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Classic Methods for Generating 3D Data

Creating CAD Model Scanning 3D Model
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3D Deep Generative Models
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Generative Model (unconditional)
Given training data, generate new samples from the same distribution:

Training data ~ pdata(x) Generated samples~ pmodel(x)

Objective: learn a  pmodel(x) that matches pdata(x). 
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Conditional Generative Model

• Data: (x, y) where x is a condition and y is the corresponding content.

Objective: learn a  pmodel(y|x) that matches pdata(y|x). 

Image generation based 
on scene-graph

Single-view 3D 
reconstruction

Shape completion
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How to Learn Generative Models

• Explicitly modeling data 
probabilistic density,               
learn a network p⍬(x) that 
maximize data probability 

• Implicitly modeling 
probabilistic density,      
e.g. learn a network that 
scores the realness of the 
data, f⍬(x)  

• Markov chain
• Autoregressive models
• Variational autoencoder

(VAE)
• Flow-based models
• Energy based models
• …

• Generative adversarial 
network (GAN)

• Score-based generative
• …
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Generative Modeling

Richard Feynman: “What I cannot create, I do not understand”

Generative modeling: “What I understand, I can create”



Background:
3D Representations 

and Learning Frameworks
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Multiple 3D Representations

Point Cloud Surface Mesh Volumetric

… (CSG, BSP, etc)  
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3D Convolution for Voxels

3D convolution
Kernel: Kh ☓ Kw ☓ Kd
Kernel weight: Kh ☓ Kw ☓ Kd ☓ C1 ☓ C2
Feature grid: H ☓W ☓ D ☓ C

2D convolution
Kernel: Kh ☓ Kw
Kernel weight: Kh ☓ Kw ☓ C1 ☓ C2
Feature grid: H ☓W ☓ C
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Summary: 3D Convolution

[Wu et al. 2015]

voxelization + 3D CNN

Con: High space complexity -- 3D convolution O(N3)
Quantization errors in voxelization
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Sparse Convolution

Submanifold sparse convolutional 
network (from FAIR)

Minkowski Engine (from SVL)

Pro: computing efficiently.      Con: still quantization.
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Point Clouds from Many Sensors

1
5

Lidar point clouds (LizardTech)
Depth camera (Intel)

Structure from motion (Microsoft)
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PointNet: First Learning Tool for Point Clouds

Object Classification

Object Part Segmentation

Semantic Scene Parsing

...

PointNet

End-to-end learning for irregular point data 

Unified framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. 
PointNet: Deep Learning on Point Sets for 3D 
Classification and Segmentation. (CVPR’17)
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Invariances

Point Permutation Invariance

Point cloud is a set of unordered points

The model has to respect key desiderata for point clouds:

Sampling Invariance
Output a function of the underlying geometry and not the sampling
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Permutation Invariance: Symmetric Functions

Examples:

…
How can we construct a universal family of 
symmetric functions by neural networks? 
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Construct Symmetric Functions by Neural Networks

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

…

Simplest form: directly aggregate all points with a symmetric operator
Just discovers simple extreme/aggregate properties of the geometry.

(2,3,4)

=
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Construct Symmetric Functions by Neural Networks

is symmetric if      is symmetric

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

… …

PointNet (vanilla)
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Distance Metrics for Point Cloud

A Point Set Generation Network for 3D Object 
Reconstruction from a Single Image, CVPR 2016
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Distance Metrics for Point Cloud

Sum of closest distances
Insensitive to sampling

Sum of matched closest 
distances
Sensitive to sampling
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Convolution on Implicit Functions

PointNet

SDF is a scalar field.

Sample points and use PointNet to extract 
features.

Take points from voxel grid and 3D 
convolution to extract features.

Convolution on implicit function is 
still very immature.
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Convolution on Mesh/Graph

Message passing:

Wang, et.al., Dynamic Graph CNN for Learning on Point Clouds, ToG 2019



Deep 3D Generative Models

30
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Auto-Encoder

• AE encodes itself into a latent z
• AE then decodes the latent z back 

to itself
• Understanding AE is the first step 

to understand generative models.

Image Credit: Stanford CS231N
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Encoding 3D using Convolution

Encoding: Convolution networks can transform a 3D data into a 
vector in latent space.

PointNet
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Decoding/Generation

Latent vectors z Generated Shapes

Generator/Decoder: generating shapes from latent vectors
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Auto-Encoder

Task: Learn to encode the input and decode itself
Reconstruction loss: measuring the distance between the input/output
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Auto-Encoder

• Why dimension reduction?
Want features to capture 

meaningful factors of variation in data.

• Unsupervised/Self-supervised

Image Credit: Stanford CS231N
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Volumetric AE

Binary Cross-Entropy Loss: 

CoRR 2016
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks
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Deconvolution (Transposed Conv)

Stride = 1, Padding = 0 Stride = 2, Padding = 1

Image credit:  
https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic
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Auto-Encoder Connecting 2D and 3D

Encoder: 2D Conv
Decoder: 3D Deconv (Octree decoder)
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Point Cloud AE

Encoder: PointNet (N*3  L)
Decoder: MLP (L  3N  N*3)

ICML, 2018, Learning Representations and Generative Models for 
3D Point Clouds, Panos Achlioptas, et. al.
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Parametric Decoder: AtlasNet

Given that the output points form a smooth surface, enforce such a 
parametrization in input. For each point (u, v) on the parameterization,

MLP([z, uv]) -> point

Also, you can get Mesh!
AtlasNet: A Papier-Machˆe Approach to Learning 3D Surface 
Generation,  CVPR 2018



41

Parametric Decoder: AtlasNet

AtlasNet: A Papier-Machˆe Approach to Learning 3D Surface 
Generation,  CVPR 2018

One parameterization (an atlas) is limited for objects with 
complex topology.
So, more sheets.
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Comparison 

Input image Voxel Point cloud AtlasNet

AtlasNet: A Papier-Machˆe Approach to Learning 3D Surface 
Generation,  CVPR 2018
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AutoEncoding SDF: Deep SDF
Comparison with Octree

Decoder

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019 
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Discussion

• Where is the data manifold in the latent space?
• Is a vanilla autoencoder a generative model?



46

Variational Auto-Encoder

We can assume z follows a 
distribution.

Choose prior p(z) to be 
simple, e.g. Gaussian. 

Image Credit: Stanford CS231N
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Variational Auto-Encoder

Encoder Decoder

Image Credit: Stanford CS231N
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Training VAE

Credit: Stanford CS231N
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Generating New Samples & Interpolation

CoRR 2016
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks
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Issues for Autoencoders

Suffered from blurry issues.

Why? Loss function (L2).
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GAN

Credit: Stanford CS231N
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Training GAN

Credit: Stanford CS231N
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Voxel GAN

Wu et. al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial 
Modeling, NeurIPS 2016
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Point Cloud GANs

ICML, 2018, Learning Representations and Generative Models for 
3D Point Clouds, Panos Achlioptas, et. al.
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More Applications

ICML, 2018, Learning Representations and Generative Models for 
3D Point Clouds, Panos Achlioptas, et. al.
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Flow-based Generative Model

Flow-based model is constructed by a sequence of invertible transformations.
Explicitly modeling probability.  Loss: negative loglikelihood of z = f(x)

Image credit:  Lil’log

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
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Flow-based 3D Generative Model

Discrete Point Flow Networks
From Univ. Grenoble Alpes

PointFlow (continuous 
normalizing flow)
From Cornell

Note that bijectivity requires same dimenisionality.
From left to right: latent points to generated points



Deep 3D Conditional Generative 
Models: CVAE, CGAN
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Point Cloud Upsampling

PU-GAN: a Point Cloud 
Upsampling Adversarial 
Network
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StructureNet

StructureNet: Hierarchical Graph Networks for 3D 
Shape Generation
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GRASS: Shape Synthesis
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GRASS: Inferring Consistent Hierarchy
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Thank You

Machine learning
Computer vision
Computer graphics
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