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Classic Methods for Generating 3D Data
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3D Deep Generative Models
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Generative Model (unconditional)

Given training data, generate new samples from the same distribution:

Training data ~ p4a4(X) Generated samples™ p,  4ei(X)

Objective: learn a p,  4.(X) that matches p4,..(x).



Conditional Generative Model

e Data: (x, y) where x is a condition and y is the corresponding content.

Scene Graph

sheep + by » sheep
boat * in standmg on
ocean > by grass *sky

behind < tree above

~_ s

Image generation based  gjingle-view 3D Shape completion
on scene-graph reconstruction

Input Scan

1 L

i

Final Completion Result

Objective: learn a p,, 4.(Y|x) that matches p ... (y[x).



How to Learn Generative Models

Explicitly modeling data
probabilistic density,

learn a network pg(x) that
maximize data probability

Implicitly modeling
probabilistic density,

e.g. learn a network that
scores the realness of the
data, f4(x)

=)

Markov chain
Autoregressive models
Variational autoencoder
(VAE)

Flow-based models
Energy based models

Generative adversarial
network (GAN)
Score-based generative



Generative Modeling

Richard Feynman: “What | cannot create, | do not understand”

Generative modeling: “What I understand, | can create”



Background:
3D Representations
and Learning Frameworks
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3D Convolution for Voxels

Image '
| - —
. | — ] =T

*5 64x7x

|| 32x14x14

28 x 28

64 x14 x 14

32 x 28 x 28 .
Convolution Convolution

padding = 1, padding = 1, Max pooling
kernel = 3x3, Max pooling kernel = 3x3, Kernel = 2x2,
stride = 1 Kernel = 2x2, St”df =1 Stride = 2
+ Stride = 2
RelU RelU

2D convolution
Kernel: K, X K,
Kernel weight: K, X K, X C; X C,
Feature grid: H X W X C

3D convolution

Kernel: K, X K,, X K
Kernel weight: K, X K, X K; X C; X C,

Feature grid: H XW X D X C

L}



Summary: 3D Convolution

.
512 filters of
tride 1 o
stride 47

160 filters of N

stride 2

voxelization

48 filters of
stride 2

[Wu et al.

Con: High space complexity -- 3D convolution O(N3)
Quantization errors in voxelization

3D voxel input

2015]
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Sparse Convolution

Submanifold sparse convolutional MinkowskivEngine (from SVL)
network (from FAIR)

Pro: computing efficiently.  Con: still quantization.
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Point Clouds from Many Sensors

Lidar point clouds (LizardTech) Structure from motion (Microsoft)
Depth camera (Intel)

—
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PointNet: First Learning Tool for Point Clouds

Object Classification

PointNet Object Part Segmentation

Semantic Scene Parsing

End-to-end learning for irregular point data l PointNet
.pe : ) X
Unified framework for various tasks mug? {@ 3 &
,jf table? l i
car?
Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. . . ‘ .
PointNet: Deep Learning on Point Sets for 3D Classification Part Segmentation ~ Semantic Segmentation

Classification and Segmentation. (CVPR’17) 16



Invariances

The model has to respect key desiderata for point clouds:
Point Permutation Invariance

Point cloud is a set of unordered points

Sampling Invariance

Output a function of the underlying geometry and not the sampling

17



Permutation Invariance: Symmetric Functions

FO Xy x,) = f(X, X, X, ), X cR”

Examples:

f(x,%,,...,X, ) =max{x,,X,,...,xX }

f(x,%,...x,)=x,+x,+...+ X,

How can we construct a universal family of
symmetric functions by neural networks?

18



Construct Symmetric Functions by Neural Networks

Simplest form: directly aggregate all points with a symmetric operator g
Just discovers simple extreme/aggregate properties of the geometry.

(1,2,3)

(1,1,1) g =max

(2,3,2) — 0 (234)

(2,3.,4)

19



Construct Symmetric Functions by Neural Networks

f(x,,%,,...,x ) =Y og(h(x,),...,h(x,)) is symmetricif gis symmetric

PointNet (vanilla)

e

20



Distance Metrics for Point Cloud

Chamfer distance We define the Chamfer distance be-
tween S1, 52 C R? as:

\ K
dop(S1,82) = ) min o=yl + 3 min [z -yl
reSh yeSa ./.
Earth Mover’s distance Consider S;, S C R? of equal e~
size s = |S1| = |S2|. The EMD between A and B is defined
as:
dgmp(S1,S2) = o >l — o)l

xeS, \
where ¢ : 51 — S is a bijection. o

A Point Set Generation Network for 3D Object

Reconstruction from a Single Image, CVPR 2016 23



Distance Metrics for Point Cloud

Chamfer distance We define the Chamfer distance be-
tween S1, 52 C R? as:

dcp(S1,52) = Z min |z —ylls + Z min |z —yll
mesly : YyES2

Earth Mover’s distance Consider S;, Sy C R? of equal

size s = |S1| = |S2|. The EMD between A and B is defined
as:

demp(S1,S2) = o m x; |z — o(x)]|2

where ¢ : S1 — Ss is a bijection.

Sum of closest distances
Insensitive to sampling

Sum of matched closest
distances
Sensitive to sampling

24



Convolution on Implicit Functions

»
»

PointNet

R

Sample points and use PointNet to extract
features.

SDF is a scalar field.

Convolution on implicit function is

. : Take points from voxel grid and 3D
still very immature.

convolution to extract features. 25



Convolution on Mesh/Graph

00000 a5 "
o 0000 ® % .
EEEEEE 0//\' °//.\'

l J

Message passing: The output of EdgeConv at the i-th vertex is thus given by

X; = he(xi, X;). (1)
J(i,j)€&E

Wang, et.al., Dynamic Graph CNN for Learning on Point Clouds, ToG 2019
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Deep 3D Generative Models

30



Auto-Encoder

Reconstructed

input data

Decoder

Features

Encoder

Input data

=R N/ &

Image Credit: Stanford CS231N

AE encodes itself into a latent z
AE then decodes the latent z back
to itself

Understanding AE is the first step
to understand generative models.

31



Encoding 3D using Convolution

PointNet

¢ 00000 O
0 000 O @
EEEEEE /

X X © ©

' J i Ji5 ~Jis

Encoding: Convolution networks can transform a 3D data into a
vector in latent space.

32



Decoding/Generation

Latent vectors z Generated Shapes

Generator/Decoder: generating shapes from latent vectors

33



Auto-Encoder

Reconstructed
11— Ideally they are identical. ------------------ > input
x ~ x’
Bottleneck!

Encoder Decoder ,
* 9¢ fo | ==

An compressed low dimensional
representation of the input.

Task: Learn to encode the input and decode itself
Reconstruction loss: measuring the distance between the input/output

34



Auto-Encoder

Reconstructed
input data

* Why dimension reduction?
Decoder Want features to capture
meaningful factors of variation in data.

Encoder * Unsupervised/Self-supervised

Z
Features YA
I

Input data

Image Credit: Stanford CS231N
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Volumetric AE

(B = Bfempy O O ﬂ Cri | Ot T VR ees =

TXTXT 100 7X7X7
15x15x15 1 3;1 :;)(21 3 N=64 N=64 1 5;1_5;21 5 15x15x15
N=16 = = N=18
32x32x32 30x30x30 32x32x32
Input N=8 N=8
Binary Cross-Entropy Loss: [ = —¢ log(o) — (1- t) log(1 — o)
CoRR 2016

Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

32x32x32
Output

36



Deconvolution (Transposed Conv)

Stride =1, Padding =0 Stride = 2, Padding =1

Image credit:
https://github.com/vdumoulin/conv arithmetic

37


https://github.com/vdumoulin/conv_arithmetic

Auto-Encoder Connecting 2D and 3D

Encoder: 2D Conv
Decoder: 3D Deconv (Octree decoder)

Input 1283 2563 GT 256

ieeceesas
Bl i i AR AT

.ﬁ'—-ﬁ-*——ﬂh

Tatarchenko et al., “Octree Generating Networks: Efficient Convolutional
Architectures for High-resolution 3D Outputs”, ICCV 2017
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Point Cloud AE

Encoder: PointNet (N*3 - L)
Decoder: MLP (L 2 3N > N*3)

ICML, 2018, Learning Representations and Generative Models for
3D Point Clouds, Panos Achlioptas, et. al.
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Parametric Decoder: AtlasNet

representation 3D points representation
. % —| M  |—
— MLP T e 00 Sampled E
'S X ] L
o o 2D point

Given that the output points form a smooth surface, enforce such a
parametrization in input. For each point (u, v) on the parameterization,
MLP([z, uv]) -> point

Generated
Latent shape Generated Latent shape H 3D point

Also, you can get Mesh!

AtlasNet: A Papier-Mach”e Approach to Learning 3D Surface
Generation, CVPR 2018 "



Parametric Decoder: AtlasNet

K generated

3D points
Generated
Latent shape 3D point Latent shape — MLP 1 :
Cresen p representation .
representation
- MLP — . :
D moir E 2D point P K

2D point

One parameterization (an atlas) is limited for objects with
complex topology.
So, more sheets.

AtlasNet: A Papier-Mach”e Approach to Learning 3D Surface
Generation, CVPR 2018 41



Comparison

Input image Voxel Point cloud AtlasNet

AtlasNet: A Papier-Mach”e Approach to Learning 3D Surface
Generation, CVPR 2018

42



AutoEncoding SDF: Deep SDF

Comparison with Octree

Code

SDF

(x,y,2)

Decoder

TNl

(1L
| | ,.

(a) Ground-truth  (b) Our Result (c) [22]-25 patch  (d) [22]-sphere

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019 43



Discussion

 Where is the data manifold in the latent space?
* |s a vanilla autoencoder a generative model?

45



Variational Auto-Encoder

Sample from

true Condit(i_?na' 3‘3 We can assume z follows a
po~(z | 2'*) distribution.
Sample from Choose prior p(z) to be
true prior > : .
po- (2) simple, e.g. Gaussian.

Image Credit: Stanford CS231N
46



Variational Auto-Encoder

Sample z from 2|z ~ N (L2, X2|2) Sample x|z from |z ~ N (g2, Xz|2)
Hz|x z|m Hz|z :r:lz
Encoder network Decoder network
q4(2|z) po(z|z)
(parameters ¢) (parameters 0)
X Z
Encoder Decoder

Image Credit: Stanford CS231N

47



Training VAE

~

Variational Autoencoders
ZT

L _ —. . Maximize
:_Dilﬂlt_lrr:g it all t g -dmax'm'z'”g the jikelinood of  Sample x|z from x|z ~ N (k2> Lo|z)
ikelihoog'Tower boun original input
being / \

E. [logps(2) | 2)| — Dicr(as(z | 27) || po(2)) reconstructed T Dl

[,(a:f*'i 0, 0) Decoder network \/
po(z|2)

Z
Sample z from z|:19 ~ N(Mz|$, Zzlw)

T

Make approximate
posterior distribution

close to prior u’zla: 2z|a:
F nibatch of inout Encoder network \/
or every minibatch of inpu
data: compute this forward 96 (2|2)
pass, and then backprop! Input Data €I

Credit: Stanford CS231N 49



Generating New Samples & Interpolation

||||||||||||||

$SGCSSPPT M

Et L mmam
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Generative and Discriminative Voxel Modeling with Convolutional Neural Networks




Issues for Autoencoders

- bl
w  —> Encoder = F4d => Decoder —>| 4w .;

Sample from P(z)
Standard Gaussian

Suffered from blurry issues.

Why? Loss function (L2).

51



GAN

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images ~ | Real Images
(from generator) | - - (from training set)
4
Generator Network
4
Random noise Z

Credit: Stanford CS231N
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Training GAN

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

minmax [Eyep,., 108 Do, (z) + Eanp(z) log(1 — Do, (Go, (2)))]
: d | ] L l

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to O (fake)

- Generator (6 g) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Credit: Stanford CS231N
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Voxel GAN

o e = T -

5 11 =
@ E e

512x4x4x4 V1= -~/
256x8x8x8 @ bkbe—ememm?___ V¥ 1. /S T

7/
128x16x16x16 64x32x32%32 £

G(z) in 3D Voxel Space
64x64x64

\
e

Figure 1: The generator of 3D Generative Adversarial Networks (3D-GAN)

TdFIL ] o reenm
A e TR T

Figure 2: Shapes synthesized by 3D-GAN

Wu et. al., Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial

Modeling, NeurlPS 2016 -



Point Cloud GANSs

Ground Truth

R “?l;' ¢d:0.0028
?iﬁ'?'.{;;‘a?‘ﬂ emd:0.1649
~ L. e .

r-GAN I-GAN (AE-CD)

Lo i a s ¢d:0.0027
iy emd:0.0714

¢d:0.0010
emd:0.1198

ICML, 2018, Learning Representations and Generative Models for
3D Point Clouds, Panos Achlioptas, et. al.
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More Applications

Figure 2. Interpolating between different point clouds, using our latent space representation. More examples for furniture and human-form
objects (Bogo et al., 2017) are demonstrated in the Appendix in Figures 11 and 14, respectively.

Figure 4. Point cloud completions of a network trained with partial and complete (input/output) point clouds and the EMD loss. Each
triplet shows the partial input from the test split (left-most), followed by the network’s output (middle) and the complete ground-truth
(right-most).

ICML, 2018, Learning Representations and Generative Models for
3D Point Clouds, Panos Achlioptas, et. al.
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Flow-based Generative Model

Discriminator

Generator

G(z)

GAN: minimax the -
classification error loss.

Y

\ 4

Y
»

VAE: maximize ELBO. X

Flow-based
generative models: X >
minimize the negative f(x) f (=)

log-likelihood

Flow Inverse

y
v
N
y
Y
”

Flow-based model is constructed by a sequence of invertible transformations.
Explicitly modeling probability. Loss: negative loglikelihood of z = f(x)

Image credit: Lil'log .


https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Flow-based 3D Generative Model

Discrete Point Flow Networks
From Univ. Grenoble Alpes

PointFlow (continuous
normalizing flow)
From Cornell

Note that bijectivity requires same dimenisionality.
From left to right: latent points to generated points

58



Deep 3D Conditional Generative
Models: CVAE, CGAN




Point Cloud Upsampling

(a) input LiDAR data

- Teag -
AT . et pratbeosy S il B S

(b) input (cropped)

PU-GAN: a Point Cloud
Upsampling Adversarial
Network

S OPUNet ™7 (d)MPU *1&) PU-GAN (our) .



StructureNet

ructureNet: Hierarchical Graph Networks for 3D
Shape Generation
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GRASS: Shape Synthesis
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Thank You

Machine learning
Computer vision
Computer graphics
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