Learning 3D Representations and Generative Models

He Wang Stanford University

Leonidas Guibas Laboratory

Geometric Computing

Classic Methods for Generating 3D Data

Creating CAD Model

Scanning 3D Model

3D Deep Generative Models

Monocular 3D reconstruction

Shape completion Shape modeling

Generative Model (unconditional)

Given training data, generate new samples from the same distribution:

Training data ~ $p_{data}(x)$

Generated samples~ p_{model}(x)

Objective: learn a $p_{model}(x)$ that matches $p_{data}(x)$.

Conditional Generative Model

• Data: (x, y) where x is a **condition** and y is the corresponding **content.**

Image generation based on scene-graph

Single-view 3D reconstruction

Shape completion

Objective: learn a $p_{model}(y|x)$ that matches $p_{data}(y|x)$.

How to Learn Generative Models

- Explicitly modeling data probabilistic density, learn a network p_θ(x) that maximize data probability
- Implicitly modeling probabilistic density,
 e.g. learn a network that scores the realness of the data, f₀(x)

- Markov chain
- Autoregressive models
- Variational autoencoder (VAE)
- Flow-based models
- Energy based models
- •
- Generative adversarial network (GAN)
- Score-based generative

Generative Modeling

Richard Feynman: "What I cannot create, I do not understand"

Generative modeling: "What I understand, I can create"

Background: 3D Representations and Learning Frameworks

Multiple 3D Representations

... (CSG, BSP, etc)

3D Convolution for Voxels

2D convolution Kernel: $K_h X K_w$ Kernel weight: $K_h X K_w X C_1 X C_2$ Feature grid: H X W X C

3D convolution

Kernel: $K_h X K_w X K_d$ Kernel weight: $K_h X K_w X K_d X C_1 X C_2$ Feature grid: H X W X D X C

Summary: 3D Convolution

[Wu et al. 2015]

Con: High space complexity -- 3D convolution $O(N^3)$ Quantization errors in voxelization

Sparse Convolution

Submanifold sparse convolutional network (from FAIR)

Minkowski Engine (from SVL)

Pro: computing efficiently. Con: still quantization.

Point Clouds from Many Sensors

Structure from motion (Microsoft)

Depth camera (Intel)

PointNet: First Learning Tool for Point Clouds

. . .

Object Classification

Object Part Segmentation

Semantic Scene Parsing

End-to-end learning for irregular point data **Unified** framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. (CVPR'17)

The model has to respect key desiderata for point clouds:

Point Permutation Invariance

Point cloud is a set of unordered points

Sampling Invariance

Output a function of the underlying geometry and not the sampling

Permutation Invariance: Symmetric Functions

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

How can we construct a universal family of symmetric functions by neural networks?

Construct Symmetric Functions by Neural Networks

Simplest form: directly aggregate all points with a symmetric operator **Just discovers simple extreme/aggregate properties of the geometry.**

g

Construct Symmetric Functions by Neural Networks

$$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$$
 is symmetric if g is symmetric

Distance Metrics for Point Cloud

Chamfer distance We define the Chamfer distance between $S_1, S_2 \subseteq \mathbb{R}^3$ as:

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2$$

Earth Mover's distance Consider $S_1, S_2 \subseteq \mathbb{R}^3$ of equal size $s = |S_1| = |S_2|$. The EMD between A and B is defined as:

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

where $\phi: S_1 \to S_2$ is a bijection.

A Point Set Generation Network for 3D Object Reconstruction from a Single Image, CVPR 2016

Chamfer distance We define the Chamfer distance between $S_1, S_2 \subseteq \mathbb{R}^3$ as:

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2$$

Sum of closest distances

Insensitive to sampling

Earth Mover's distance Consider $S_1, S_2 \subseteq \mathbb{R}^3$ of equal size $s = |S_1| = |S_2|$. The EMD between A and B is defined as:

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

where $\phi: S_1 \to S_2$ is a bijection.

Sum of matched closest distances Sensitive to sampling

Convolution on Implicit Functions

SDF is a scalar field.

Convolution on implicit function is still very immature.

Sample points and use PointNet to extract features.

Take points from voxel grid and 3D convolution to extract features.

25

Convolution on Mesh/Graph

Message passing: The output of EdgeConv at the *i*-th vertex is thus given by

$$\mathbf{x}'_{i} = \prod_{j:(i,j)\in\mathcal{E}} h_{\Theta}(\mathbf{x}_{i}, \mathbf{x}_{j}).$$
(1)

Wang, et.al., Dynamic Graph CNN for Learning on Point Clouds, ToG 2019

Deep 3D Generative Models

Auto-Encoder

- AE encodes itself into a latent z
- AE then decodes the latent z back to itself
- Understanding AE is the first step to understand generative models.

Encoding 3D using Convolution

Encoding: Convolution networks can transform a 3D data into a vector in latent space.

Decoding/Generation

Latent vectors **z**

Generated Shapes

Generator/Decoder: generating shapes from latent vectors

Auto-Encoder

Task: Learn to encode the input and decode itself **Reconstruction loss**: measuring the distance between the input/output

Auto-Encoder

- Why dimension reduction? Want features to capture meaningful factors of variation in data.
- Unsupervised/Self-supervised

Volumetric AE

Binary Cross-Entropy Loss: $\mathcal{L} = -t \log(o) - (1-t) \log(1-o)$

CoRR 2016 Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

Deconvolution (Transposed Conv)

Stride = 1, Padding = 0

Stride = 2, Padding = 1

Image credit: https://github.com/vdumoulin/conv arithmetic

Auto-Encoder Connecting 2D and 3D

Encoder: 2D Conv Decoder: 3D Deconv (Octree decoder)

Tatarchenko et al., "Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs", *ICCV 2017*

Point Cloud AE

Encoder: PointNet (N*3 \rightarrow L) Decoder: MLP (L \rightarrow 3N \rightarrow N*3)

ICML, 2018, Learning Representations and Generative Models for 3D Point Clouds, Panos Achlioptas, et. al.

Parametric Decoder: AtlasNet

Given that the output points form a smooth surface, enforce such a parametrization in input. For each point (u, v) on the parameterization, MLP([z, uv]) -> point

Also, you can get Mesh!

AtlasNet: A Papier-Mach^e Approach to Learning 3D Surface Generation, CVPR 2018

Parametric Decoder: AtlasNet

One parameterization (an **atlas**) is limited for objects with complex topology. So, **more sheets**.

AtlasNet: A Papier-Mach[^]e Approach to Learning 3D Surface Generation, CVPR 2018

Comparison

AtlasNet: A Papier-Mach[^]e Approach to Learning 3D Surface Generation, CVPR 2018

AutoEncoding SDF: Deep SDF

Comparison with Octree

Discussion

- Where is the data manifold in the latent space?
- Is a vanilla autoencoder a generative model?

We can assume z follows a distribution.

Choose prior p(z) to be simple, e.g. Gaussian.

Variational Auto-Encoder

Encoder

Image Credit: Stanford CS231N

Training VAE

Credit: Stanford CS231N

Generating New Samples & Interpolation

CoRR 2016

Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

Issues for Autoencoders

Suffered from blurry issues.

Why? Loss function (L2).

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Training GAN

Train jointly in minimax game

 $\begin{array}{l} \text{Discriminator outputs likelihood in (0,1) of real image} \\ \text{Minimax objective function:} \\ \min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right] \\ \text{Discriminator output} \\ \text{for real data x} \end{array} \right] \\ \end{array}$

- Discriminator (θ_d) wants to **maximize objective** such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Credit: Stanford CS231N

Voxel GAN

Figure 1: The generator of 3D Generative Adversarial Networks (3D-GAN)

Figure 2: Shapes synthesized by 3D-GAN

Wu et. al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, NeurIPS 2016

Point Cloud GANs

ICML, 2018, Learning Representations and Generative Models for **3D Point Clouds**, Panos Achlioptas, et. al.

More Applications

Figure 2. Interpolating between different point clouds, using our latent space representation. More examples for furniture and *human-form* objects (Bogo et al., 2017) are demonstrated in the Appendix in Figures 11 and 14, respectively.

Figure 4. Point cloud *completions* of a network trained with partial and complete (input/output) point clouds and the EMD loss. Each triplet shows the partial input from the test split (left-most), followed by the network's output (middle) and the complete ground-truth (right-most).

ICML, 2018, Learning Representations and Generative Models for

3D Point Clouds, Panos Achlioptas, et. al.

Flow-based Generative Model

Flow-based model is constructed by a sequence of **invertible transformations**. Explicitly modeling probability. Loss: negative loglikelihood of z = f(x)

Image credit: Lil'log

Flow-based 3D Generative Model

Discrete Point Flow Networks From Univ. Grenoble Alpes

PointFlow (continuous normalizing flow) From Cornell

Note that bijectivity requires same dimenisionality. From left to right: latent points to generated points

Deep 3D Conditional Generative Models: CVAE, CGAN

Point Cloud Upsampling

PU-GAN: a Point Cloud Upsampling Adversarial Network

StructureNet

StructureNet: Hierarchical Graph Networks for 3D Shape Generation

GRASS: Shape Synthesis

GRASS: Inferring Consistent Hierarchy

Thank You

Machine learning Computer vision Computer graphics