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1 Degree Raising

An n-ic curve is a curve of degree at most n. In this section we consider representing a curve
with more control points than required as a degenerate case of a higher order curve.

1.1 Affine Curve as a Degenerate Quadratic

Let F(t) be affine and G(t) quadratic such that

G(t) = F(t) (∀t). (1)

The polar form of G(t) will have two arguments and is given by

g(t1, t2) =
f (t1)+ f (t2)

2
=

F(t1)+F(t2)
2

. (2)

This satisfies the three properties of polar forms (see Handout 19 of 1991, p.16):

• symmetric

• biaffine

• g(t, t) = f (t) = F(t)

Where is the middle Bézier point? Evaluating g(0,1) we see it is simply the midpoint of the
line connecting f (0) and f (1),

g(0,1) =
f (0)+ f (1)

2
. (3)

1.2 Quadratic Curve as a Degenerate Cubic

We now consider raising a quadratic to a cubic and representing it with four Bézier points
instead of three. Let G(t) be quadratic and H(t) be cubic such that

H(t) = G(t) (∀t). (4)
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Figure 1: Test to determine whether curve is a quadratic in disguise: a) curve is a quadratic, b)
curve is a real cubic.

The polar form of H(t) must be symmetric, triaffine and satisfy h(t, t, t) = g(t, t) = G(t):

h(t1, t2, t3) =
g(t1, t2)+g(t1, t3)+g(t2, t3)

3
. (5)

Evaluation of h yields the two new control points

h(0,0,1) =
g(0,0)+2g(0,1)

3
, (6)

h(0,1,1) =
2g(0,1)+g(1,1)

3
. (7)

Using this relationship between the control points for a quadratic and those for a cubic, we
can determine whether a set of four Bézier points describes a real cubic or simply a quadratic
in disguise. Solving both Equations 6 and 7 for g(0,1) and noting that g(t, t) = h(t, t, t), we
obtain respectively

g(0,1) =
3
2

h(0,0,1)− 1
2

h(0,0,0), (8)

g(0,1) =
3
2

h(0,1,1)− 1
2

h(1,1,1). (9)

If g(0,1) found in both approaches is the same, the curve must actually be of degree 2 at
most.

Graphically, this is shown in Figure 1. First, we find the point g(0,1) by extending the line
from h(0,0,0) to h(0,0,1) half again as far as the separation of those points. We repeat this
on the line from h(1,1,1) to h(0,1,1) to find the position of g(0,1) by the second approach.
If both points are the same, the curve is indeed a quadratic in disguise, otherwise it is a true
cubic.

The method of degree raising and checking for degeneracy described here may be extended
to curves of higher degree.
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2 Differentiation and Polar Forms

The material covered during the remainder of this lecture is discussed in detail in Handout 19
of this year by the lecturers. The sections that follow will serve to highlight what was presented
in class.

Let F be a parametric, polynomial, n-ic curve and f its polar form. Our goal here is to
relate the derivative of F to its polar values. We start by finding the homogeneous polar form
of the function as this simplifies the process of finding the derivative.

2.1 Homogenizing Polar Forms

Until now, we have been treating time, t, as a scalar. However, it has really been a point on the
parameter line. Also, to perform differentiation, it is convenient to evaluate F at parameter sites
which include vectors as well as points. This requires homogenization of both the function F
and of time as discussed in Section 1.1 of Handout 19.

In particular, a weight coordinate, s, has been added to time where

T := (s; t).

For brevity, overbar notation is introduced to refer to points on lines (s = 1) by

t := (1; t).

It is also useful to define a vector representing the difference between times T = 1 and T = 0:

δ := (1;1)− (1;0) = 1−0 = (0;1).

As shown on p. 4 of Handout 19, there exists a simple relationship between the derivative
of a function and its polar form. Starting with the definition of the derivative,

F ′(t) = lim
h→0

F(t +h)−F(t)
h

, (10)

we obtain the final answer,
F ′(t) = 3 f (t, t,δ ). (11)

As expected, the derivative is a quadratic and has only two variable arguments remaining.
Graphically, the derivative at t is three times the vector from f (t, t,0) to f (t, t,1) as shown

in Figure 2.
Note that this result holds only for parametrization along an interval of length 1. More

generally, given the Bézier points of the segment F([p ..q]), the derivative at p is

F ′(p) =
3

q− p
( f (p, p,q)− f (p, p, p)). (12)
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Figure 2: Derivative at f (0,0,0) is three times f (0,0,δ ).

3 Spline Curves

In practice, to form a polynomial curve, it makes most sense to specify a sequence of lower
order curves (typically cubic) rather than a single higher order curve. Before these curves can
be assembled however, we must formulate a method for controlling the continuity at each joint
in the sequence.

3.1 Continuity

There are two types of continuity:

• Parametric continuity, denoted by Ck requires smoothness to kth order of both the curve
and its parametrization (eg. a movie of particle would look smooth).

• Geometric continuity, denoted by Gk, requires only that the curve itself be smooth to kth

order (eg. the tracks in the snow left after the particle passed by would look smooth).

Even though geometric continuity is a weaker condition, parametric continuity is simpler
to achieve mathematically so we will concentrate on the latter in CS348a.

For example, G1 means that the slope is continuous, whereas C1 requires continuity of the
velocity vector. Similarly, G2 dictates continuous slope and curvature, whereas C2 holds when
both the velocity and acceleration vectors are continuous.

Polar forms are particularly well suited to describing parametric continuity. The following
key result is proved in Handout 19. Two n-ic curve segments F and G join with Ck continuity
at joint q if and only if

f (q,q, . . . ,q
︸ ︷︷ ︸

n−k

, t1, t2, . . . , tk) = g(q,q, . . . ,q
︸ ︷︷ ︸

n−k

, t1, t2, . . . , tk) (13)

for all t1 through tk.
To illustrate parametric continuity, we consider the degrees of continuity for a cubic:
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C−1 f (q,q,q) �= g(q,q,q) no continuity
C0 f (q,q,q) = g(q,q,q) position continuous
C1 f (q,q, t1) = g(q,q, t1) velocity continuous
C2 f (q, t1, t2) = g(q, t1, t2) acceleration continuous
C3 f (t1, t2, t3) = g(t1, t2, t3) identical functions

3.2 Knots

We can now assemble a spline curve out of a sequence of curves and specify a degree of
continuity Ck at each joint. If the spline is constructed from segments of degree at most n, it
makes sense to allow continuity from C−1 to Cn−1. At one extreme, C−1 allows the curve to
make a discontinuous jump and at the other extreme, continuity greater than Cn−1 would make
the joint redundant.

Each joint is consequently characterized by the number of derivatives that are broken. This
number is defined as the multiplicity of the knot corresponding to that joint. A simple knot
occurs when a single derivative is broken (Cn−1), a double knot when two derivatives are
broken (Cn−2), and so on. At an (n + 1)-fold knot, we break all derivatives including the
position, resulting in C−1 continuity. We can therefore think of a knot as “the right to break
one derivative”.

3.3 Knot Sequences

The knot sequence is a list of the time of each joint with the time repeated according to the
multiplicity of that particular knot. As an example, we consider a cubic spline F with the knot
sequence:

(0,0,0,0,1,2,2,2,4,5,5,6,7,8,8,8,8)

C−1 continuity exists at the endpoints to ensure isolation from other splines. There is C0

continuity at time 2 between F([1 ..2]) and F([2 ..4]), C1 continuity at time 5 between F([4 ..5])
and F([5 .. 6]) and C2 continuity everywhere else. Construction of this spline is illustrated in
Figure 3.

The points labeled 222, 224, 244, and 444 in Figure 3 are the Bézier points of the single
cubic segment F([2 ..4]) that the spline follows in the interval [2 .. 4] between adjacent knots.
The figure also includes various points with 3’s in their polar labels. Note that these points are
carrying out the de Casteljau Algorithm to compute the point F(3) from the Bézier points of
the segment F([2 ..4]).
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Figure 3: Construction of the spline from the knot sequence. The de Boor points are the vertices
of the outer polygon. There is C2 continuity except where noted — and at 333, where there is
C3 continuity.


