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1 The General Idea of Splines

So far we’ve been analyzing the behavior of Bézier curves as isolated curves. To conclude this
discussion let us summarize some of the nice properties of such curves:

• Affine Invariance: Bézier curves are invariant under affine maps. This property is a
direct consequence of the de Casteljau algorithm, since points on the curve are defined
using a sequence of linear interpolations (which are preserved in affine maps).

• Invariance under Affine Parameter Transformations: There is no need to define the
curve in the interval [0,1], in fact we can use any arbitrary interval a � t � b of the real
line.

• Convex Hull: For t ∈ [0,1], the point F(t) lies in the convex hull of the control polygon.

• Endpoint Interpolation: The Bézier curve passes through the first and the last point of
the control polygon.

However, the Bézier representation of a complex shape will probably require a high-order
polynomial (in fact a Bézier curve defined by n points will have degree n− 1). In practice,
high-order polynomials are not used, therefore such shapes are not suitably represented by
Bézier curves.

A different approach, called splines, is used instead. The main idea is to have not just
one curve but a concatenation of different curves linked together through special points called
joints. Figure 1 illustrates the simple idea of a spline curve.

In order to transform this idea into a useful representation of complex shapes we must put
some conditions at the junctions. More specifically, we are interested in the level of continuity
that these junctions satisfy.

2 Continuity at Joints

Suppose that we are given two Bézier curves. What constraints do we have to put on their
Bézier points — or their polar forms — if we want to guarantee that the two segments join
smoothly, say to kth order?

∗Based on the 1992 handout 19 (lecture 8)
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Figure 1: General Idea of Splines

2.1 Parametric vs. Geometric Continuity

Actually, there are two different notions of what it means to be smooth to kth order. The
first is called parametric continuity, and is written Ck; the other is called either geometric or
visual continuity, and is written Gk or VCk. Parametric continuity means smoothness both of
the curve and of its parameterization. That is, if a curve F is parametrically smooth, we can
make a movie in which a car’s position at time t is F(t) and the motion of the car in that
movie will look smooth. Geometric continuity means simply the smoothness of the track that
the car leaves in the snow after it passes by. For example, C1 continuity means continuity of
the tangent vector, while G1 continuity continuity of slope; C2 continuity means continuity
of the acceleration vector, while G2 continuity means continuity of the curvature. Parametric
continuity is more expensive to arrange, in the sense that it uses up more degrees of freedom,
but it is mathematically much simpler to deal with. In CS348a, we will focus on parametric
continuity.

Figure 2 shows two examples to illustrate the different types of continuity. In case (a)
we have both parametric and geometric continuity, but in case (b) we only have geometric
continuity, because the parameter has a discontinuity of speed (from 0-1 to 1-4).

2.2 Parametric Continuity and Polar Forms

Parametric continuity and polar forms work together very neatly. Suppose F([p ..q]) and G([q ..
r]) are two cubic segments. The level of parametric continuity at the joint at q between F and G
turns out to be simply the number of polar arguments that can differ from q without destroying
agreement between the resulting polar values of F and G.

Consider the case of C0 continuity to start with. The segments F([p .. q]) and G([q .. r])
join with C0 continuity at q precisely when F(q) = G(q), that is, when f (q,q,q) = g(q,q,q).
Thus, the joint has C0 continuity precisely when the polar forms f and g agree on the particular
argument triple (q,q,q). That’s the same thing as saying that f and g agree on all argument
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Figure 2: Parametric vs. Geometric Continuity

triples that have zero elements different from q.
At the other extreme, consider C3 continuity. Since the curves F and G are cubic, the only

way that they can meet with C3 continuity at q is for them to be identical curves. In this case,
we surely have f (u,v,w) = g(u,v,w) for any three polar arguments u, v, and w, so f and g agree
on all argument triples. Thus, the number of polar arguments that can differ from q without
destroying agreement of the polar values is 3.

Here’s the statement and proof of the general case.

Theorem 1. Two nth-degree curve segments F([p ..q]) and G([q ..r]) join with Ck continuity at
the joint q — that is, they agree at q parametrically to kth order — precisely when their n-polar
forms agree on all sequences of polar arguments that include at most k values different from q.

Proof: Suppose first that the polar forms of F and G do agree on all sequences of n polar
arguments that include at most k values different from q̄. Then, in particular, f and g must
agree on the sequences

(q̄, . . . , q̄
︸ ︷︷ ︸

n−m

,δ , . . . ,δ
︸ ︷︷ ︸

m

)

for all m from 0 to k. From a previous lecture, we have

F(m)(q̄) = n(n−1) · · ·(n−q+1) f (q̄, . . . , q̄
︸ ︷︷ ︸

n−m

,δ , . . . ,δ
︸ ︷︷ ︸

m

),

and similarly for G(m)(q̄). Since the factor out front is the same for F as for G, we conclude
that the 0th through kth derivatives of F and G agree at q, which is what we mean when we say
that F and G join at q with Ck continuity.

Conversely, suppose that the 0th through kth derivatives of F and G agree at q. Working
backwards through the above, we conclude that the polar forms f and g must agree on the
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argument sequences

(q̄, . . . , q̄
︸ ︷︷ ︸

n−m

,δ , . . . ,δ
︸ ︷︷ ︸

m

)

for m from 0 to k. We want to show that f and g agree, in fact, on any argument sequence of
the form

(q̄, . . . , q̄
︸ ︷︷ ︸

n−k

, ū1, . . . , ūk),

where the times ū1 through ūk are arbitrary. Note that we have

ūi = q̄+(ui −q)δ for i from 1 to k.

To prove the equality

f (q̄, . . . , q̄
︸ ︷︷ ︸

n−k

, ū1, . . . , ūk) = g(q̄, . . . , q̄
︸ ︷︷ ︸

n−k

, ū1, . . . , ūk),

we substitute q̄+(ui −q)δ for ūi for i from 1 to k and expand by multilinearity on both sides.
The result on the left side will be a linear combination of polar values of the form

f (q̄, . . . , q̄
︸ ︷︷ ︸

n−m

,δ , . . . ,δ
︸ ︷︷ ︸

m

),

where m is at most k. The result on the right will be the same linear combination of the polar
values

g(q̄, . . . , q̄
︸ ︷︷ ︸

n−m

,δ , . . . ,δ
︸ ︷︷ ︸

m

).

But we saw above that those polar values are the same for f and g. �
To illustrate this discussion, let us enumerate the conditions of continuity for the case of

cubics. The continuity constraints to the joint of two polynomials can be expressed in terms of
polar forms as:

C0 ↔ f (q,q,q) = g(q,q,q)
C1 ↔ f (q,q,u) = g(q,q,u) ∀u
C2 ↔ f (q,u,v) = g(q,u,v) ∀u,v
C3 ↔ f (u,v,w) = g(u,v,w) ∀u,v,w

To conclude, let us say that we will use the terminology C−1 to refer to the case where we
have no continuity whatsoever.
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3 Geometric Interpretation of the Parametric Continuity

Last section discussed mathematical constraints in terms of polar forms, necessary for having
continuity at joints. In this section we will evaluate the different degrees of continuity in terms
of the control points that define the spline.

Usually, we have C0 in splines, that is, the curve segments at a joint must be connected.
In other words, the point at which one curve segment ends is the same point where the next
segment starts.

Let us now evaluate the conditions for higher order continuity.

3.1 C1 Continuity

The constraints that we must put over the control points to obtain C1 continuity are a little more
elaborate than in the previous case. However, these conditions are easily derived if we write
the constraints in terms of polar forms, as discussed in the previous section. Remember that to
have C1 continuity the following condition must be satisfied:

C1 ↔ f (q,q,u) = g(q,q,u) ∀u

Let’s consider the example of Figure 3, where we have two cubic Bézier segments. To
satisfy the condition, the points f (1,1,u) and g(1,1,u) must be identical. One necessary con-
dition for this to happen is that f (0,1,1), g(1,1,2) and the point f (1,1,1) ≡ g(1,1,1) must
be collinear. But this condition is not sufficient. In order to assure that g(0,1,1) is equal to
f (0,1,1) (and by symmetry that g(1,1,2)≡ f (1,1,2)) the ratio of the lengths of the segments
g(1,1,1)g(1,1,2) and f (0,0,1) f (1,1,1) must be the same as the ratio of the range of the
parametrization in g and f . Once we know one of these ratios, we can put constraints on the
other.

In the case of equally spaced parametrizations, it is easy to see that f (1,1,1) ≡ g(1,1,1)
must be the middle point of the segment f (0,1,1)g(1,1,2). This is the case in Figure 3. In
general, to have C1 continuity the point f (1,1,1) must be located on this segment at a distance
from the points proportional to the ratio of their parametrization intervals.

To conclude this discussion, let us say that once we have C1 we also have C0. In general,
when we have Cm we will also have all other lower degrees continuities Ck(0 � k � m). For the
following cases, we will assume when discussing Ck continuity that we have Ck−1 continuity.

3.2 C2 Continuity

In a similar way, we can take a look at the case of C2 continuity. In terms of polar forms the
condition we must satisfy is:

C2 ↔ f (q,u,v) = g(q,u,v) ∀u,v
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Figure 3: C1 Continuity

f(0,0,0)

f(0,0,1)

f(0,1,1)

f(0,1,2)
g(0,1,2)

g(1,1,2)

g(1,2,2)

g(2,2,2)

f(1,1,1)

g(1,1,1)

ab

a

b

c

c

f(0,0,0)
g(2,2,2)

g(1,2,2)

g(1,1,2)

c

c

b

b

a
a

f(1,1,1)

g(1,1,1)

f(0,1,1)

f(0,0,1)

f(0,1,2)

g(0,1,2)

(a) (b)

Figure 4: C2 Continuity

In the case of figure 4 we would like to have C2 at f (1,1,1). Therefore, the points f (0,1,2)
and g(0,1,2) must be the same. By construction, we add these points to the figure and see that
in case (a) we do not have C2 continuity, because these points are different, but in case (b) these
two points are coincident, so we have C2.
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Figure 5: C3 Continuity

3.3 C3 Continuity

In a similar way, we can take a look at the case of C3 continuity. In terms of polar forms the
condition we must satisfy is:

C3 ↔ f (u,v,w) = g(u,v,w) ∀u,v,w

In the case of figure 5 we would like to have C3 at f (1,1,1). Not only must f (0,1,2) =
g(0,1,2) but also f (0,0,2) = g(0,0,2). Therefore f (0,1,2) ≡ g(0,1,2) must be interpolated
on the line f (0,0,2)g(0,0,2). This does not happen in the construction of case (a), but happens
in case (b). In other words, to assure C3 continuity the control points must be located as if they
were obtained by the de Casteljau algorithm of the combined curve.
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4 Spline curves

Now that we can control the level of parametric continuity at a joint in terms of the polar forms
of the joining curves, we are ready to consider assembling a sequence of curve segments into a
spline curve.

4.1 Knots

Suppose that we choose to assemble our spline curve out of segments of degree at most n.
What continuity should we ask for at the joints?

A joint with Cn continuity wouldn’t be a joint at all; the entering and leaving segments
would be adjacent segments of the same polynomial curve. The highest continuity that we
can ask for at a joint that leaves any flexibility at all is Cn−1 continuity. At a Cn−1 joint, the
derivative vectors from the 0th up through the (n−1)st are smooth, but the nth derivative jumps
discontinuously from one value to another.

In addition to joints with Cn−1 continuity, we can, if we like, allow joints with Cn−m conti-
nuity for various values of m greater than 1. At such a joint, the 0th through (n−m)th derivatives
are smooth, while the remaining m derivatives may all jump discontinuously. Letting m = n,
for example, we can allow Cn−n = C0 joints, where only the 0th derivative, the position of the
particle, is continuous. By convention, we even allow the case m = n+1, which leads to joints
with C−1 continuity.

The parameter value that occurs at a joint is called a knot. If our spline curve has Cn−1

continuity at the corresponding joint, the knot is called simple. Suppose that the joint has only
Cn−2 continuity. The standard convention is to say that the corresponding knot is a double knot,
that is, it should be thought of as two separate, simple knots that have coalesced. In general, a
knot of multiplicity m is the parameter value corresponding to a joint where the spline curve has
Cn−m continuity, and should be thought of as a cluster of m simple knots that have coalesced.

Associating a multiplicity n with a knot in this way works out well because a multiple knot
really does behave like a limiting case of a cluster of simple knots. For example, consider
assembling line segments into an affine spline, that is, a polyline. A typical joint in such a
spline is a vertex, where the position of the particle is continuous but the velocity undergoes a
sudden jump. Such a joint has C0 continuity. By our convention above, we also allow an affine
spline to have joints with C−1 continuity, where even the position of the particle undergoes a
jump. Consider such a C−1 joint. Say that our polyline L arrives at the point P at time r and
then leaves from the point Q, with P �= Q; that is, we have

lim
t↑r

L(t) = P, but lim
t↓r

L(t) = Q.

Since this joint has only C−1 continuity, the knot r is a double knot. Let r1 < r2 be two distinct
times that are both quite close to r. We can approximate the polyline L arbitrarily closely by
a polyline M with two C0 joints, one at time r1 with M(r1) = P and the other at time r2 with
M(r2) = Q. Over the short time interval [r1 .. r2], the spline M scoots at high speed from P to
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Q, thus smoothing out the jump in position that occurs in L. In a similar way, one can view a
knot of any multiplicity m as a cluster of m simple knots that have coalesced.

Another way to think about this issue of knot multiplicity is to say that a knot is the time at
which one has the right to break a derivative. At a simple knot, we are only allowed to break
a single derivative, the nth. At a double knot, each of the two simple knots buried inside the
double knot gives us the right to break one derivative, so overall we can break both the nth and
(n−1)st derivatives. And so forth. At an (n+1)-fold knot, we can break all of the derivatives
including the 0th derivative, the position; so the resulting joint has C−1 continuity. It doesn’t
make sense to talk about a knot whose multiplicity is higher than n+1.

4.2 Knot sequences

With these conventions about knot multiplicity, we can incorporate all of the smoothness in-
formation about a spline curve — the time of each joint and the level of smoothness at each
joint — in a single sequence of numbers, as follows. We make a list of all of the knots in which
each knot is repeated according to its multiplicity, and then we sort that list into non-decreasing
order. The result is called the knot sequence of the spline.

For example, suppose that we have a cubic spline with the knot sequence

( . . . ,1,2,4,4,5, . . .).

The resulting spline curve F will have a segment F([1 ..2]), a segment F([2 ..4]), and a segment
F([4 ..5]), as well as possibly further segments on both ends. Since the knot 2 has multiplicity
1, the joint at time 2 between F([1 ..2]) and F([2 ..4]) will have C2 continuity. But the knot 4
is a double knot, so the joint between F([2 ..4]) and F([4 ..5]) will be only C1.

So far, we have been talking as if knot sequences were bi-infinite, so that there are no ends.
In practice, however, we can deal only with finite sequences of knots, so we have to worry a
little bit about what happens at the ends. The cleanest convention is to demand that the end
knots of a finite knot sequence be knots of multiplicity n + 1. For example, consider a finite
cubic spline F with the knot sequence

(0,0,0,0,1,2,4,4,5,6,6,6,6).

The joint at time 0 between whatever comes before — which we don’t know anything about
— and the segment F([0 .. 1]) will be a C−1 joint. But there is no relationship between the
entering and leaving segments at a C−1 joint, so it won’t hurt us any that we don’t know what
came before time 0. Similarly, the fact that 6 is a quadruple knot means that the joint between
F([5 ..6]) and whatever comes after — which we also don’t know anything about either — is
a C−1 joint. In fact, we can often get by with a little less: with first and last knots that have
multiplicity only n, instead of n + 1. But going all the way to multiplicity n + 1 is certainly
safe.

One common type of knot sequence is one in which all of the knots are simple knots and
they are equally spaced. That is, the knots form an arithmetic progression on the parameter
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line. This common situation is called the uniform case, and a spline whose knot sequence is
uniform is called a uniform spline. The geometry of uniform splines is particularly regular,
as we will see. Note that all of the knots in a uniform spline are simple knots, so a uniform
nth-degree spline has Cn−1 continuity at all of its joints.
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