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Abstract

We propose a framework for pairwise registration of shapes represented by point cloud data (PCD). We assume
that the points are sampled from a surface and formulate the problem of aligning two PCDs as a minimization
of the squared distance between the underlying surfaces. Local quadratic approximants of the squared distance
function are used to develop a linear system whose solution gives the best aligning rigid transform for the given
pair of point clouds. The rigid transform is applied and the linear system corresponding to the new orientation is
build. This process is iterated until it converges. The point-to-point and the point-to-plane Iterated Closest Point
(ICP) algorithms can be treated as special cases in this framework. Our algorithm can align PCDs even when
they are placed far apart, and is experimentally found to be more stable than point-to-plane ICP. We analyze
the convergence behavior of our algorithm and of point-to-point and point-to-plane ICP under our proposed
framework, and derive bounds on their rate of convergence. We compare the stability and convergence properties
of our algorithm with other registration algorithms on a variety of scanned data.

Categories and Subject Descript¢ascording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling

1. Introduction brought into a common coordinate system, and in geome-
try processing, where point cloud representations need to be

Reglsttr)gtlon plays an |mp?jrtant role in 3D quel ggqum- aligned for applications such as texture transfer, morphing,
tion, object recognition, and geometry processing. Given as . watermarking CWPGO4.

input two shapes, often called the model and the data, each
in its own coordinate system, the goal of registration is to A popular method for aligning two point clouds is the It-
find a transformation that optimally positions that data with erated Closest Point (ICP) algorithBN192, CM91]. This
respect to the model. In this paper, we consider the registra- algorithm starts with two point clouds and an estimate of the
tion problem when both the model and data inputs are given aligning rigid body transform. It then iteratively refines the
as point cloud data (PCD). This is a common problem in transform by alternating the steps of choosing corresponding
3D scanning, where multiple views of an object need to be points across the point clouds, and finding the best rotation
and translation that minimizes an error metric based on the
distance between the corresponding points.

T The authors wish to acknowledge support from NSF grant Despite a large amount of work on registration, conver-

CARGO-0138456, a Max-Planck-Institut Fellowship, and a Stan- 9€NCe behavior of many registration algorithms, under dif-
ford Graduate Fellowship. ferent starting conditions, and error metrics, is poorly un-

1 Part of this research has been carried out within the Compe- derstood. Experimentally, it has been shown that the rate of
tence Center Advanced Computer Vision and has been funded by convergence of ICP heavily depends on the choice of the
the Kplus program. This work was also supported by the Austrian corresponding point-pairs, and the distance function that is
Science Fund under grant P16002-NO5. being minimized RLO1]. Many enhancements of ICP-style
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algorithms for registration propose different error metrics, for the rigid transform that minimizes the residual distance,
and point selection strategies, to improve ICP’s convergence g, between the model and the transformed data:
behavior GIRLO3, Fit01, JHO3 CLSB92 RLO1].

k

Two distance metrics are commonly used in ICP and its e(a) = _Zidz(G(Qi)7pi): @
variants. The point-to-point distance of BeBNM92] uses =
the Eucledian distance between the corresponding points. whered can be point-to-point distance of Besl or point-to-
This leads to an ICP algorithm that converges slowly for plane distance of Chen and Medioni. Notice, however, that
certain types of input data and initial positions. Another the basic assumption is that the sum of squared distances
error metric is the point-to-plane distance of Chen and petween pairs of points is a good approximation for the dis-
Medioni [CM91], which uses the distance between a point tance between two PCDs.
and a planar approximation of the surface at the correspond- ) )
ing point. When the initial position of the data is close to ~ Inthe paint cloud setting, we actually know that the model
the model, and when the input has relatively low noise, ICP and data PCDs are not arbitrary collections of points, but
with point-to-plane error metric has faster convergence than are sampled from some underlying surfadgsand ®q. In
the point-to-point version. However, when the shapes start this case, it is more appropriate to minimize the distance

far away from each other, or for noisy point clouds, point-to- rom the data PCD to thsurfacerepresented by the model
plane ICP tends to oscillate and fails to conver@éqL03]. PCD. Pottmann and Hofer showed that when the data and

) ] the model are close, the point-to-plane distance is a good
~ Another reason behind the slow convergence of registra- approximation to the distance between a data point and the
tion algorithms based on ICP, is the local nature of the min- gyrface represented by the model PCD. On the other hand,

imization. The only information used by the algorithm is  \yhen the model and the data are far apart, the point-to-point
the point correspondences. As a result, the minimized error gistance is a better choicBI[HOZ.

function only approximates the squared distance between the
two point clouds up to first order. The goodness of a given error metric is determined by two

. o properties. First, we would like the error metric to accurately
In this paper, we propose an optimization framework for efiact the distance between a data pajrand the surface
studying registration algorithms. We pose registration be- represented by the model PCD. Second, we would like the

tween two point clouds as an optimization over the space igtance approximation to be valid not just at a pojrtut in
of rigid transforms. We_develop an objective fgnctlon that is a neighborhood around it. Both point-to-point and point-to-
a second order approximant to the squared distance betweerane error metrics are based only on first order information
the model and the data. ngher order information about the 55 the underlying input surfaces. As a result, they do not
surfaces represented by the point clouds, such as local cunva-, e a good approximation to the distance when we move
tures, are mc_orporated into the quad_ratlc approximant. Using around in the neighborhood of a data paint
such approximant to the squared distance function, we de-
velop a registration algorithm. When the model and the data  In this paper, we are concerned with developing a good
PCDs are close, our algorithm has a rate of convergence sim-approximation to the distance function between two point
ilar to ICP with point-to-plane error metric. Moreover, our clouds. In order to show theoretical bounds on the con-
method has a stable behavior even when the initial displace- vergence behavior of registration algorithms based on our
ment is large. We also explain the convergence properties of distance function, we pose the problem of registration of
the point-to-point and point-to-plane ICP variants, in terms two point clouds as an optimization problem over the space
of the accuracy of the distance function that they use during of rigid transforms. This leads to the following optimiza-
minimization. tion problem: we are searching for the best rigid transform
a = (R,t) that minimizes the error given by

2. Registration of Point Cloud Data

Let P = {p1,p2,...,pn} andQ = {01,9z,...,qm} be two
point clouds inIRY. The goal of the registration algorithm

is to find a rigid body transfornu composed of a rotation
matrix R and a translation vectdrthat best aligns thdata
PCDQ to match themodelPCDP.

£(0) = 5 d(Ray +1.07). @

whereR is the rotation matrix antlis the translation vector.
The functiond?(Rq; +t, ®p) is the distance from the trans-
formed data poing; to the surface represented by the PCD
P. Given the optimization problem of Equati@nit is clear

Registration algorithms based on ICP work as follows. that the convergence behavior of any such optimization pro-
Given the initial position of the data with respect to the cedure depends on the accuracy of the functitriwe call
model, the algorithm chooses a setkgboint pairs(pi, d;) d? thesquared distance functido the surfac&p. Since the
from the model and the data. The distance between the surfacedp from which the point model was sampled is gen-
model and data PCDs is approximated by the sum of dis- erally complicated and unknown, a good approximant to the
tances between the point pairs. The algorithm then searchessquared distance function is required.
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Contributions of the present paper of the other, in order to minimize the placement error. Given
®p, we expect the points near itsedial axis MA®p) to
have bad quadratic approximants, since locally, the squared
distance function is not smooth. If we detect such points, we
leave them out of our optimization procedure.

We develop a quadratic approximant to the squared distance
function to the surface represented by a point cloud, and use
this approximant in a registration algorithm. Our approxi-
mant has the desired property of being valid not only at the
query point where it is computed, but also in a neighborhood ~ We employ an iterative scheme to solve the nonlinear opti-
around the query point. This property allows us to pose the mization problem over the complex error landscape. At each
registration problem in an optimization framework, and use stage, we solve for a rigid transform composed of a rotation
methods such as Newton iteration, that depend on comput- R followed by a translation. We useF ' to solve for the

ing accurate derivatives of the objective function. In our op- rigid transforma = (R, t) that brings the data PCQ to the
timization framework using the squared distance function, model PCDP. We apply this transform and repeat.
point-to-point and point-to-plane ICP variants are reduced

to two special cases of the general minimization problem. . L
P g P 3.1. Registration in 2D

Our distance function approximates the squared distance
from a data query point to the surface represented by the
model PCD up to second order. We develop two methods
for computing such local quadratic approximants. The first,
uses local curvature of the surface to incorporate second or- Fr(x)= A+ Bxy-+ Cy2 +Dx+Ey+F,
der information into the squared distance function. The sec- o )
ond method, approximates the global error landscape by lo- Where A,B,C,D,E,F are the coefficients of the approxi-
cally fitting quadric patches to the squared distance function Mmant. More compactly, we can write" in a quadratic form
to the surface. The quadric patches are stored in a special&S
octree like structure called ti#2tree For any pointg, the Fro=[x y 1] o [x y 17, @
registration algorithm queries this special structure for the
corresponding approximant to the squared distance to the WhereQx is a symmetric matrix that depends ®nimpor-
surface. Unlike common ICP variants, the d2tree data struc- tantly, the approximarf * (x) is a valid locally around.

ture allows us to perform registration without explicitly us- We denote any poing; of the data PCDQ by [% vil.
ing nearest neighbors for correspondence. Let a matrixR corresponds to a rotation by andleround

Both of the above techniques incorporate information the origin. Our goal is to solve for a rigid transform, which
about the shape of the neighborhoods of the input surface €onsists oR followed by a translation vectar= [t ty], that
into the error function. As a result we get better convergence Minimizesy ™, F* (Rg; +1). For smallf, we can linearize
behavior than purely local methods of ICP. Using our dis- the rotation by using sii~ 6 and co® ~ 1. So after each
tance function, we develop a registration algorithm for point iteration step, we gefx; yij — [% — 6y +t« 6x +yi +1ty].
clouds that has fast convergence and is more stable behavior!f locally Qq, approximately stays fixed, the residual error
than standard ICP variants. When two point clouds are close between the transformed data and the model PCDs is given
to each other, our algorithm has quadratic convergence, sim- by
ilar to point-to-plane ICP. However, unlike point-to-plane m
ICP, our algorithm has more stable convergence behavior &(8:txty) = .Zl[ % —Oyi+tx Bx+yit+ty 1]Qq
and is less prone to oscillations when the initial distance be- =
tween the model and the data is large. [ X —8yi+tx Ox+y+ty 1 }T,

We first explain the process in 2D. At any point= [x V] €
IR?, we assume the availability of an approxim&nt such
thatF* (x) ~ d?(x, ®p). Let F* be specified in the form

(4)

whereQq denotes the matrix representing the approximant
of the squared distance functiond@ around the poing;.
Our goal is to find values @, tx, andty that minimizes this
In this section, we assume the existence of a functidn residual error. Setting the respective partial derivatives of the
that for any poinix € IRY, gives the squared distance to the errore to zero, we get the following linear system
model PCD surfac&p. Such a squared distance function

) o . . i JG K 0
defines the error landscape for our objective function as in- m
dicated by Equatio. So this functiond? is important for Z Ji 2A B tx | =

I [Ci

3. Registration using the squared distance function

registration algorithms. Later in Sectidnwe describe how _ _
to generate local quadratic approximalRts of this function B G ty
dZ(X,(Dp). Assuming these approximants are available, we Li

now show how the registration problem can be solved in a B i A% +Biyi + D ®)
least squared sense by a gradient descent search. Simply put, pA X By i ’
we try to place one point cloud in the squared distance field Bixi +2Ciyi + Ei

(© The Eurographics Association 2004.
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whereZ; = 2(C x,-2 — BiZXiYiygAiYiz)y Ji = Bixi — 2Ay;, Kj = Under small motion, the rotation matrix can be linearized as,
2Cix — Biyi, Li = Bi(X7 —¥) +2(C — Ai)xyi + Eixi — Diyi - . .

and,A;, B;,Ci,Dj, B, F denotes the entries of the mati; . R— Z(i)nsg _C(S)';a 8 C%SB 2 S'SB

The transformation resulting from solving Equat®is ap- o .

plied to Q. This completes one iteration of our gradient de- 0 0 1 —sinB 0 cosp

scent process. Next we use the approximants corresponding 1 0 0

to the new positions dj; to get another linear system whose 0 cosy —siny (8)
solution is again applied to the data PCD. This process is | 0 siny cosy

iterated until the residual error falls below a pre-defined er- 1 —a B

ror threshold or a maximum number of iteration steps is ~| «a 1 -y

reached. By 1

_Since we do not make any assumption about the initial Henceq — Rq +t.
alignment ofP andQ, the rigid transform computed at any
step, can be large. In such cases, we can only take small Now the registration problem reduces to finding values of
steps in the direction of the transform because its compu- @, B, Y,tx,ty,tz that minimize the residual error
tation is based on approximants that are valid locally. This

m
issue of applying a An-fraction of a rigid transform is an (0, B, Y, b, ty, tz) = Z(qu +1) Qg (Rq; +t)T_ 9)
important problem and has been studied in depth in other i=
places ple02).

This least square problem can be solved by setting the re-

We propose a simple way for computing fractional trans- SPective partial derivatives to zero. The resulting linear sys-
forms. In our notation, the computed transform vector temis given by
[6 tx ty] denotes a rigid transform composed of a rotation m/ P S \]
matrix R followed by a translation vectdr This mapgj to [zi < ) [ a By &t b }T =
a pointRq +t. Let the fractional transform be composed of [ ST Rr )]
a rotation matrixR’ and a translation vectdf. We define _

U ,

(R’ t') to be a ¥n fraction of R,t) if the following relation '

holds, Vi
(.(R'(R'g+t")+t')..ntimes = Rq +t. (6) W

|
IM 3

From this relation, we can g&’ = RY", andt’ = (R — i 2AX; + Biyi +Diz +Gi

1)"Y(R’ — 1)t where,| is the identity matrix. ByRY", we BiXi + 2Giyi + Eiz + Hi
mean a rotation around the origin by an@§lé. We defer
the important issue of choosing a suitable valuefts Sec- L Dixi +&yi +2Rz+1i /]
tion 5. (20)
where,
3.2. Registration in 3D 5 Mi N
In this section, we extend the results from the previous P, = Mi K T
section to point cloud surface data R®. For any point : _ _
x =[x y 7 € IR®, let the corresponding local quadratic ap- LM T L
proximantF ™ be specified in the form [ Bixi—2AyYi  2Cix — Byy; Eixi — Diyi
F T (x) = A%+ Bxy+Cy’ + Dxz+ Eyz+ F 2+ @ Si = | —Dix+2Az -Ex+Bz -2FRx+Diz |,
Gx+Hy+lz, L Divi—Biz  Eyi—2Cz 2Ryi—Ez
whereA throughl are the coefficients of the quadratic ap- [ 2A B D
proximant. With slight abuse of notation, this equation can Ri — B ¢ E
be written in a quadratic form d&&" (x) = xOxx", wherex e ! A
now denotesx y z 1]. i B 2R

2(C¢ — Bixiyi +AYD),
2(RX —Dixz +AZ),
2Ry - Eyiz +G),

Once again, our goal is to find the rigid transform which 7
brings Q in best alignment withP. Let the rigid transform
be composed of a rotation matriR, that is parameterized
by three angleso(,3,y) in the X-Y-Z fixed angle orientation Li
convention, followed by a translation vector [tx ty tz].

(© The Eurographics Association 2004.
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Mi = —ExX¢+Dixyi +Bixz — 2AYiz,
Ni = —Diyf +Exyi — 2CGixz +Biyia,
T = —BiZ — 2Fxy; +Exiz + Diyiz, .
Ui = Bi(X — ) +2(C —A)xyi +Exiz — Diyiz +Hix — Gy,
Vi = Di(Z —X) —Exyi +2(A —F)xz +Biyiz — lix + Gz,
Wi = E(f —Z)+Dixyi —Bixiz +2(F —Ci)yiz + liyi — Hiz,

andA; throughl; correspond to the entries of the mat@y,
that represents the local quadratic approximant around the
pointg;.

As in the 2D case, whenever the computed transfért) (
is large, we utilize a fractional transform given Ry= RN
andt’ = (R—1)"1(R’ — )t where,| denotes the identity
matrix. A 1/n-fraction of the rotation matriR can be com-
puted by the techniques proposed by Ales&eD?2].

4. Squared Distance Function

Given a 3D point cloudP, we describe two methods for con-
structing a quadratic approximamt to the squared distance
functiond? from any pointx € IR®\ MA(®p) to ®p. At any
pointx, our goal is to construct an approximant such that
FT(x) ~ d?(x,®p) is second order accurate. Points on the
medial axisMA(®p) have non-differentiable squared dis-

We shall us&;, j = 1,2, to denoted/(d — p;).

Let us look at two important special cases.
Ford = 0 we obtain
2
Fa(X1,X2,X3) = X3.

Thus, if we are close to the surface, i.e. in‘itear-field’,
the squared distance function to the tangent plane at the
normal footpoint, is a quadratic approximant.

e Ford = co we obtain

2 2 2
Fa(X1,%2,X3) = X{ + X5 + X3,

which is the squared distance froato its footpointy. So
the distances to normal footpoints are second order accu-
rate if we are in théfar-field’ of the surface.

In order to usd~y as an objective function for a minimiza-
tion, we want the approximant to be non-negative drér
To this end, we replacg; with

{d/(dp;)

0
The resulting approximar ™ is positive definite and is
given by

ifd<0O,
otherwise.

o =

FT(x) = 8056 + 5256 + 5. (12)

tance function and hence, their second order accurate ap- This quadratic approximaft™ ofd?is simply a weighted

proximants do not exist. In the construction phase, we en-
sure that the approximants are non-negative dR&rsince

F™ is used as an objective function in a minimization pro-
cess as shown in Secti@nln 2D, similar approximants can
be easily computed.

Before we describe how to compute™ for a given

PCD, we summarize a few basic results on the squared dis-

tance function of a surface as observed by Pottmann and
Hofer [PHO3. For each point on a given surface, we assume
that the unit normaili along with the principal curvature di-
rectionsg;, & are given. These three unit vectors combine
to form a local coordinate system called fihrancipal frame

At umbilical points where the principal curvature directions
are not well-defined, any two orthogonal unit vectors on the
tangent plane may be used @&s&,. Let p; be theprinci-

pal radius of curvaturen the directiong. Thenormal foot-
pointy denotes the closest point on the surface fearhet

X1, X2, X3 represent the coordinatesoiin the principal frame
aty. The signed distance frorto its normal footprint is de-
noted byd. The sign ofd is positive ifx and the centers of
the osculating circles &t lie on the same side of the surface
aroundy.

The second order Taylor approximarPH03 of the
squared distance function to the surface at a poicdn be
expressed in the principal frameyaas

d

d—p1

Fa(x) = Fg(x1,%2,X3) = X+ q- p2X§+X§~ (11)

(© The Eurographics Association 2004.

sum of the squared distance functioxisx3,x3 to three
planes: the two principal planes and the tangent plane at the
normal footpoint. Based on this observation, we transform
Equation12to the global coordinate system as,

FIx) = 818 (x—y)*+ 8 (& (x—y))* +
(A (x—y))%.

We can now express this equation in the form given by Equa-
tion 7 to get values for the coefficientsthroughl .

(13)

P

Figure 1: A query poinx € IR? has a footpoiny € IR? on
the surfacebp represented by a PCD P. We approximate the
footpoint byp, the closest point in P from. The principal
frame at the footpoint is spanned &yandn. The osculating
circle to ®p at p has a radius of curvaturg;. In the figure,
the signed distance d fromto the footpoinp is positive.
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4.1. On-Demand Computation {1 ¢ 4 He
Given a pointx, in our first method for computing a second gﬁf A

order accurate squared distance figld for a given PCDP, i; s s

we perform aron-demandtomputation of Equatioi3. For s ”ﬁv‘””’f ; mEis

this method we first need to compute the normal footpoint @%& ; e cmE

of x to P. As an approximation, we treat the closest point 3+ e T

to x in P, as the normal footpoint. This point is found using P s .

an approximate nearest neighbor data structthdN *98]. j R | P

Figure 1 shows the scenario in 2D. When tRes a sparse A

sampling of®p, we can use the underlying moving least
square (MLS) surface to get a better approximation for the
normal footpoint AKO4]. We further need to evaluate local
curvatures at points d? in order to use Equatioh3. These
quantities are computed in the preprocessing step of our al-
gorithm.

Figure 2: d2Tree can be used in 2D (left) and in 3D (right) to
store quadratic approximants of the squared distance fields
correct to some error threshold. The maximum number of
levels and the error threshold, which are parameters used
during the construction of this quad-tree like data-structure,
determine the size of the cells. In the 2D case, we overlay
At each point of a given PCD, we first determine the prin- the Voronoi diagram of the PCD on top of the d2Tree, to
cipal frame using a local covariance analysis as detailed in illustrate that small cells are created around the medial axis.
[CPO3 MNGO4]. If the the underlying surfac®p is reg-
ular, at each of poinp of P, a local parametrization ex-
ists. In the principal frame gi, we estimate the local sur-
face by least square fitting a quadratic function of the form . . )
ad + bxy-+ cyz +dx+ ey to the neighboring points i. _threshoI(_:L The appr_oxm_wants are stqred in the form as given
Once we estimate the coefficierashroughe, we can use in Equation7 (Equation3in 2D). Details of a top-down con-

facts from differential geometry to get the Gaussian curva- Struction ofd2Treecan be found in[PZ03. Here we de-
tureK and the mean curvatuké using scribe a bottom-up construction, which is computationally

more efficient.

4ac—b?
K = A+ 212 (14) As afirst step, a sampled squared distance field is build for
) an input PCD by sweeping the space starting from the PCD
H - a(1+¢e”) —bdetc(1+d ) and propagating the squared distance informatigtyp3.
(1+d?+e?)? Depending on the number of levels, which is an input to the
Finally we evalute the principal radii of curvatug as algorithm, the space is divided into smallest allowable cells
1/(H+vVHZ2—K). (see Figure). In each cell, a quadric patch, that best fits the

sampled squared distance field, is computed. The fitting er-

The correctness of these estimates depends on the samror and the matrices used to compute the coefficients of the
pling density of the given PCD and on the measurement fit are saved in each cell. At the next level, the neighboring
noise. Further, the neighborhood size used for the least cells (four in2D and e|ght in 3D) are merged to form a |arger
square fits can be adapted to the local shaG04]. In quadric patch, only if the resulting fitting error is below the
low noise Scer‘lariOS, when the local estimates of the differ- given error threshold. The |arger quadric patches can be ef-
ential properties can be reliably computed, the approximants ficiently fitted by re-using the matrices stored in the smaller
F* given by this method are good. cells. The quadratic matrix stored in any cell is made positive
semi-definite during construction. The maximum number of
levels of the tree and the error threshold are the required pa-
rameters for the construction of this data structure. Notice
Our second method for computing approximate quadratic that there exists a tradeoff between the size of the cells and
approximants involves least square fitting of quadratic the accuracy of the quadratic approximants.
Eatches toa sample_d squared distance function. For a given Unlike the on-demand method for computing quadratic

CD, these quadratic patches are pre-computed and stored . .
in a special data structure called w2TredLPZ03. Given apprommants_ described before, the d2Tree approach does
any pointx, in this method we do a point location in the cells not need estimates of the local curvature or any nearest

of the d2Tree and return the quadratic approximant stored in ne|ghbor' strgc_ture. Quadratic approxman;s comp_uted by
. d2Tree, implicitly learn the local curvature information by
the corresponding cell.

fitting quadrics to the sampled squared distance field. We
Simply put, the d2Tree is an octree-like (quad-tree in 2D) find this method to be robust to noisy or under-sampled PCD.

data structure, where each cell stores a quadratic fit to the Given a query poink, computingF ™ (x) simply involves

squared distance function, correct to some maximum error a point location in this d2Tree structure, and does not re-

4.2. Quadratic Approximants using d2Tree

(© The Eurographics Association 2004.
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Figure 3: Funnel of Convergence for aligning a bunny with itself. The bunny is rotated (around the y-axis) and translated (along
the x-z plane) to generate different initial positions for tte#a PCD The figure in the middle denotes the sampling pattern used

to get the initial positions. The rotation angle is sampled @t intervals, while the maximum radial translation of the bunny

is around5x the height of the bunny. Regions in black denote convergence to the correct solution. The convergence funnel
of the point-to-plane ICP (left) is found to be quite narrow and unstable. Under similar conditions, our on-demand algorithm
(right) is found to have a significantly broader, and much more stable convergence funnel. The shape of the convergence funnel
corresponding to our d2Tree based approach is similar.

quire any explicit correspondence between points of the in- the fit is exact. For a low residual problem, when the min-
put PCDs. imizer is approached tangentially, point-to-point ICP has a
very slow convergencejpt04 RLO1].

4.3. Point-to-point and point-to-plane ICP error metrics We recall that the Chen-Medioni approach iteratively
as special cases of quadratic approximant minimizes the sum of squared distances to the tangent planes
at the normal footpoints of the current data point locations.
This implies a gradient descent in the error landscape, where
the squared distance to the tangent plane is used to define the
objective function. From an optimization perspective, this
process corresponds to Gauss—Newton iteration. For a zero
residual problem, and a sufficiently good initial position,
this algorithm converges quadraticallydtO4. In practice,
the Chen-Medioni method also works well for low residual
problems. Notice that in the ‘near-field’, the squared distance
to the tangent plane is a second order accurate approximant
to d. So point-to-plane ICP performs much better for fine
registration than the point-to-point ICP algorithm. However,
there is no reason to expect convergence when the two PCDs
are sufficiently apart in the transform space, and in practice,
this is found to be true.

In our framework, the standard ICP algorithms can be re-
duced to special cases by selecting suitable approximants to
the squared distance function. Basic point-to-point ICP uses
squared distance to the closest point as its approximant, i.e.
F*(x) = ||x—y||?> while the Chen—Medioni point-to-plane
ICP usesF*(x) = (fi- (x—y))? as the quadratic approxi-
mant (EquatiorY). In the form given by Equatioth3, point-
to-point ICP has = 1, and point-to-plane ICP has = 0.
However, as pointed out in Sectiegh such approximants
are second order accurate only in the ‘far field’ and ‘near
field” of the PCD, respectively, and hence neither of these
algorithms is well-behaved for all relative placements of the
model and data PCDs.

5. Convergence Issues i . .
For low residue problems, our algorithm also exhibits

In this section, we discuss the convergence behavior of gquadratic convergence, which means that the error reduction
point-to-point and point-to-plane ICP algorithms, and then s of the form

give bounds on the convergence rates for our algorithm. In

contrast to ICP algorithms, our scheme uses second order £+ <Ce? (15)
accurate square distance approximants at all point in space,

and hence, exhibits better convergence properties. where,C € (0,1) denotes the convergence constagige-

notes the residual error in the current step, andlenotes
Experimentally, the point-to-point ICP algorithm con- the residual error after application of the computed rigid
verges linearly. In a recent result, Pottmann has provided transform. For each poimf;, our algorithm computes a sec-
theoretical justification for this behavioP§t04. We define ond order approximanE™ to the squared distance func-
alow residualproblem as one where the data shape fits the tion of the surfacebp represented by PCB. Using these
model shape well, andzero residuaproblem as one where  approximants, we derive the best aligning transform for
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Algorithm 1 Brings a data PCI) in alignment to a model
PCD P usingon-demandccomputation od2Treebased ap-
proach or point-to-point ICP or point-to-plane ICP.

1: if usingon-demandnethodthen

2:  Build an approximate nearest neighbor structure for
P.

3:  Pre-compute principal frame and radii of curvature
pj. j = 1,2, at each poinp; € P as described in Sec-
tion4.1

4: else ifusingd2Treemethodthen

5:  Build d2Treewith a suitable error threshold. (see Sec-
tion4.2)

6: end if

7: count«— MAXCOUNT

8: repeat

9: for each poingg; € Qdo

10: ComputeF " (g;) using method described in Sec-
tion 4.1for on-demandpproach. Fod2Treebased
approach refer to Sectigh2 For point-to-point or
point-to-plane ICP refer to Sectigh3.

11:  end for

12:  UsingF ' (q;), build and solve the linear system given

in Section3.

13:  if Armijo condition not satisfiethen

14: Take ¥/n fraction of the computed rigid transform
(see Sectior®). Value ofn chosen via line-search
to satisfy Armijo rule (see Sectids).

15:  endif

16: if (residual erro ERRORTHRESHOLD) then

17: break

18:  endif

19: count— count—1

20: until count=#£ 0

Q by following a gradient descent with Newton iteration
steps Kel99] in the rigid transform group (see Secti@h

We continue until the residual error falls below a pre-defined
threshold or a maximum number of iteration steps has been
reached. Since the presented method is a Newton algorithm
it converges quadratically<gl99, Pot04.

As mentioned in Sectiog, if the residue is large, we ap-
ply only 1/n fraction of the computed transform to prevent
oscillations, or even divergence. Various line search strate-
gies exist for choosing good values fpr[Kel99]. In our
implementation, we used t#emijo condition[Kel99] to se-
lectn. This results in @lamped Gauss—Newton algorithin
is well known in optimization, that algorithms which uses
the Armijo rule converge linearly. Hence, to ensure faster
convergence for large residue problems, it may be better to
select a quadratic approximant of the motion, instead of a
linear one Pot04.

n of Point Cloud Data

given PCD pair, and use it to detect a local minimum. A point
cloud P, sampled from a surfac®p, is said to besampled
r-dense if any sphere with radius centered orbp contains

at least one sample point M[HDD*92]. Suppose that the
model PCDP is anrp-dense sampling obp. Further, as-
sume the measurement noise only perturbs any point by a
maximum amount obp andog respectively for the given
PCDsP, Q. Under this restrictive sampling model, when
®q represents a subset @b, a final residual matching er-
ror € greater thaM (rp + op + 0Q)2 indicates the algorithm
has been stuck at a local minima during the search process.
When such a situation happens, we may randomly pe@urb

to a new orientation, and try to align the two PCDs starting
from that position.

To further study this global convergence property, we de-
fine thefunnel of convergender a registration algorithm, as
the set of all initial poses of a PCQ, which can be success-
fully aligned with P, using the given algorithm. Notice that
the funnel only measures global convergence and not speed.
A broad funneindicates that the algorithm can successfully
handle a wide range of initial positions. An algorithm is said
to have astable funneif the convergence zones, in the trans-
form space, are clustered and not arbitrarily distributed. A
stable funnel is desirable, since this can enable a system-
atic way of generating positions for random re-starts, using
some branch and bound approach. Experimentally, we ob-
serve that our algorithm has a broader and more stable fun-
nel of convergence as compared to the point-to-plane ICP
variant. This can be explained by the fact, that our algorithm
makes use of higher order surface properties.

6. Results

We test our algorithm on a variety of data sets with differ-
ent amounts of noise, and compare its performance against
point-to-point and point-to-plane ICP algorithms.

A brief summary of our registration framework is given
in Algorithm 1. We compare the performance of approaches
based on the choice of the approxim#&nt of the squared

'distance function at any point

1. on-demand computation of quadratic approximant (Sec-
tion 4.1)

2. quadratic approximant using d2Tree (SectoB)

3. squared point-to-point distance (point-to-point ICP)

4. squared distance to the tangent point at the footpoirt of
(point-to-plane ICP)

In our implementation, we test for Armijo condition to en-
sure stability of the algorithms.

On the bunny model, which consists of ,282 points,
we compare the convergence funnel of point-to-plane ICP
and that of our algorithm based on on-demand computation.

Our gradient descent based optimization can get stuck ata A copy of the same PCD is rotated around thaxis and
local minimum. We bound the maximum residual error for a translated to different positions along tke plane. Figure3
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Figure 4: Plots of residual error vs iteration count for bunny PCD. WhenniwdelanddataPCDs, both corrupted with noise,

start far apart in the transform space, the point-to-plane ICP fails to converge to the correct solution (left). However, algorithms
using any of the other square distance approximants do converge, witthealbased approach converging fastest. Middle:

For good initial position and small residual problem (the two PCDs align well), the point-to-point ICP algorithm has a slow
convergence, while optimization based on any of the other squared distance approximants, converges quadratically. The figure
to the right shows the effect of changing the error threshold value used for constructing the d2Tree. As the threshold is increased,
a larger neighborhood of the squared distance function is captured by each of the cells of the tree and hence, the algorithm
converges faster. However, for sufficiently high error threshold values, the distance approximants get too crude, and the method
starts to deteriorate.

shows that the convergence funnel of point-to-plane ICP is ficiently high error threshold values, the distance approxi-
quite narrow when the initial displacement is large. Under mants get too crude, and the method starts to deteriorate.
similar conditions, our algorithm is found to have a much
broader convergence funnel. Our convergence funnel is also
more stable. Experimentally, the initial translation is found
to have little effect on the convergence of our algorithm.

Our algorithm is able to handle the case when the data
PCD is a subset of the model PCD. We take a partial scan
of the bunny consisting of 1800 points. This scan is from
scanned data and is corrupted with measurement noise. We

Next we compare the convergence rates for the four vari- ysed the on-demand algorithm to match the partial scan to
ants listed before. For both on-demand and d2Tree based apthe complete bunny model PCD. The starting arrangement
proaches, the pre-computation time depends on thensife and the final match are shown in Figire
the model PCD. For point-to-point, point-to-plane and on- ] ]
demand computation, at each iteratibr, for a pointx can Finally we test the robustness of our approach in pres-
be computed in O(1) time after the nearest neighbor query €NC€ of noise and varying sampling density.We try to align
has been answered. For d2Tree, the nearest neighbor quen Part (consisting of 1419 points) of a ball-joint with the

is replaced by point location in the d2Tree cells. The solution SOcket of a hip-bone represented by 1528 points. Note
of the linear system involves an inversion of & 6 matrix. the sampling density and sampling pattern are vastly differ-

Since the amount of work in each iteration step for any of €Nt across the two models. The ball-joint is much densely
the algorithms is roughly same, we simply count the number Sampled compared to the hip-bone. Even in this case, for
of iterations for comparing speed.

In Figure4, we plot the residual error vs iteration count
for four approaches. In the presence of noise and for large
residues, point-to-plane ICP often fails to converge. In such
noisy scenarios, since the estimates of local principal radii
are bad, our on-demand algorithm is found to be marginally
worse than point-to-point ICP. The d2Tree based method
still converges fast, since the cell-sizes automatically get
adjusted during their construction phase, to partially aver-
age out the effect of noise. However, in low residual cases,
for reasons explained in Sectidn all algorithms except
for point-to-point ICP converge quadratically. The threshold
value used for constructing the d2Tree is also varied. As the
threshold is increased, a larger neighborhood of the squared
distance function is captured by each of the cells of the tree
and hence, the algorithm converges faster. However, for suf-

Figure 5: Partial Match: A partial scan of the bunny (shown
in purple) is registered to the bunny, timeodel PCD. The
initial arrangement of the PCDs is shown to the left. Our
algorithm found the correct match (middle,right) in six iter-
ations.
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[CLSB92]

[CM91]

Figure 6: Partial Match: The goal is to fit a part (shown in [CPO3]

purple) of the ball-joint to the hip-bone (shown in green).
The starting arrangement (left) and the final alignment
(right) are shown. The whole ball-joint is shown to help the

of 3d shapes. IhEEE Transactions on PAM(1992),
vol. 14, pp. 239-2561, 2

CHAMPLEBOUX G., LAVALLEE S., &ELISKI R.,
BRUNIE L.: From accurate range imaging sensor cali-
bration to accurate model-based 3d object localization.
In IEEE Conference of CVPR992), pp. 83-892

CHEN Y., MEDIONI G.: Object modeling by registra-
tion of multiple range images. IEEEE Conference on
Robotics and Automatiof1991).1, 2

CazaLs F., POUGET M.: Estimating differential
quantities using polynomial fitting of osculating jets.
In Eurographics/ACM SIGGRAPH symposium on Ge-
ometry processin003), pp. 177-1876

reader judge the correctness of the match. Our algorithm is [CWPGO04] COTTING D., WEYRICH T., PAULY M., GROSSM.:

robust enough to handle varying sampling density and noise
in the given PCDs.
[Fit01]

reasonable starting positions, we got a good final alignment
(see Figuré). The whole ball-joint is shown just to illustrate
the goodness of the alignment. We manually selected a part
of the ball-joint to satisfy our constraint thdlg represents

a subset ofpp.

[GIRLO3]

[HDD*92]

7. Conclusion and Future Work

We have developed a framework for pairwise registration of
point cloud data. In this framework, registration is treated
as a distance minimization between the surfaces represented
by the PCDs. We develop quadratic approximants of the
squared distance function to a point cloud and use the ap-
proximants to perform a minimization. Since our approx-
imants are second order accurate, we can use them for a
Gauss-Newton optimization. As a result, compared to other [LPZ03]
commonly used registration algorithms, our algorithm is sta-

bler and has a faster convergence rate.

[JHO3]

[Kel9g]

Extending the framework to compute partial matches will

. IMNGO04]
be very useful. Finally, we plan to extend our framework to
solve the problem of simultaneously aligning more than two
PCDs.
[PHO3]
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