CS348a: Geometric Modeling and Processing

Last Time: Mesh Simplification w. Quadratic Error Metrics

Adaptive Level of Detail Simplification

Appearance Preserving Simplification

1,951 tris

7,809 tris

Our Basic Operation:
 Vertex Pair (Edge) Contraction

Contract vertex pair $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \rightarrow \mathrm{v}^{\prime \prime}$

- Move v_{1} and v_{2} to position $v^{\prime \prime}$
- Replace all occurrences of v_{2}, with v_{11}
- Remove v_{2} and degenerate triangles
- Typically, we contract edges, as others have done

Simplifying a Cow in Under One Second

How We Measure Error

Measure error at current vertices
For a given point v, measure sum of squared distances to associated set of planes

- Each vertex v has an associated set of planes
- Initialize with planes of incident faces in originall
- Merge sets when contracting pairs
- Initiall error of each vertex is: 0

Measuring Error With Quadrics

Sum of squared distance to a set of planes

- Vertex v has associated set of planes
- Planes defined by $a x+b y+c z+d=0, a^{2}+b^{2}+c^{2}=1$

$$
\operatorname{Error}(\mathrm{v})=\mathrm{v}^{\top}\left(\sum \mathrm{K}_{\mathrm{p}}\right) \mathrm{v}
$$

- Each plane p defines a quadric matrix K_{p}
- Set of planes represented by sum of quadrics

But What Are These Quadrics Really Doing?

Almost always ellipsoids

- When Q is positive definite

Characterize error at vertex

- Vertex at center of each ellipsoid
- Move it anywhere on ellipsoid with constant error

Capture local shape of surface

- Stretch in least curved direction

Algorithm Outline

Initialization

- Compute quadric \mathbf{Q} for each vertex
- Select set of valid vertex pairs (edges + non-edges)
- Compute minimal cost candidate for each pair

Iteration

- Select lowest cost pair $\left(\mathrm{v}_{11}, \mathrm{v}_{2}\right)$
- Contract $\left(\mathrm{v}_{1}, v_{2}\right)-\mathrm{Q}$ for new vertex is $\mathrm{Q}_{1}+\mathrm{Q}_{2}$
- Update all pairs involving v_{11} \& v_{2}

Sample Model: Stanford Bunny

69,451 faces

1,000 faces (30 sec)

Sample Model: Stanford Bunny

69,451 faces

100 faces (30 sec)

Handling Surfaces With Colored Vertices

Before: $v=(x, y, z, 1)$ and Q is a 4×4 matrix
Now: $v=(x, y, z, r, g, b, 1)$ and Q is a 7×7 matrix

19,404 faces

1,000 face approximation

Today:

Neural Implicit Representations, Class Wrap Up

DeepSDF: CVPR 2019

(c)

Representations for 2D Deep Learning

ImageNet. 2012

Convolution Layer

Convolutional Image Encoders

Extended to 3D Voxel Grids

Dai et al. 2017

Wu et al. 2016
Tatarchenko et al. 2017

Surfaces as Decision Boundary

Signed Distance Functions

Signed Distance Function

Signed Distance Function

Signed Distance Function

Discretized SDFs

-0.9	-0.3	00	0.2	1	1	1	1	1
-1	0.	0.	8.0	0.2	1	1	1	1
-1	0.	-0.3	0.)	0.1	0.9	1	1	1
-1	0.	0.3	0,0	0.2	0.8	1	1	1
-1	- 0.9	0.	-0.1	P. 1	0.8	0.9	1	
-1	-0.	0.3	0,8	0.3	0.6	1	1	1
-1	0.7	-0.	00	0.2	0.7	0.8	1	1
-0.9	-0.7		00	0.2	0.8	0.9	1	1
				0.3	1	1	1	1
0.5	0.3	0.2	0.4	0.8	1	1	1	1

Regression of Continuous SDF

NN
(x, y, z)

SDF

Universal Approximation of Functions by NNs

(c)

褁-

Marching Cubes - Extract Mesh

Lorensen et al., 1987

Ray Casting for Rendering

Normals at the Surface via SDF Gradients

$\frac{\partial f_{\theta}(x)}{\partial x}$

Differentiable Rendering Pipelines

3

Niemeyer et al. 2020

Coding Multiple Shapes

Auto-Encoders

Auto-Encoder

Auto-Decoders

DeepSDF: Auto-Decoder

Backpropagate

Advantages of Optimization During Inference

Benefits during Inference

1. Any Number of Observations - Partial
2. More Controlled Inference - e.g. Accuracy, Priors

DeepSDF Training

频
Initialize shape codes randomly

DeepSDF Training

DeepSDF Training

$$
\hat{\boldsymbol{z}}=\underset{\boldsymbol{z}}{\arg \min } \sum_{\left(\boldsymbol{x}_{j}, \boldsymbol{s}_{j}\right) \in X} \mathcal{L}\left(f_{\theta}\left(\boldsymbol{z}, \boldsymbol{x}_{j}\right), s_{j}\right)+\frac{1}{\sigma^{2}}\|\boldsymbol{z}\|_{2}^{2}
$$

Latent Space of Shapes

Auto-Decoder - Inference

Test Shape

Auto-Decoder - Inference

Test Shape

Auto-Decoder - Inference

Reconstruction

IM-GAN

Training epochs
(a) AECNN Ch A
(b) $\mathrm{AEMM}_{M} \quad \therefore A A A A A A A A$

Interpolation
(c) $A E \operatorname{CNN} A$ A A A A A A A A
(d) AEM $_{M} A \quad A$

$$
\hat{\boldsymbol{z}}=\underset{\boldsymbol{z}}{\arg \min } \sum_{\left(\boldsymbol{x}_{j}, \boldsymbol{s}_{j}\right) \in X} \mathcal{L}\left(f_{\theta}\left(\boldsymbol{z}, \boldsymbol{x}_{j}\right), s_{j}\right)
$$

Adding Priors to Inference

$$
\hat{\boldsymbol{z}}=\underset{\boldsymbol{z}}{\arg \min } \sum_{\left(\boldsymbol{x}_{j}, \boldsymbol{s}_{j}\right) \in X} \mathcal{L}\left(f_{\theta}\left(\boldsymbol{z}, \boldsymbol{x}_{j}\right), s_{j}\right)
$$

Distribution Prior: $\quad \frac{1}{\sigma^{2}}\|\boldsymbol{z}\|_{2}^{2}$

SDF Regularization: $\quad\left(\left\|\nabla_{\boldsymbol{x}} f(\boldsymbol{x} ; \theta)\right\|-1\right)^{2} \quad$ (Matan et al. 2020)

Normal Regularization: $\left\|\nabla_{\boldsymbol{x}} f\left(\boldsymbol{x}_{i} ; \theta\right)-\boldsymbol{n}_{i}\right\|$

Results: Comparison with Octree-Based

Our
Reconstruction

Octree Based

Results: Auto-Encoding Unknown Shapes

Ground Truth

Our Reconstruction

Atlasnet (25 Patches)

Atlasnet (1 Patch)

(a) Input Depth

Many Follow On Works

Zakharov et al. 2020
Output
Color + Density
(b)

Mildenhall et al. 2020

Saito et al. 2019

Shape Modeling

Acquired Shapes

Learned Shapes

Connections to Other Areas - CS233

- Here: 3D reduced to 2D - "dimensionality reduction"
- Look up: "non-linear dimensionality reduction"
- Ways of organizing/visualizing high dim data

CS233: Geometric and Topological Data Analysis

That's All

