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Registration and Matching



How to Get Correspondences?

A chicken-and-egg problem: if we knew the optimal aligning 
transform, then we could get correspondences by proximity
(possibly with the aid of some global adjustment, e.g., dynamic 
programming)

Transform Correspondences

Guess one, estimate the other, and iterate!

Correspondences from proximity (Iterated Closest Pair)

Correspondences from local shape descriptors (Shape Features)

Transform from voting schemes (Geometric Hashing)

Combinations

EM like
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• Approach: iterate between finding correspondences and finding the 
transformation:

Iterative Closest Point (ICP)
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:



• We are given two sets of corresponding points x1, x2, ..., xn and y1, y2, ..., yn in ℜ3. We wish to compute the 
rigid transform T that best aligns x1 to y1, x2 to y2, ..., and xn to yn.

• We define the error to be minimized by
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Simplest Case: Rigid Alignment, Given Correspondences

• Old Problem:
• Known and solved as the orthogonal 

Procrustes problem in Factor Analysis 
(Statistics) [Shönemann, 1966]

• Known and solved as the absolute 
orientation problem in Photogrammetry 
[Horn, 1986]

• Also in robotics, graphics, medical 
image analysis, statistical theories of 
shape, etc ...

MSE error, RMS distance, …



• A rigid motion T is a combination of a translation a and a rotation R, so that T(x) = R(x) + a.

• If we place the origin of our coordinate system at the mean of the xi’s, then the quantity to be minimized 
simplifies to (up to some constants):

• Note that the translational and rotational parts separate. The translational part a can easily be seen to be 
optimized by

SVD-Based Solution

The centroids of the two
point sets have to be
aligned!

T R



• Define

• Here X and Y are 3 by n matrices.
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The Rotation Part via SVD

• Now compute the SVD*

• U and V are 3 by 3 orthogonal matrices, 
and D is a diagonal matrix with 
decreasing non-negative entries along 
the diagonal (the singular values).

• Define S by

• Then

*SVD = singular value decomposition

X YT

O(n) algorithm!

3x3



Iterative Closest Point
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Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor              .
2. Find rigid motion          minimizing:

Convergence: 
• at each iteration                                 decreases. 
• Converges to local minimum
• Good initial guess: global minimum.

[Besl&McKay92]



Variations of ICP
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1. Selecting source points (from one or both scans): sampling 

2. Matching to points in the other mesh

3. Weighting the correspondences

4. Rejecting certain (outlier) point pairs 

5. Assigning an error metric to the current transform 

6. Minimizing the error metric w.r.t. the transformation 



Iterative Closest Point
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Kok-Lim Low, ’04
[linear least squares]

Solution: 
Minimize distance to   
the tangent plane

Given a pair of shapes, X and Y, iterate:
1. For each find nearest neighbor             .
2. Find rigid motion          minimizing:



Iterative Closest Point
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Aligning the bunny to itself:
Point-to-plane always wins in the end-game.



“Gravitational” Potential

13Robot motion planning via potential fields



• Given two related shapes, the “data” A and the “model” B, create a 
potential field that pulls B to the correct alignment with A

• Key tasks
• Define the potential field
• Formulate the optimization problem
• Do gradient descent using approximate linearization
• Iterative approach

“Gravitational” Potential
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Approximate Squared Distance
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[Pottmann and Hofer 2003]

For a curve Ψ, to second order:

For a surface Φ, to second order:

and                             are inverse principal curvatures



Approximate Squared Distance
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For a surface Φ, to second order:

Note that as

and                            are inverse principal curvatures

point-to-point

point-to-plane



• ICP without correspondences
• define a quadratic approximant to the square distance function

• perform iterative gradient-descent in this field
• point to foot-point distance

• case d is large: classical ICP
• case d is small: point-to-plane ICP
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ICP Without Correspondences

[Pottman & Hofer, 02]

curvature



d2(y, ΦP) Using d2 Tree
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Partition the space into cells where each cell stores a 
quadratic approximant of the squared distance function.

2D

3D

Leopoldseder S et al.  d2-tree: A hierarchical 
representation of the squared distance function



Global Matching
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Given shapes in arbitrary positions, find their alignment:

Can be approximate, since will refine later using e.g. ICP

Robust Global Registration
Gelfand et al. SGP 2005 



Global Matching – Approaches

20

Several classes of approaches:
1. Exhaustive Search

2. Normalization (PCA)

3. Random Sampling (RANSAC)

4. Invariant Features
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PCA-Based Alignment

Use PCA to place models into canonical 
coordinate frames
Then align those frames

Covariance 
matrix computation

Principal axes 
alignment



ICP only needs 3 point pairs!

Robust and simple approach. Iterate between: 
1. Pick a random pair of 3 points on model & scan
2. Estimate alignment, and check for error.

Random Sampling (RANSAC)
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Guess and 
verify



Global Matching – Invariant Features
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Try to characterize the shape using properties that are invariant 
under the desired set of transformations.

Conflicting interests – invariance vs. informativeness. 

The most common pipeline: 
1. identify salient feature points
2. compute informative and

commensurable descriptors.



Creates an image associated
with a neighborhood of a point.

Compare points by comparing
their spin images (2D).

Given a point and a normal, 
every other point is indexed
by two parameters:

distance to tangent plane
distance to normal line

Spin Images
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Using Spin Images for Efficient Object 
Recognition in Cluttered 3D Scenes 
Johnson et al, PAMI 99



Integral Volume Descriptor
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Integral invariant signatures, Manay et al. ECCV 2004
Integral Invariants for Robust Geometry Processing,  Pottmann et al. 2007-2009

Robust Global Registration,  
Gelfand et al. 2005



Registration Method Taxonomy
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Local vs. Global
refinement (e.g. ICP)  |  alignment  (search)   . .

Rigid vs. Deformable
rotation, translation  |  general deformation.

Pair vs. Collection
two shapes  |  multiple shapes 



Today:
Shape Smoothing, 

Parametrization, and 
Remeshing
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Outline

•Smoothing Motivation

•Spectral Analysis

•Diffusion Flow

•Remeshing Motivation

•Parametrization

•Global parametrization remeshing

•Direct surface remeshing
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Mesh Smoothing & Remeshing

[slides via Mario Botsch]



Mesh Smoothing: Motivation

• Filter out high frequency noise
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Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular
Meshes using Diffusion and Curvature Flow, SIGGRAPH 99



Motivation -- Denoising

• Filter out high frequency noise
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Motivation – Multi-Resolution Editing

• Advanced filtering
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Pauly, Kobbelt, Gross: Point-Based Multi-Scale Surface Representation, ACM TOG 2006

Guskow, Sweldens, Schroeder: Multiresolution Signal Processing for Meshes, SIGGRAPH 99



• Fair Surface Design
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Motivation: Surface Fairing

Schneider, Kobbelt: Geometric fairing of irregular meshes for free-form surface design, CAGD 18(4), 2001



Outline

•Smoothing Motivation

•Spectral Analysis

•Diffusion Flow

•Remeshing Motivation

•Parametrization

•Global parameterization

•Direct surface remeshing
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• Spatial domain f(x) → Frequency domain F(u)

• Multiply by low-pass filter G(u)

• Frequency domain F(u) → Spatial domain f(x)

Fourier Transform
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• Consider L2 function space with inner product

• Complex “waves” build an orthonormal basis

• Fourier transform is a change of basis

Fourier Transform
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Fourier basis functions are eigenfunctions of the (standard) Laplace 
operator Δ: L2 → L2

We need
A version of this operator for 2D manifolds, and
A discrete (mesh-based) version

Use Eigenfunctions of a discrete Laplace-Beltrami operator 
(generalization of Laplace to meshes)

Extend Fourier to Meshes?
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• Discrete function sampled at mesh vertices

• Discrete Laplace-Beltrami  (per vertex)

Discrete Laplace-Beltrami
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• Discrete Laplace operator (per mesh) 
• Sparse matrix

Discrete Laplace-Beltrami
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• Discrete Laplace operator (per mesh) 
• Sparse matrix

Discrete Laplace-Beltrami
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[inverse of area matrix A]

[stiffness matrix M]



• Discrete function sampled at mesh vertices

• Discrete Laplace-Beltrami  (per vertex)

• Discrete Laplace-Beltrami matrix L
• Eigenvectors are “natural vibrations”

Spectral Analysis of Discrete Laplace-Beltrami
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1. Setup Laplace-Beltrami matrix L
2. Compute k smallest eigenvectors {e1,..., ek}
3. Reconstruct mesh from those  (component-wise)

Spectral Reconstruction
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1. Setup Laplace-Beltrami matrix L
2. Compute k smallest eigenvectors {e1,..., ek}
3. Reconstruct mesh from those

Spectral Reconstruction

Bruno Levy: Laplace-Beltrami Eigenfunctions: Towards an algorithm that 
understands geometry, Shape Modeling and Applications, 2006

Too complex for 
large meshes! (cubic in n)
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•Remeshing Motivation

•Parametrization
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• Diffusion equation

Diffusion Flow on Height Fields

diffusion constant

Laplace operator
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• Iterate

Diffusion Flow on Meshes

0 Iterations 5 Iterations 20 Iterations
46

[Δ: Mesh graph Laplacian (“uniform Laplace”)]



• Smooths geometry and triangulation

• Can be non-zero even for planar triangulations

• Vertex drift can lead to distortions

• Might be desired for mesh regularization

Uniform Laplace Discretization

Desbrun et al., Siggraph 1999

47



• Use diffusion flow with Laplace-Beltrami

• Laplace-Beltrami is parallel to surface normal

➡ Avoids vertex drift on surface

Curvature Flow (Laplace-Beltrami)
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Comparison

Original Uniform Laplace Laplace-Beltrami
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• Write update                                                in matrix notation with

• Corresponds to explicit integration

• Implicit integration is unconditionally stable

Numerical Integration

Requires small λ
for stability!
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• Solve linear system each iteration

• Matrix L = DM is not symmetric because of multiplication by D
➡ Symmetrize by multiplying D-1 from left

• Solve sparse symmetric positive definite system
• Iterative conjugate gradients, sparse Cholesky

Implementation
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• Levy: Laplace-Beltrami Eigenfunctions: Towards an algorithm that understands geometry, Shape 
Modeling and Applications, 2006

• Taubin: A signal processing approach to fair surface design, SIGGRAPH 1996

• Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and 
Curvature Flow, SIGGRAPH 1999

References

52



Outline
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•Global parametrization remeshing
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Remeshing

“Given a 3D mesh, improve its triangulation 
while preserving its geometry.”
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Review: What is a good mesh?
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• Equal edge lengths
• Equilateral triangles
• Valence close to 6

What is a good mesh?
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• Equal edge lengths
• Equilateral triangles
• Valence close to 6
• Uniform vs. adaptive sampling

What is a good mesh?
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• Equal edge lengths
• Equilateral triangles
• Valence close to 6
• Uniform vs. adaptive sampling
• Feature preservation

What is a good mesh?
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• Equal edge lengths
• Equilateral triangles
• Valence close to 6
• Uniform vs. adaptive sampling
• Feature preservation
• Alignment to curvature lines
• Isotropic vs. anisotropic
• Triangles vs. quadrangles

What is a good mesh?
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• Equal edge lengths
• Equilateral triangles
• Valence close to 6
• Uniform vs. adaptive sampling
• Feature preservation
• Alignment to curvature lines
• Isotropic vs. anisotropic
• Triangles vs. quadrangles

What is a good mesh?
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• Parametrization based
• map to 2D domain / 2D problem
• computationally more expensive
• works even for coarse resolution remeshing

• Surface oriented
• operate directly of the surface
• treat surface as a set of points / polygons in space
• efficient for high resolution remeshing

Two Fundamental Remeshing Approaches
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Parametrization
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v



64

Parametrization

?
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Solution
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Flattening Surfaces

Parameterization is …
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Texture Mapping

Why Parametrize?
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Why Parametrize?

Remeshing
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UV-Coordinates

For every mesh vertex determine its (u,v) coordinates
“Texture Coordinates”
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Naïve Approach

Normalize so that UV-coordinates are in [0,1]
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Which is Better?
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Main Issue: Distortion

Naïve approach

Triangle shapes (angles) and sizes (area) are not preserved!

Preserve shape & size = Triangle congruence (aka isometry)

not good!



73

An Old Problem: Maps
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Desirable Characteristics

Bijective: no fold overs

1-to-1

not 1-to-1
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Desirable Characteristics

Conformal:  Preserves angles
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Desirable Characteristics

Equiareal:  Preserves areas
http://en.wikipedia.org/wiki/Bonne_projection
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Desirable Characteristics

Isometric:  conformal and equiareal
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Sad Fact

Very few surfaces can be 
mapped isometrically to 

the plane.
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Reason for so Many Types of Maps
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Tutte’s Theorem

If the (u,v) coordinates of the boundary lie on a 
convex polygon, and if coordinates of the internal 
vertices are convex combination of their 
neighbors, then these (u,v) coordinates give a 
valid (bijective) parameterization.

Convex combination = center of mass
Can have different masses at different vertices
Masses should be positive
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Simple Realization

Goal:  Assign (u,v) 
coordinate to each 
mesh vertex.

1. Fix (u,v) coordinates of boundary.
2. Want interior vertices to be at the center of mass of 

neighbors:
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Algorithm

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:

1

3 2

5

4

6
7
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What do you think?

?
Some random planar mesh

After many iterations
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Expectation

After many iterations

It is already planar: best parameterization = itself
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Reality…  Why?   How to Avoid?

Converges to a somewhat uniform grid!

Triangle shapes and sizes are not preserved!

After many iterations
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Algorithm with Weights

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:

Introduce weights to 
capture geometric 

information:
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Weight Properties

After many 
iterationsGOAL:

With naïve initialization, 
iterations converge immediately!
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Weight Properties
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Harmonic Weights

Weights can be negative – not always bijective
Weights depend only on angles - close to conformal
2D reproducible

cot( ) cot( )

2
ij ij

ij
w

α + β
= ij

αij

βij
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Mean-Value Weights 

Result visually similar to harmonic
No negative weights – always bijective
2D reproducible

tan( / 2) tan( / 2)

2 || ||
ij ij

ij
i j

w
V V

γ + δ
=

−

90

ViVj δ
γ

ij

ij
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Recap: Algorithm with Weights

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:

0. Pick some kind of  
barycentric coordinates 

as weights to capture 
geometric information.
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Results

Naive Harmonic
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Non-Convex Boundary

Requiring convex boundary results in 
significant distortion 

“Free” boundary is better
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Fixed vs Free Boundary
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Fixed vs Free Boundary



96

Old Algorithm

1. Fix (u,v) coordinates of boundary.
2. Initialize (u,v) of interior points (e.g. using naïve).
3. While not converged: for each interior vertex, set:
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Old Algorithm

1. Initialize (u,v) of all points (e.g. using naïve).
2. While not converged: for each vertex, set:

Why this would be problematic? How to fix this?
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Problem

Boundary vertices are pulled towards interior
Shrinkage happens
Collapse to a single point!

After many iterations
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How to Fix this?

Un-shrink at every iteration:
Move the center of mass at origin of UV-plane
Rescale in U direction to make std. deviation = 1
Rescale in V direction to make std. deviation = 1
Make sure covariance  between U and V = 0

Subtract an appropriate multiple of U from V.
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Fixed Algorithm

Initialize (u,v) for all vertices (e.g. using naïve)
While not converged: 

For several times: 
For each vertex, set:

End For
End For
Un-shrink

End While
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Fixed Algorithm = Eigenmap

Equivalent to inverse power iteration for solving an 
eigenvalue/eigenvector problem of type

Pick the smallest two non-constant eigenvectors. 
Call these  
Set (u,v) coordinates as:



102

Eigenmap result
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Fixed boundary, solve Ax=b
Free boundary, solve Ax =0…

Problem: then solution x = 0!
Solution: solve instead eigenvalue problem 

and pick eigenvectors corresponding to the smallest 
non-zero eigenvalues.

Connection Between Methods
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Parametrization Summary

Mesh parameterization = flattening
Inspecting and classifying distortion:

Conformal/Equiareal/Isometric

Methods
Fixed bndry: Harmonic parameterization
Free bndry: Eigenmaps

These are easy to implement!
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•Direct surface remeshing
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Isotropic Remeshing via Parametrization

Weighted Centroidal Voronoi tessellation
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• Randomly sample triangles
• Weighted by area and density
• Density: curvature or user-defined sizing field

• Compensate area distortion when sampling
in the parameter domain

• Distortion = 3D area / 2D area

Initial Sampling
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• Compose importance map

Initial Sampling

Importance mapMean curvatureArea stretch

⋅ =

108



• 2D error diffusion on importance map
• Half-toning, dithering
• Can also be done on 3D meshes  [Alliez03]

Initial Sampling  [Alliez02]
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• 2D constrained Delaunay triangulation
• CGAL library provides robust implementation

Initial Meshing
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• Density-weighted centroidal Voronoi diagram
• Equal mass enclosing
• Tiles as compact as possible
• Highly isotropic sampling
• Lloyd clustering

Optimize Sampling / Meshing
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Uniform vs. Adaptive
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Uniform Sampling
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Adaptive Sampling
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• Avoid global parametrization
• Numerically very sensitive
• Topological restrictions

• Use local operators & back-projections
• Resampling of 100k triangles in < 5s

Direct Surface Remeshing
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Local Remeshing Operators

Edge
Split

Vertex
Shift

Edge
Collapse

Edge
Flip
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•Specify target edge length L

•Iterate:
1. Split edges longer than Lmax

2. Collapse edges shorter than Lmin

3. Flip edges to get closer to valence 6
4. Vertex shift by tangential relaxation
5. Project vertices onto reference mesh

Isotropic Remeshing
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Edge Collapse / Split
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• Improve valences
• Avg. valence is 6 (Euler)
• Reduce variation

• Optimal valence is
• 6 for interior vertices
• 4 for boundary vertices

Edge Flip
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• Improve valences
• Avg. valence is 6 (Euler)
• Reduce variation

• Optimal valence is
• 6 for interior vertices
• 4 for boundary vertices

• Minimize valence excess

Edge Flip

Edge
Flip

+1 +1

-1

-1
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• Local “spring” relaxation
• Uniform Laplacian smoothing
• Bary-center of one-ring neighbors

Vertex Shift

Vertex
Shift
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• Local “spring” relaxation
• Uniform Laplacian smoothing
• Bary-center of one-ring neighbors

Vertex Shift
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• Local “spring” relaxation
• Uniform Laplacian smoothing
• Bary-center of one-ring neighbors

• Keep vertex (approx.) of surface
• Restrict movement to tangent plane

Vertex Shift

project

tangent
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• Project vertices onto original reference mesh
• Static reference mesh
• Precompute BSP

• Assign position & interpolated normal

Vertex Projection

project
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•Specify target edge length L

•Iterate:
1. Split edges longer than Lmax

2. Collapse edges shorter than Lmin

3. Flip edges to get closer to valence 6
4. Vertex shift by tangential relaxation
5. Project vertices onto reference mesh

Isotropic Remeshing

126



Remeshing Results

Original
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Remeshing Results

Edge length
deviation (%)

Deviation
from 60º
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Feature Preservation?
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• Define features
• Sharp edges
• Material boundaries

• Adjust local operators
• Don’t flip
• Collapse only along features
• Univariate smoothing
• Project to feature curves

Feature Preservation
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• Precompute max. curvature on reference mesh
• Target edge length locally determined by curvature
• Adjust split / collapse criteria

Adaptive Remeshing
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• Surface oriented
• operate directly of the surface
• treat surface as a set of points / polygons in space
• efficient for high resolution remeshing

• Parametrization based
• map to 2D domain / 2D problem
• computationally more expensive (?)
• works even for coarse resolution remeshing

Summary: Two Fundamental Approaches
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• Alliez et al, “Interactive geometry remeshing”, SIGGRAPH 2002

• Alliez et al, “Isotropic surface remeshing”, SMI 2003

• Botsch & Kobbelt, “A remeshing approach to multiresolution modeling”, SGP 2004

• Alliez et al, “Recent advances in remeshing of surfaces”, AIM@Shape state of the art report, 
2006
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That’s All
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