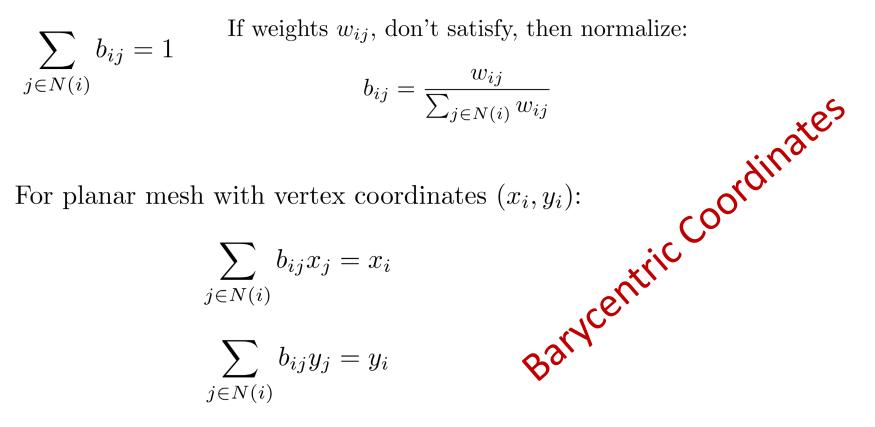
$$v_i \leftarrow \sum_{j \in N(i)} b_{ij} v_j$$

Weight Properties





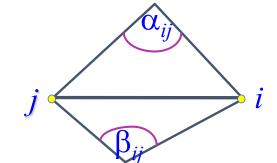
Weight Properties



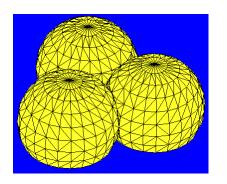
For Tutte's theorem to hold, $b_{ij} > 0$

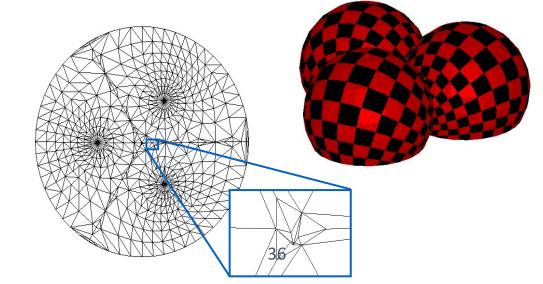
Harmonic Weights

$$w_{_{ij}} = rac{\cot(lpha_{_{ij}}) + \cot(eta_{_{ij}})}{2}$$



- Weights can be negative not always bijective
- Weights depend only on angles close to conformal
- 2D reproducible

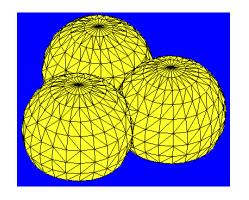


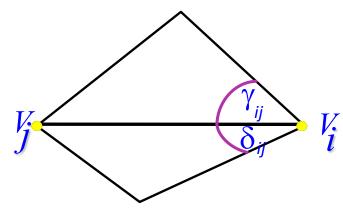


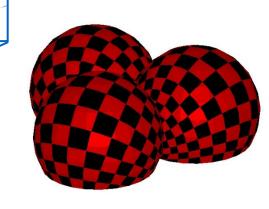
Mean-Value Weights

$$w_{ij} = \frac{\tan(\gamma_{ij} / 2) + \tan(\delta_{ij} / 2)}{2 ||V_i - V_j||}$$

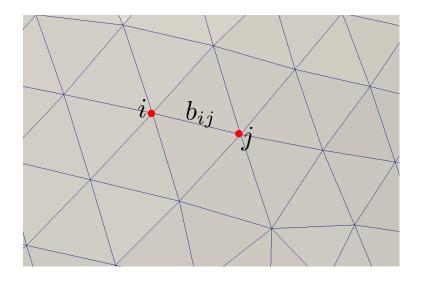
- Result visually similar to harmonic
- No negative weights always bijective
- 2D reproducible







Recap: Algorithm with Weights



0. Pick some kind of barycentric coordinates as weights to capture geometric information.

- 1. Fix (u,v) coordinates of boundary.
- 2. Initialize (u,v) of interior points (e.g. using naïve).
- 3. While not converged: for each interior vertex, set:

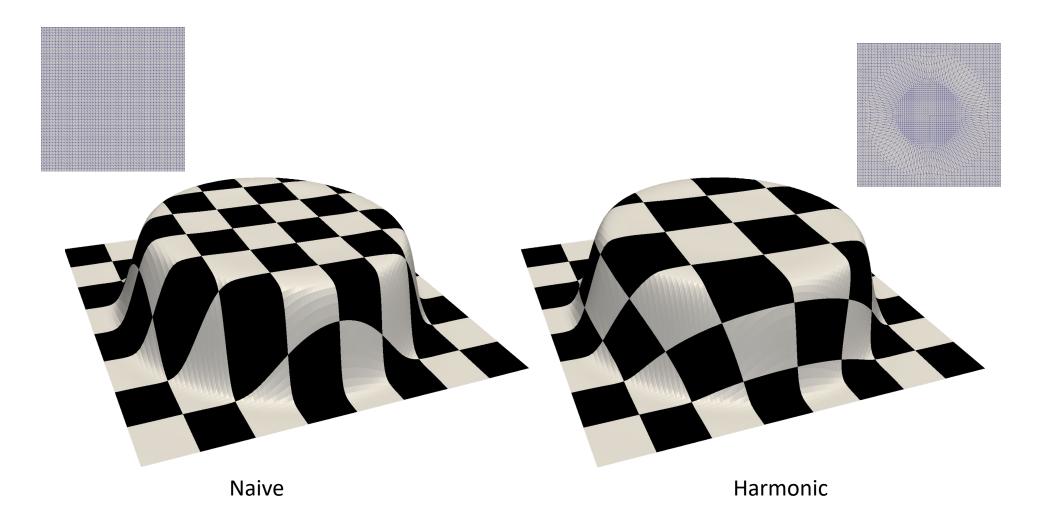
$$u_i \leftarrow \sum_{j \in N(i)} b_{ij} u_j \qquad \qquad v_i \leftarrow$$

$$_{i} \leftarrow \sum_{j \in N(i)} b_{ij} v_{j}$$

Implementation Note & Results

- Iterative algorithm = **Gauss-Seidel** for Ax = b
- Can solve Ax = b at once, "without" iterating!

Results



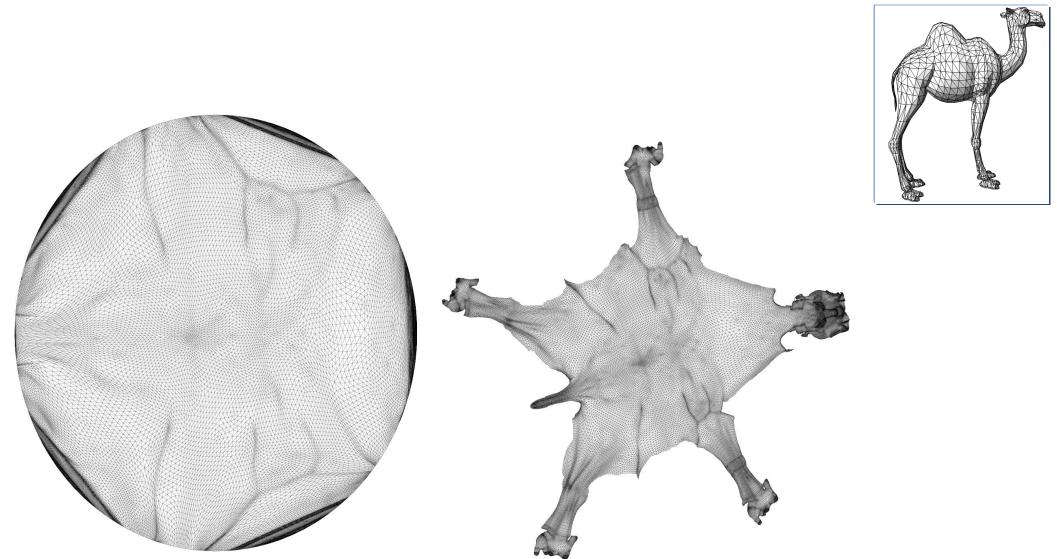
Outline

- Introduction
- Naïve approach and demonstration
- Distortion and desirable properties
- Fixed boundary: Harmonic parameterization
- Free-boundary: Eigenmap

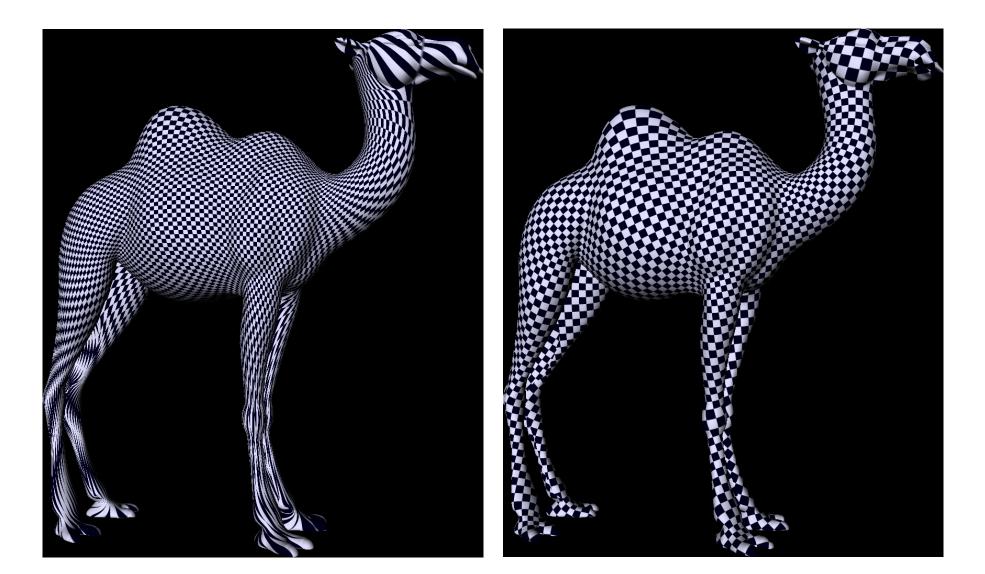
Non-Convex Boundary

• Requiring convex boundary results in significant distortion • "Free" boundary is better

Fixed vs Free Boundary



Fixed vs Free Boundary



Old Algorithm

- 1. Fix (*u*,*v*) coordinates of boundary.
- 2. Initialize (u,v) of interior points (e.g. using naïve).
- 3. While not converged: for each interior vertex, set:

$$u_i \leftarrow \sum_{j \in N(i)} b_{ij} u_j \qquad \qquad v_i \leftarrow \sum_{j \in N(i)} b_{ij} v_j$$

Old Algorithm

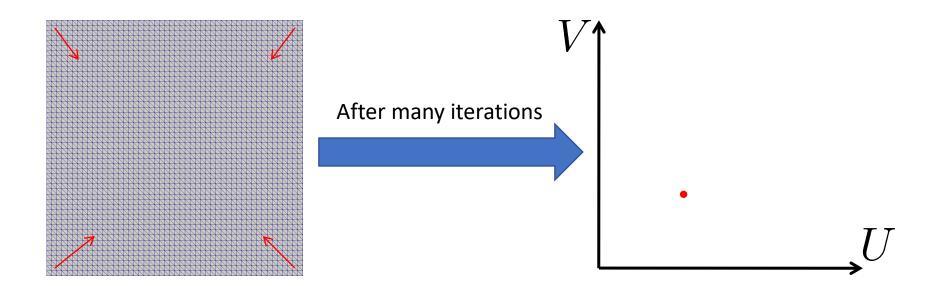
- 1. Initialize (u,v) of all points (e.g. using naïve).
- 2. While not converged: for each vertex, set:

$$u_i \leftarrow \sum_{j \in N(i)} b_{ij} u_j \qquad \qquad v_i \leftarrow \sum_{j \in N(i)} b_{ij} v_j$$

Why this would be problematic? How to fix this?

Problem

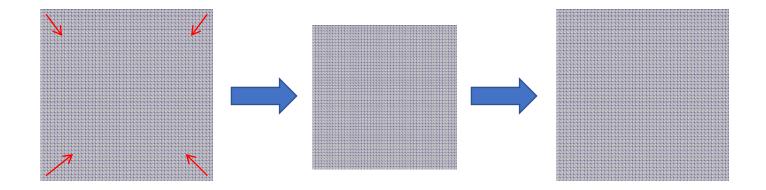
- Boundary vertices are pulled towards interior
- Shrinkage happens
- Collapse to a single point!



How to Fix this?

• Un-shrink at every iteration:

- Move the center of mass at origin of UV-plane
- Rescale in U direction to make std. deviation = 1
- Rescale in V direction to make std. deviation = 1
- Make sure covariance between U and V = 0
 - Subtract an appropriate multiple of U from V.



Initialize (u,v) for all vertices (e.g. using naïve) While not converged: For several times: For each vertex, set: $u_i \leftarrow \sum_{j \in N(i)} b_{ij} u_j \quad v_i \leftarrow \sum_{j \in N(i)} b_{ij} v_j$

End For

End For

Un-shrink

End While

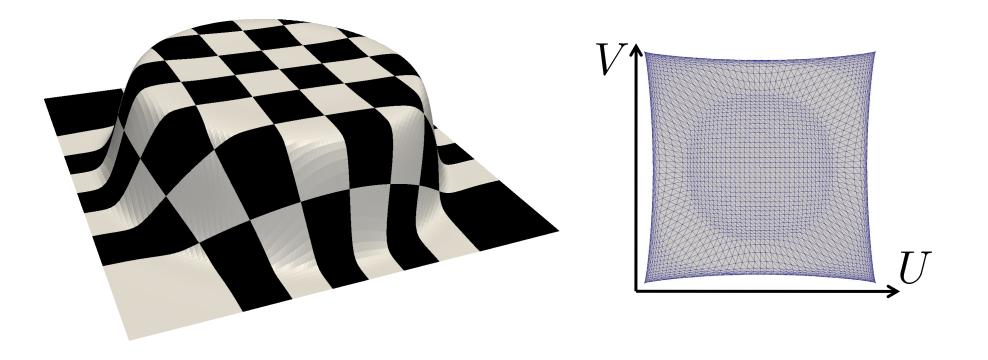
• Equivalent to inverse power iteration for solving an eigenvalue/eigenvector problem of type

$$Ax = \lambda x$$

- Pick the smallest two non-constant eigenvectors.
 Call these
- Set (u,v) coordinates as: $x^{(1)}, x^{(2)}$

$$u_i = x_i^{(1)}$$
 $v_i = x_i^{(2)}$

Eigenmap result



Connection Between Methods

- Fixed boundary, solve Ax=b
- Free boundary, solve Ax =0...
 - Problem: then solution x = 0!
 - Solution: solve instead eigenvalue problem

$$Ax = \lambda x$$

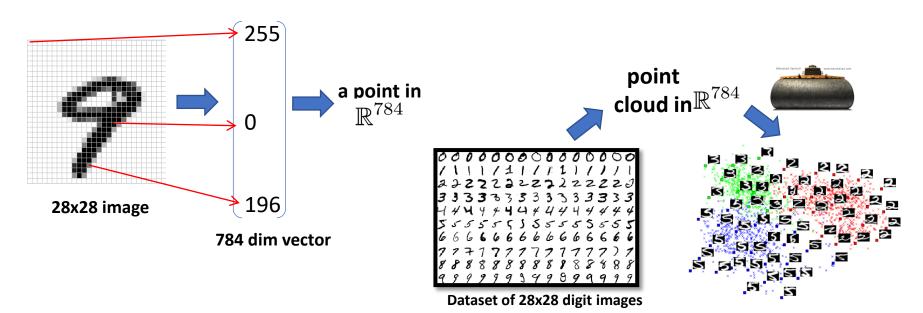
and pick eigenvectors corresponding to the smallest non-zero eigenvalues.

Summary

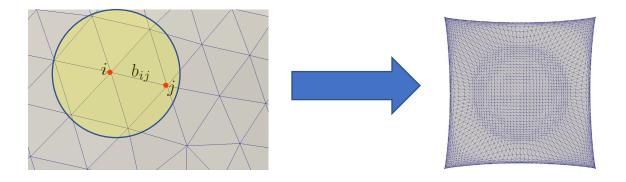
- Mesh parameterization = flattening
- Inspecting and classifying distortion:
 - Conformal/Equiareal/Isometric
- Methods
 - Fixed bndry: Harmonic parameterization
 - Free bndry: Eigenmaps
- These are easy to implement!

Connections to Other Areas – CS233

- Here: 3D reduced to 2D "dimensionality reduction"
- Look up: "non-linear dimensionality reduction"
- Ways of organizing/visualizing high dim data



Food for Thought



Local info integrated into global embedding

Huge impact in geometry processing, machine learning, and sensor networks.

End