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1 Spline Curves

The beginning of this lecture was material covered in Handout # 23. Some of the material is
presented again below, with clarifying figures.

1.1 The de Boor points

Suppose that we have chosen a degree n and a knot sequence (in which no knot has multiplicity
greater than n +1). We complete our design of the spline curve F by choosing a sequence of
control points, which are called de Boor points or B-spline control points. Each de Boor point
is labeled by a block of n adjacent knots from the knot sequence, and successive de Boor points
are labeled by blocks that are shifted by one step with respect to each other, that is, that overlap
in all but one knot. That—and the de Boor generalization of the de Casteljau Algorithm—turns
out to be all that you need to know to draw spline curves.

To see how this works, let’s consider the affine, quadratic, and cubic cases in turn.

1.1.1 The affine case

Suppose that n = 1, so that we are designing an affine spline—that is, a polyline. And suppose
that we have chosen the knot sequence

( . . . ,1,2,4,5,5,6,8, . . .).

Since n = 1, each de Boor point will be labeled by single knot, with adjacent de Boor points
labeled by adjacent knots. So our spline F has, among its control points, the points P1, P2, P4,
P5, P5, P6, and P8. Note that there are two de Boor points labeled P5, since 5 is a double knot.

The resulting affine spline F is quite straightforward. Over the time interval [1 .. 2], the
spline F moves from P1 to P2 at a constant rate of speed. Over the time interval [2 ..4], it moves
from P2 to P4. Over [4 .. 5], it moves from P4 to the first of the two points labeled P5. Over
[5 .. 6], it moves from the second point labeled P5 to the point labeled P6. And so on. Note
that the joints corresponding to simple knots have C0 continuity, as they should, while the joint
corresponding to the double knot at time 5 has only C−1 continuity.
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Figure 1: Affine spline curve

1.1.2 The quadratic case

To take a less trivial case, suppose that n = 2, so that we are assembling parabolic segments
into a quadratic spline, and suppose that we have chosen the knot sequence

( . . . ,0,1,2,3,5,6,7,7,8,9,9,9, . . .).

Since n = 2, each de Boor point is now labeled by a pair of adjacent knots. So reasonable
names for the de Boor points are

P01, P12, P23, P35, P56, P67, P77, P78, P89, P99, and P99.

In order to figure out what the segments of the spline curve F are, it is helpful first to compute
some auxiliary points, based on the de Boor points. For example, P01 and P12 share a common
subscript. Thinking of Puv rather like a 2-polar value f (u,v), we will define the point P1t for all
t in [0 ..2] by interpolating between P01 and P12. In particular, we define

P11 :=
P01 +P12

2
.

In a similar way, we define

P22 :=
P12 +P23

2
.
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But P33 is slightly different, since the knots in this part of the knot sequence are not uniformly
spaced—in particular, 3 is only one-third of the way from 2 to 5:

P33 :=
2P23 +P35

3
.

And we define P55, P66, and P88 analogously. (See Figure 2.)
Over the time interval [1 ..2], our spline F will follow a parabolic segment F([1 ..2]), which

is part of some overall parabola—call it G. Of course, the parabola G has a polar form g. Note
that F itself is a spline curve, so it doesn’t have a polar form, strictly speaking—even though the
de Boor points Puv almost behave like ‘polar values’ Puv = f (u,v) of the spline F . We choose
to determine the parabola G by giving the Bézier points of the segment F([1 ..2]) = G([1 ..2]),
as follows: g(1,1) := P11, g(1,2) := P12, and g(2,2) := P22.

In a similar way, over each interval [s .. t] between two adjacent, distinct knots, the spline F
will follow a parabolic segment F([s ..t]) that is part of some parabola G, and that parabola G is
determined by the conditions g(s,s) := Pss, g(s, t) := Pst , and g(t, t) := Ptt . The way in which we
computed the auxiliary points, such as P11 and P22, from the original de Boor points guarantees
that the resulting spline curve F will have the required level of continuity at each joint. For
example, the condition that P33 = (2P23 +P35)/3 guarantees that the ending tangent vector of
the segment F([2 .. 3]) is the same as the starting tangent vector of the segment F([3 .. 5]); so
the joint at time 3 is a C1, as is appropriate, since 3 is a simple knot.

In fact, we don’t have to bother computing the auxiliary points P11, P22, and the like; we
can work directly from the de Boor points. Consider the time interval [2 .. 3], for example.
Above, we determined the parabola G that our spline F follows over [2 .. 3] by giving the
Bézier points of the segment G([2 ..3]), which are P22, P23, and P33. The first and last of these
are auxiliary points, while the middle one is a de Boor point. Instead, we can determine the
parabola G directly from three adjacent de Boor points by imposing the following three polar
interpolation constraints on G: g(1,2) = P12, g(2,3) = P23, and g(3,5) = P35. To prove that
these three constraints are a legal way to specify a parabola G, we appeal to Theorem 4 from
Handout 14, setting r1 := 2, r2 := 1, s1 := 3, and s2 := 5. From that theorem, we deduce that
there exists a unique parabola G that satisfies g(r1,r2) = g(1,2) = P12, g(r1,s1) = g(2,3)= P23,
and g(s1,s2) = g(3,5) = P35. the double knot at time 5 has only C−1 continuity.

1.1.3 The cubic case

Suppose now that n = 3. It’s worth going through several examples of knot sequences, in the
cubic case. The first knot sequence has uniformly spaced simple knots for a while, then has a
single longer parameter interval at [5 ..7], and ends with a triple knot at 9:

( . . . ,0,1,2,3,4,5,7,8,9,9,9, . . .).

The second starts with two triple knots in a row, later including a double knot in the middle of
a string of simple knots:

( . . . ,0,0,0,1,1,1,2,3,4,4,5,6,7,8, . . .).
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Figure 2: Quadratic spline curve

[Choose nine arbitrary de Boor points and draw a spline with the first knot sequence. Choose
twelve arbitrary de Boor points and draw a spline with the second knot sequence.]

Since n = 3, each de Boor point is labeled by a triple of adjacent knots from the knot
sequence. So, in the first example, the nine de Boor points are P012, P123, P234, P345, P457, P578,
P789, P899, and P999.

To determine the Bézier points of the various cubic segments in the first example, we treat
each de Boor point Puvw like a polar value f (u,v,w) of the spline F . For example, consider the
cubic segment F([2 ..3]). If G is the overall cubic curve that the spline F follows over [2 .. 3],
then the segment F([2 ..3]) = G([2 ..3]) is determined by the positions of the four Bézier points
g(2,2,2), g(2,2,3), g(2,3,3), and g(3,3,3). None of the points P222, P223, P233, or P333 is a de
Boor point. But P123 and P234 are de Boor points, and we can find both of the points P223 and
P233 by interpolating between P123 and P234:

P223 = 2
3P123 + 1

3P234

P233 = 1
3P123 + 2

3P234

In a similar way, we can find P112 and P122 by interpolating between P012 and P123, and we
can find P334 and P344 by interpolating between P234 and P345. Finally, the point P222 must be
halfway between P122 and P223, while the point P333 must be halfway between P233 and P334.
[Draw all of these points on your picture.]

The other segments of the first example and all of the segments in the second example can
be found, in terms of their Bézier points, in a similar way.

Finding the Bézier points of the various segments helps to reveal the geometric structure of
our spline curves. If we prefer, however, we can also dispense with the Bézier points and work
straight from the de Boor points. Figure 13 in Handout 14 shows an example of determining
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Figure 3: A closed curve with three joints

the segment F([4 ..7]) = G([4 ..7]) of a cubic spline curve F on the knot sequence

( . . . ,2,3,4,7,8,9, . . .)

from the four adjacent de Boor points P234 = g(2,3,4), P347 = g(3,4,7), P478 = g(4,7,8), and
P789 = g(7,8,9). The instance of the de Boor Algorithm illustrated in Figure 13 is computing
the point F(5) = G(5) = g(5,5,5) on the resulting segment F([4 ..7]).

1.2 Closed curves

We have not yet dealt with closed curves. These can be handled by taking an infinite knot
sequence with a periodicity condition.

For example, if there are three joints, we can take the knot sequence

( . . . ,0,1,2,3,4,5,6,7,8,9, . . .) (1)

with condition
F(t +3) = F(t) (2)

holding for all t. Figure 3 shows an example.

1.3 Interpolating splines

So far, we have been constructing our spline curves by treating the de Boor points as the control
points. Once the de Boor points are known, we can compute the Bézier points of the spline
segments and the points of the spline via affine interpolations.
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Figure 4: Bézier points A, B, and C; joints P, Q, and R

An alternative is to treat the joints of the spline as the control points. One advantage of this
scheme is that the resulting curve actually interpolates the control points; hence, this technique
is called the technique of interpolatory splines.

Consider, for example, a closed cubic spline with three segments, as shown in Figure 4.
Observe that, if A, B and C are the de Boor points, the joints P, Q and R can be expressed in
terms of A, B and C as follows:

P = 2
3A+ 1

6B+ 1
6C

Q = 1
6A+ 2

3B+ 1
6C

R = 1
6A+ 1

6B+ 2
3C

(3)

So, if we are given the joints P, Q and R, we can solve a linear system of equations to obtain
the de Boor points A, B, and C.

One disadvantage of this method is that there is no local control. Each time a joint is moved,
a new linear system of equations (3) must be solved, and all of the de Boor points can change
positions. If the designer moved only one joint, the de Boor points far from that joint probably
don’t move very far, but they do move.

1.4 Open curves

Now suppose we are given a sequence of joints in the plane, and we wish to find an open cubic
spline that interpolates those joints. The condition that the spline be C2 continuous at every
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Figure 5: Uniform parametrization

Figure 6: Chord-length parametrization

joint still leaves us with four degrees of freedom, two for each end of the open spline. This is
the problem of end conditions. There are lots of strategies for using up these final degrees of
freedom, including:

• “Natural” end conditions: set zero acceleration at the endpoints, i.e., F ′′(start) = 0,
F ′′(end) = 0.

• Allow designer to specify F ′(start) and F ′(end).

• “Not-a-knot” end conditions: set C3 continuity at the two joints closest to the endpoints.

1.5 Choosing the knot spacing

The most obvious way to form a knot sequence is to use all single knots, evenly spaced; this
is called uniform parameterization. However, this sometimes leads to undesirable results. In
the example of Figure 5, the knot sequence is uniform:

(0,1,2,3,4,5,6). (4)

The resulting interpolating spline streaks straight across the long gaps, working hard to get
there in time, and then does a long, wild S-turn during all the extra time that it has to get across
the short gaps.

More sensible curves often arise if chord-length parametrization is used. That is, the
difference between successive knots is made proportional to the length of the chord between
the corresponding joints. Figure 6 shows the spline arising from the same joints as in Figure 5,
but with the knot sequence

(0,6,7,13,14,20,21). (5)
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