
CS348a: Computer Graphics Handout # 3
Geometric Modeling and Processing
Stanford University Wednesday, 17 February 2021

Homework #3: NURBS surfaces; geometric primitive fitting; slippable motions; basic point
cloud and mesh processing [100 points]

Due Date: Monday, 8 March 2021

Theory and implementation
This is a mixed theory/implementation homework. Problem 1 provides some practice on cal-
culations with NURBs surfaces (non-uniform B-splines). Problem 2 gives you a chance to
actually model and visualize these NURBs surface as they are in 3D. Problems 3 and 4, as
well as the forthcoming assignment 4, focus on fitting and segmenting low-level geometry data
(point clouds, meshes) using geometric primitives (planes, spheres, cylinders, cones). They
lead to an implementation according to the methods described in two papers [1, 2], one using
classical geometry processing ideas and the other based on deep learning.

In this assignment, problems 3 and 4 ask you to derive the theory behind an algorithm
for estimating primitive shape types and parameters fitting a given point cloud, as well as
to implement some of these derivations. These estimations require some rudimentary linear
algebra and optimization tools. As explained in the guidelines given with Homework 1, you
may hand in a joint group write up for the problem parts that ask for an implementation.
However, the theory parts should still be written individually, naming your collaborators.

A secondary goal of this problem is to introduce you to two standard programs for playing
with surface meshes, OpenMesh, http://www.openmesh.org/ and Meshlab, http:
//meshlab.sourceforge.net/. You can download helper code for all problems in this
assignment from the Handouts class web page.

Problem 1. [A Splined Torus, 10 points]

Let r and R be real numbers with 0 < r < R. As the angles α and β vary, the varying point
V = (X ,Y,Z) given by the functions

X := (R+ r cosα)cosβ

Y := (R+ r cosα)sinβ

Z := r sinα

traces out a torus, that is, the surface of an ideal donut or bagel. The torus has rotational
symmetry about the Z axis, which passes through the middle of the torus hole. Any plane π

through the Z axis cuts the torus in two circles of radius r, whose centers lie along the line
where π cuts the XY plane, R units on each side of the origin. Varying α moves the point V
around one of those circles. Varying β rotates the plane π around the Z axis.

Find a biquadratic, rational parameterization of this torus. That is, express each of the
homogeneous coordinates [w;x,y,z] of the varying point V as a polynomial in two parameters

2 CS348a: Handout # 3

that has degree at most 2 in each parameter when the other is held fixed. For consistency in
notation, use Q and T as your two parameters, writing

V (Q;T) = [w(Q;T);x(Q;T),y(Q;T),z(Q;T)]

for certain polynomials w, x, y, and z1.
Homogenize and polarize your parameterization. You may carry out these two steps in

either order; the result will be the same. If you homogenize first, use p as the weight coordinate
for the Q parameter, writing Q = q/p, and use s as the weight coordinate for the T parameter,
writing T = t/s. If you polarize first, split the T parameter into two separate parameters T1 and
T2, and split the Q parameter into Q1 and Q2. The homogenized polar form v of V will have
the form

v((p1;q1),(p2;q2);(s1; t1),(s2; t2)) = [w;x,y,z],

where each coordinate w, x, y, and z is a polynomial in the eight variables p1, q1, p2, q2, s1, t1,
s2, and t2.

One quarter of the torus consists of points that have Y and Z positive. (If you followed
the hint above, those points will correspond, under your parametrization, to parameter pairs
(Q;T) where both Q and T are positive.) Describe this portion of the torus as a biquadratic,
rational Bézier surface patch, that is, as a rectangular, tensor-product patch of degree (2;2). In
particular, give the coordinates of the nine Bézier sites of this patch. (If you followed the hint
above, the patch will be V ([0 ..∞]× [0 ..∞]))2.

Problem 2. [Viewing the Torus, 15 points]

In this problem, we will use the surface from Problem 1 to model a torus using the OpenMesh
software. The file you will edit is called main-torus.cpp in the RenderTorus folder of
the assignment zip folder.

We have provided a bare-bones 3D viewing tool as part of your starter code. The controls
are as follows:

• Dragging the left mouse button rotates the coordinate frame

• Dragging the middle mouse button pans the camera

• Dragging the right mouse button zooms

We have also provided code for rendering your mesh as wireframe, so that you can focus
on the shape modeling and not have to worry about orientations and normals.

1Hint: Let Q := tan(α/2) and T := tan(β/2) and remember some high-school trigonometry.
2Hint: Don’t be distressed if one of the nine Bézier sites turns out to be the zero site, that is, the site all four of

whose coordinates are zero.

CS348a: Handout # 3 3

2(a). [Evaluating a point on the surface, 5 points] We start with only the quarter of
the torus from Problem 1, which we modeled using a biquadratic tensor-product surface. First,
fill in the code section labeled STUDENT CODE SECTION 1 with the control points you
found in Problem 1. Recall that we can evaluate a point using the Bézier sites by interpolating
along the Q and T directions separately. Given a parameter value of u∈ [0,1] in the Q direction
and v ∈ [0,1] in the T direction, fill in the function Calculate(u,v,k) in STUDENT CODE
SECTION 2, which should return the homogeneous coordinates for a point on the surface (k is
the index for the quarter of the torus we are modeling; for now just set it to 0).

2(b). [Construct a mesh. 5 points] We have defined a set of points on the surface patch
and now we want to connect them to construct a mesh. This can be done using OpenMesh.
In generateMesh(), as we evaluate points on the surface, we insert them into the mesh
as vertices and store a 2D array of their associated vertex handles. Fill in STUDENT CODE
SECTION 3 to construct a face by listing the face’s vertex handles and then inserting the face
into the mesh. Once you set up the vertices and faces correctly, OpenMesh will take care
of the rest for you (i.e. connectivity between faces). In addition, OpenMesh supports both
triangle meshes and more general polygon meshes, so you can use whichever you prefer for
this problem (quad meshes are a natural choice for tensor product surfaces).

2(c). [Time for a whole torus, 5 points] Now you should have successfully rendered
a quarter of the torus. Determine the control points for the other three quarters (using either
intuition and symmetry or explicit calculation) and repeat the same approach to construct the
rest of the torus. You can do this by varying the k parameter in the code. For full credit, you
can simply construct the four parts separately and put them all in one big mesh. However, note
that the vertices on the boundaries will have duplicates in the mesh data structure (two if they
connect two quarters of the torus and four if they connect all four). Therefore, the quarters are
internally disconnected on the boundaries even though they appear to connect on display.

2(d). [Optional for Extra Credit, 10 points]

• The program saves your mesh into a file torus.off, so you can load and view the
mesh using other software (e.g., MeshLab) or the program for Problem 4. Construct
the mesh with correct orientation, so that it can be rendered correctly with lighting. [5
points]

• Stitch the quarters of the torus together to address the vertex duplication problem de-
scribed above. You can use MeshLab or the executable from Problem 4 to view the mesh
with lighting. You should see cusps along the boundaries of the quarters initially (using
smooth shading). Your task is to get rid of these cusps. [5 points]

Problem 3. [Primitive Types and Fitting, 40 points]

In this problem we consider how to fit planes, spheres, cylinders, and cones to point cloud data.
Figure 1 shows the parameters used for each type of primitive. We specify the parameters A
for the different primitive types as follows:

4 CS348a: Handout # 3

Figure 1: Primitive parameters

• Plane, A = (a,d), the normal vector a and the distance from the origin d (positive if
origin is above the plane).

• Sphere, A = (c,r), the center c and the radius r.

• Cylinder, A = (a,c,r), the axis direction a, an arbitrary point c on axis and the radius r.

• Cone, A = (a,c,θ), the axis direction a, the apex c and the half angle θ .

3(a). [Fitting error, 10 points] The fitting error of a point cloud to the primitive is
defined as ∑i wiD2(pi,A), where the wi are given weights (confidences of the point belonging
to the primitive), A denotes the primitive parameters, and D is the distance from a point to the
primitive surface. What is D for the four given primitives?

3(b). [Parameter estimation, 10 points] For a point cloud {pi} with normals {ni} and
confidence weights {wi}, we can compute the parameters of the primitives via an energy (loss)
minimization. Following are proposed energies from [2].

• Plane. ∑i wi(aT
i pi−d)2.

• Sphere. ∑i wi(||pi− c||2− r2)2.

• Cylinder. Given that the axis is orthogonal to all point normals, we derive the energy as
∑i wi(nT

i a)2 and solve for a first. Once the axis is known, points can be projected to a
plane perpendicular to the axis to form a ring; there we can use the sphere loss to derive
r.

• Cone. Given that the point normal for each point is orthogonal to the offset from the apex
to this point, we derive the energy as ∑i wi(nT

i (pi− c))2 and solve for c first. Second,
treating the coordinate of each point normal as a 3D point, the collection of point normals
sit in a 3D plane whose normal is the axis a. Therefore, we can estimate the axis with a
plane fitting. Finally, for each point i we can derive a half angle θi between a and pi− c,
and the half angle of the cone is the weighted average θ = ∑i wiθi.

CS348a: Handout # 3 5

For example, to obtain the parameters for the plane, the problem can be converted to the stan-
dard form mina ||diag(

√
w)Pa||2 with the constraint that ||a|| = 1. The solution is the right

singular vector corrsponding to the smallest singular value of diag(
√

w)P.

For the sphere, the optimal solution for r2 is ∑wi||pi−c||2
∑wi

. By replacing r2 into the original

energy, we get minc ||diag(
√

w)(Ac−b)||2 where Ai = 2(−pi+
∑ j w jpj
∑ j w j

), bi = p2
i −

∑ j w jp2
j

∑ j w j
. This

is a weighted linear least square problem, where a linear solver (e.g., Cholesky factorization)
can be used.

This problem asks you to derive the parameter solution for the cylinder and the cone.

3(c). [Implement the fitting error, 10 points] Please implement the fitting error func-
tions as compute_residue_loss in spfn/src/primitive/ for the cone and the
cylinder. Implementation of the plane and the sphere losses are provided for your reference.
Test script is provided for verification.

3(d). [Implement the parameter estimation (see README), 10 points] Please im-
plement the functions compute_parameters in spfn/src/primitive/ for the cone
and the cylinder. Implementation of the plane and the sphere estimation is provided for your
reference. Test script is provided for verification.

Problem 4. [Slippable Motions, 35 points]

Suppose we have a point cloud P consisting of a set of points {pi} and associated surface
normals {ni}, The points lie on or near a primitive geometric shape of the four allowed types:
plane, sphere, cylinder, or cone. The task is to determine the primitive type and its parameters.
The insight in [1] is that these primitives accept certain types of special tangential rigid motions
that allow points to still lie on the surface after the motion. In other words, the primitive is
slippable over itself under such motions. For example, a sphere is slippable under any rotation
around its center.

4(a). [Describe the slippable motions, 10 points] Describe and illustrate the slippable
motions for the four primitives we consider: the plane, the sphere, the cylinder, and the cone.
Discuss their degrees of freedom.

4(b). [Equations for the slippable motion solutions, 5 points] Given N points in P
with 3D locations {pi} and surface normals {ni}, derive an equation to describe the relationship
between the point cloud and a slippable motion consisting of a 3-dimensional angular velocity
ω and a translational velocity v.

4(c). [Formulation as an energy minimization problem, 5 points] The motion can
be viewed as a six-dimensional vector consisting of the angular and the translational velocity.
Formulate the motion estimation as an energy minimization problem, so that the motion can be
simply derived from a linear equation of the form AX = 0. What is the objective energy and
what is A?

6 CS348a: Handout # 3

4(d). [Decide the primitive type, 5 points] Acceptable motion vectors that satisfies
AX = 0 form a subspace of the six-dimensional linear space. Given the subspace of the slip-
pable motion, please describe how to determine the type of the primitive.

4(e). [Implement the primitive estimation, 10 points] Implement the function
EstimatePrimitive in slippage/src/primitive.cpp. Test script is provided for
verification.

What to hand in for the programming parts

You are required to submit “assignment3.zip” for this assignment by email to the TA with the
same file distribution as you downloaded. Finally, please provide a “./report.pdf” including
names of group members, the discussion of your code/method for problem 2, 3 and 4.

References
[1] Natasha Gelfand and Leonidas J Guibas. Shape segmentation using local slippage analy-

sis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing, pages 214–223. ACM, 2004.

[2] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas Guibas. Super-
vised fitting of geometric primitives to 3D point clouds. In Proceedings of the IEEE Con-
ferencec on Computer Vision and Image Processing. 2019.

