
CS348a:  Computer Graphics --
Geometric Modeling and Processing

1

Leonidas Guibas
Computer Science Department
Stanford University



2

Parametrization

?
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The Basic Problem

Input geometry

Texture map

Packing

http://perso.telecom-paristech.fr/~tierny/stuff/teaching/tierny_surface_parameterization_web.pdf
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The Basic Problem

?
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Solution
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Flattening Surfaces

Parameterization is …
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Why Parametrize?

R.I.P.
Really

Interested in 
Parameterization



8

Texture Mapping

Why Parametrize?
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Why Parametrize?

Remeshing
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Alternative Representations
http://www.inf.usi.ch/hormann/parameterization/CourseNotes2008.pdf

Why Parametrize?
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Simplification
http://www.inf.usi.ch/hormann/parameterization/CourseNotes2008.pdf

Why Parametrize?
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Why Parametrize?

Compression
Gu, Gortler, Hoppe. Geometry Images. SIGGRAPH 2002

=
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Outline

Introduction
Naïve approach and demonstration
Distortion and desirable properties
Fixed boundary: Harmonic parameterization
Free-boundary: Eigenmap
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UV-Coordinates

For every mesh vertex determine its (u,v) coordinates
“Texture Coordinates”
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Naïve Approach

Normalize so that UV-coordinates are in [0,1]
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Look inside: VTK file format

# vtk DataFile Version 3.0
vtk output
ASCII
DATASET POLYDATA
POINTS 10201 float
0      0 0.742357
0.02 0 0.794151
0.04 0 0.842234
0.06 0 0.885574
0.08 0 0.923144
0.1   0 0.953942
…

POLYGONS 20000 80000
3 0 2602 2601
3 2602 1 2603
3 2603 51 2601
3 2602 2603 2601
3 52 2605 2604
3 2605 51 2603
3 2603 1 2604
3 2605 2603 2604
…

POINT_DATA 10201
TEXTURE_COORDINATES 
Texture_Coordinates 2 float
0.000000 0.000000
0.020000 0.000000
0.040000 0.000000
0.060000 0.000000
0.080000 0.000000
0.100000 0.000000
…
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Which is Better?
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Main Issue: Distortion

Naïve approach

Triangle shapes (angles) and sizes (area) are not preserved!

Preserve shape & size = Triangle congruence (aka isometry)

not good!
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An Old Problem: Maps
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Desirable Characteristics

Bijective: no fold overs

1-to-1

not 1-to-1
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Desirable Characteristics

Conformal:  Preserves angles
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Desirable Characteristics

Equiareal:  Preserves areas
http://en.wikipedia.org/wiki/Bonne_projection
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Desirable Characteristics

Isometric:  conformal and equiareal
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Sad Fact

Very few surfaces can be 
mapped isometrically to 

the plane.
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Reason for so Many Types of Maps
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Outline

Introduction
Naïve approach and demonstration
Distortion and desirable properties
Fixed boundary: Harmonic parameterization
Free-boundary: Eigenmap
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Tutte’s Theorem

If the (u,v) coordinates at the boundary lie on a 
convex polygon, and if coordinates of the internal 
vertices are convex combination of their 
neighbors, then these (u,v) coordinates give a 
valid (bijective) parameterization.

Convex combination = center of mass
Can have different masses at different vertices
Masses should be positive
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Simple Realization

Goal:  Assign (u,v) 
coordinate to each 
mesh vertex.

1. Fix (u,v) coordinates of boundary.
2. Want interior vertices to be at the center of mass of neighbors:
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Algorithm

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:

1

3 2

5

4

6
7



What do you think?
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What do you think?

?
Some random planar mesh

After many iterations
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Expectation

After many iterations

It is already planar: best parameterization = itself
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Reality…  Why?   How to Avoid?

Converges to a somewhat uniform grid!

Triangle shapes and sizes are not preserved!

After many iterations



33

Algorithm with Weights

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:

Introduce weights to 
capture geometric 

information:
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Weight Properties

After many 
iterationsGOAL:

With naïve initialization, 
iterations converge immediately!
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Weight Properties
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Harmonic Weights

Weights can be negative – not always bijective
Weights depend only on angles - close to conformal
2D reproducible

cot( ) cot( )

2
ij ij

ij
w

α + β
= ij

αij

βij

36



37

Mean-Value Weights 

Result visually similar to harmonic
No negative weights – always bijective
2D reproducible
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Recap: Algorithm with Weights

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:

0. Pick some kind of  
barycentric coordinates 

as weights to capture 
geometric information.
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Implementation Note & Results

Iterative algorithm = Gauss-Seidel for Ax = b
Can solve Ax = b at once, “without” iterating!
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Results

Naive Harmonic
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Outline

Introduction
Naïve approach and demonstration
Distortion and desirable properties
Fixed boundary: Harmonic parameterization
Free-boundary: Eigenmap



Non-Convex Boundary

42

Requiring convex boundary results in 
significant distortion 

“Free” boundary is better



43

Fixed vs Free Boundary
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Fixed vs Free Boundary
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Old Algorithm

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:
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Old Algorithm

1. Initialize (u,v) of all points (e.g. using naïve).
2. While not converged: for each vertex, set:

Why this would be problematic? How to fix this?
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Problem

Boundary vertices are pulled towards interior
Shrinkage happens
Collapse to a single point!

After many iterations
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How to Fix this?

Un-shrink at every iteration:
Move the center of mass at origin of UV-plane
Rescale in U direction to make std. deviation = 1
Rescale in V direction to make std. deviation = 1
Make sure covariance  between U and V = 0

Subtract an appropriate multiple of U from V.
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Fixed Algorithm

Initialize (u,v) for all vertices (e.g. using naïve)
While not converged: 

For several times: 
For each vertex, set:

End For
End For
Un-shrink

End While
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Fixed Algorithm = Eigenmap

Equivalent to inverse power iteration for solving an 
eigenvalue/eigenvector problem of type

Pick the smallest two non-constant eigenvectors. 
Call these  
Set (u,v) coordinates as:
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Eigenmap result
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Fixed boundary, solve Ax=b
Free boundary, solve Ax =0…

Problem: then solution x = 0!
Solution: solve instead eigenvalue problem 

and pick eigenvectors corresponding to the smallest 
non-zero eigenvalues.

Connection Between Methods
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Summary

Mesh parameterization = flattening
Inspecting and classifying distortion:

Conformal/Equiareal/Isometric

Methods
Fixed bndry: Harmonic parameterization
Free bndry: Eigenmaps

These are easy to implement!
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Connections to Other Areas – CS233

Here: 3D reduced to 2D – “dimensionality 
reduction”
Look up: “non-linear dimensionality reduction”
Ways of organizing/visualizing high dim data

255

0

19628x28 image

784 dim vector

a point in 
point 

cloud in 

Dataset of 28x28 digit images
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Food for Thought

Local info integrated into global embedding

Huge impact in geometry processing, 
machine learning, and sensor networks.
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End
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