Chapter 9
Multiple Importance Sampling

We introduce atechnique called multipleimportance sampling that can greatly increase the
reliability and efficiency of Monte Carlo integration. It is based on the idea of using more
than one sampling technique to evaluate a given integral, and combining the sample values
in a provably good way.

Our motivation is that most numerical integration problems in computer graphics are
“difficult”, i.e. the integrands are discontinuous, high-dimensional, and/or singular. Given
aproblem of thistype, wewould liketo design asampling strategy that givesalow-variance
estimateof theintegral. Thisiscomplicated by thefact that theintegrand usually dependson
parameters whose values are not known at the time an integration strategy is designed (e.g.
material properties, the scene geometry, etc.) Itisdifficult to design asampling strategy that
works reliably in this situation, since the integrand can take on a wide variety of different
shapes as these parameters vary.

In this chapter, we explore the general problem of constructing low-variance estimators
by combining samplesfrom several different sampling techniques. We do not construct new
sampling techniques — we assume that these are given to us. Instead, we look for better
ways to combine the samples, by computing weighted combinations of the sample values.
We show that there is a large class of unbiased estimators of this type, which can be pa-
rameterized by a set of weighting functions. Our goal isto find an estimator with minimum
variance, by choosing these weighting functions appropriately.

A good solution to this problem turns out to be surprisingly simple. We show how to
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252 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

combine samples from several techniquesin away that is provably good, both theoretically
and practically. Thisalows usto construct Monte Carlo estimators that have low variance
for a broad class of integrands — we call such estimators robust. The significance of our
methods is not that we can take several bad sampling techniques and concoct a good one
out of them, but rather that we can take severa potentially good techniques and combine
them so that the strengths of each are preserved.

Thischapter isorganized asfollows. We start with an extended exampl e to motivate our
variance reduction techniques (Section 9.1). Specifically, we consider the problem of com-
puting the appearance of aglossy surface illuminated by an arealight source. Next, in Sec-
tion 9.2 we explain the multipleimportance sampling framework. Several modelsfor taking
and combining the sampling are described, and we present theoretical results showing that
these techniques are provably close to optimal (proofs may be found in Appendix 9.A). In
Section 9.3, we show that these techniques work well in practice, by presenting images and
numerical measurements for two specific applications: the glossy highlights problem men-
tioned above, and the“final gather” passthat isused in some multi-passalgorithms. Finally,
Section 9.4 discusses of anumber of tradeoffs and open issues related to our work.

9.1 Application: glossy highlightsfrom area light sources

We have chosen a problem from distribution ray tracing to illustrate our techniques. Given
aglossy surfaceilluminated by an arealight source, the goal isto determine its appearance.
These “glossy highlights” are commonly evaluated in one of two ways:. either by sampling
the light source, or sampling the BSDF. We show that each method worksvery well in some
situations, but fails in others. Obviously, we would prefer a sampling strategy that works
well al thetime. Later inthischapter, we will show how multipleimportance sampling can
be applied to solve this problem.

9.1.1 Theglossy highlights problem

Consider anarealight source S that illuminatesanearby glossy surface (seeFigure9.1). The
goal is to determine the appearance of this surface, i.e. to evaluate the radiance L, (x', w))
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Figure9.1: Geometry for the glossy highlights computation. Theradiance for each viewing
ray is obtained by integrating the light that is emitted by the source, and reflected from the
glossy surface toward the eye.

that leaves the surface toward the eye. Mathematically, thisis determined by the scattering
equation (3.12):

Lo,wt) = [ A0 0f—u) Les(' wf) do* () ©.)

where L. ; represents the incident radiance due to the area light source S.

We will examine afamily of integration problems of thisform, obtained by varying the
size of thelight source and the glossiness of the surface. In particular, we consider spherical
light sources of varying radii, and glossy materials that have a surface roughness parame-
ter (r) that determines how sharp or fuzzy the reflections are. Smooth surfaces (r = 0)
correspond to highly polished, mirror-like reflections, while rough surfaces (r = 1) corre-
spond to diffuse reflection. It is possible to simulate a variety of surface finishes by using
intermediate roughness valuesin therange 0 < r < 1.

9.1.2 Two sampling strategies

There are two common strategies for Monte Carlo evaluation of the scattering equation
(9.1), which we call sampling the BSDF and sampling the light source. The results of these
techniques are demonstrated in Figure 9.2(a) and Figure 9.2(b) respectively, over arange of
different light source sizes and surface finishes. We will first describe these two strategies,
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and then examine why each one has high variance in some situations.

Sampling the BSDF. To sample the BSDF, an incident direction w; is randomly chosen
according to a predetermined density p(w!). Normally, this density is chosen to be propor-
tiona to the BSDF (or some convenient approximation), i.e.

plwi) o< (X, wi—w,),

where p is measured with respect to projected solid angle. To estimate the scattering equa-
tion (9.1), an estimate of the usua form

(X' wi = wl) Lei(x', w))
p(w))

Lo(x' ) ~

is used. The emitted radiance L. ;(x’, w!) is evaluated by casting a ray to find the corre-
sponding point on the light source. Note that some rays may miss the light source S, in
which case they do not contribute to the highlight calculation. The image in Figure 9.2(a)
was computed using this strategy.

Sampling the light source. To explain the other strategy, we first rewrite the scattering
eguation as an integral over the surface of the light source:

Lo(x'—=x") = /M fi(x—=x' =X") L(x—x') G(x+x') dA(x) . 9.2

Thisis called the three-point form of the scattering equation (previously described in Sec-
tion 8.1). The function G represents the change of variables from do (w!) to dA(x), and is
given by

Gx+x) = V(xex)

(see Figure 9.12).
The strategy of sampling the light source now proceeds as follows. First, a point x on

the light source S is randomly chosen according to a predetermined density p(x), and then

astandard Monte Carlo estimate of the form

L.(x—x") G(x+x)

e fi(x—=x'—=x")

L,(x'—x") =~
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(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from arealight
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each onetilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy thereflections are.

Given aviewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(@) Incident directions w{ are chosen with probability proportional to the BSDF
fs(x';wl —wl), using ny = 4 samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points x are randomly chosen on each light source S, using ne = 4 samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by S at the current point x’. We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent isn = (1/r) — 1, where r is the surface roughness
parameter mentioned above, and 0 < r < 1. The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF's.
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isused. Theimagein Figure 9.2(b) was computed with thistype of strategy, where samples
were chosen according to the density
|cos(6,)|

p(x) x Le(x—x) x — x'||2

(measured with respect to surface area). With this strategy, the sample points x are uni-
formly distributed within the solid angle subtended by the light source at the current point
x'. (See Shirley et al. [1996] for further details on light source sampling strategies.)

9.1.3 Comparing thetwo strategies

One of these sampling strategies can have amuch lower variance than the other, depending
on the size of the light source and the surface roughness parameter. For example, if thelight
source is small and the materia is relatively diffuse, then sampling the light source gives
far better results than sampling the BSDF (compare the lower |eft portions of theimagesin
Figure9.2). Ontheother hand, if thelight sourceislarge and the materia ishighly polished,
then sampling the BSDF is far superior (compare the upper right portions of Figure 9.2).

In both these cases, high variance is caused by inadequate sampling where the integrand
islarge. To understand this, notice that the integrand in the scattering equation (9.2) isa
product of various factors — the BSDF f, the emitted radiance L., and severa geometric
guantities. Theideal density function for sampling would be proportional to the product of
all of these factors, according to the principle that the variance is zero when p(z) oc f(x)
(see Chapter 2).

However, neither sampling strategy takesall of these factorsinto account. For example,
the light source sampling strategy does not consider the BSDF of the glossy surface. Thus
when the BSDF has a large influence on the overall shape of the integrand (e.g. when it is
a narrow, peaked function), then sampling the light source leads to high variance. On the
other hand, the BSDF sampling strategy does not consider the emitted radiance function
L.. Thusit leads to high variance when the emission function dominates the shape of the
integrand (e.g. when the light sourceisvery small). Asaconsequence of these two effects,
neither sampling strategy is effective over the entire range of light source geometries and
surface finishes.
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It isimportant to realize that both strategies are importance sampling techniques aimed
at generating sample points on the same domain. This domain can be modeled as either a
set of directions, as in equation (9.1), or a set of surface points, as in equation (9.2). For
example, the BSDF sampling strategy can be expressed as a distribution over the surface of
the light source, using the relationship

do™ (w})

P(x) = plet) Ty = P cos(6,) cos(B)|

[Ix — x|

(9.3)

(as discussed in Section 8.2.2.2). This formula makes it possible to convert a directional
density into an area density, so that we can express the two sampling strategies as different
probability distributions on the same domain.

9.1.4 Discussion

There are many problems in graphics that are similar to the glossy highlights example,
where alarge number of integrals of a specific form must be evaluated. Theintegrands gen-
erally have aknown structure (e.g. f(z) = fi(x)fa(x) + f3(z)), but they also depend on
various parameters of the scenemodel (e.g. the surface roughnessand light source geometry
inthe example above). Thismakesit difficult to design an adequate sampling strategy, since
the parameter values are not known in advance. Furthermore, different integrals may have
different parameter values even within the same scene (e.g. they may change from pixel to
pixel).

The mainissueisthat wewould like low-variance results for the entire range of param-
eter values, i.e. for al of the potential integrandsthat are obtained as these parameters vary.
Unfortunately, itisoften difficult to achievethis. Theproblemisthat theintegrandisusually
asum or product of many different factors, and istoo complicated to sample from directly.
Instead, samples are chosen from a density function that is proportional to some subset of
thefactors (e.g. the BSDF sampling strategy outlined above). Thiscan lead to high variance
when one of the unconsidered factors has alarge effect on the integrand.

We propose a new strategy for this kind of integration problem, called multiple impor-
tance sampling. It isbased on theideaof taking samples using several different techniques,
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designed to sample different features of the integrand. For example, suppose that the inte-
grand hasthe form

f=(fi+fa)fs.

If the functions f; are simple enough to be sampled directly, then the density functions p;
fi would all be good candidates for sampling. Similarly, if the integrand is a product

= hl Je,

then several different density functionsp,; could be chosen, each proportional to the product
of adifferent set of f;. Inthisway, it is often possible to find a set of importance sampling
techniques that cover the various factors that can cause high variance.

Our main concern in this chapter is not how to construct a suitable set of sampling tech-
niques, or even how to determinethe number of samplesthat should be taken from each one.
Instead, we consider the problem of how these sampl es should be combined, oncethey have
been taken. We will show how to do thisin away that is unbiased, and with a variance is
provably close to optimal.

In the glossy highlights problem, for example, we propose taking samples using both the
BSDF and light source sampling strategies. We then show how these samples can be auto-
matically combined to obtainlow-varianceresultsover the entirerange of surface roughness
and light source parameters. (For a preview of our results on this test case, see Figure 9.8.)

9.2 Multipleimportance sampling

In this section, we show how Monte Carlo integration can be made more robust by using
more than one sampling technique to evaluate the same integral. Our main results are on
how to combine the samples. we propose strategies that are provably good compared to
any other unbiased method. This makes it possible to construct estimators that have low
variance for a broad class of integrands.

We start by describing ageneral model for combining samplesfrom multipletechniques,
called the multi-sample model. Using this model, any unbiased method of combining the
samples can be represented as a set of weighting functions. This gives us a large space of
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possible combination strategies to explore, and a uniform way to represent them.

We then present a provably good strategy for combining the samples, which we call the
balance heuristic. We show that this method gives a variance that is smaller than any other
unbiased combination strategy, to within a small additive term. The method is simple and
practical, and can make Monte Carlo calculations significantly more robust. We a so pro-
pose severa other combination strategies, which are basically refinements of the balance
heuristic: they retain its provably good behavior in general, but are designed to have lower
variance in acommon specia case. For thisreason, they are often preferable to the balance
heuristic in practice.

We conclude by considering a different model for how the samples are taken and com-
bined, called the one-sample model. Under thismodel, theintegral isestimated by choosing
one of then sampling techniques at random, and then taking asingle samplefromit. Again
we consider how to minimize variance by weighting the samples, and we show that for this
model the balance heuristic is optimal.

9.2.1 Themulti-sample model

In order to prove anything about our methods, there must be a precise model for how the
samples are taken and combined. For most of this chapter, we will use the multi-sample
model described below. This model alows any unbiased combination strategy to be en-
coded as a set of weighting functions.

We consider the evaluation of an integra

| £(@) dua).

where the domain €2, the function f : Q@ — IR, and the measure . are all given. We are
also given a set of n different sampling technigques on the domain €2, whose corresponding
density functions are labeled p, . . ., p,. We assume that only the following operations are
available:

e Givenany pointz € Q, f(z) and p;(x) can be evaluated.

e Itispossibleto generate a sample X distributed according to any of the p;.
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To estimate the integral, several samples are generated using each of the given tech-
niques. Welet n; denotethe number of samplesfromp;, wheren; > 1,andwelet N = " n;
denotethetotal number of samples. We assume that the number of samplesfrom each tech-
niqueisfixed in advance, before any samplesaretaken. (We do not consider the problem of
how to all ocate samples among the techniques; thisisan interesting probleminitself, which
will be discussed further in Section 9.4.2.) The samples from technique: are denoted X, ;,
forj = 1,...,n;. All samples are assumed to be independent, i.e. new random bits are
generated to control the selection of each one.

9.2.1.1 The multi-sample estimator

We now examine how the samples X; ; can be used to estimate the desired integral. Our
god is generdity: given any unbiased way of combining the samples, there should be a
way to represent it. To do this, we consider estimatorsthat allow the samplesto be weighted
differently, depending on which technique p; they were sampled from. Each estimator has
an associated set of weighting functions w;, . . ., w, which give the weight w;(x) for each
sample x drawn from p;. The multi-sample estimator is then given by
=1 f(Xi,)
F = Z - ; w;i (X5 5) p(Xey) (9.9

=1

This formula can be thought of as a weighted sum of the estimators f (X, ;) /p:(X; ;) that
would be obtained by using each sampling technique p; on its own. Notice that the weights
are not constant, but can vary as afunction of the sample point X; ;.

For this estimate to be unbiased, the weighting functions w; must satisfy the following
two conditions:

(W1) iwi(aj) = 1whenever f(z) # 0, and
(W2)  w;(x) = 0whenever p;(z) =0.

These conditions imply the following corollary: at any point where f(z) # 0, at least one
of the p;(x) must be positive (i.e., a least one sampling technique must be able to gener-
ate samples there). Thus on the other hand, it is not necessary for every p; to sample the
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whole domain; it is allowable for some of the p; to be specialized sampling techniques that
concentrate on specific regions of the integrand.?
Given that (W1) and (W2) hold, the following lemma states that F' is unbiased:

Lemma9.1. Let F' beany estimator of theform(9.4), wheren; > 1 for all 7, and theweight-
ing functions w; satisfy conditions (W1) and (W2). Then

= | f(2)dua)

EF] = % "1"‘4WE pi(a) dyu(z)

zlnzjl

Pr oof.

n

= [, 2w f@) dutz)
:/fdu n

The remainder of this section is devoted to showing the generality of the multi-sample
model. We show that by choosing the weighting functions appropriately, it is possible to
represent virtually any unbiased combination strategy. To make thismore concrete, we first
give some examples of possible strategies, and show how to represent them by weighting
functions. We then show how the multi-sample estimator can be rewritten in a different
form that makesits generality more obvious. Thisleads up to Section 9.2.2, where we will
describe a new combination strategy that has provably good performance compared to all
strategies that the multi-sample model can represent.

9.2.1.2 Examplesof weighting functions

Supposethat there are three sampling techniquesp, , p2, and ps, and that asinglesample X;; ;
istaken from each one (n; = ny = n3 = 1). First, consider the case where the weighting

Uf £ isallowed to contain Dirac distributions, note that (W2) should be modified to state that w;(z) = 0
whenever f(x)/p;(x) isnot finite. To relate thisto graphics, consider a mirror which also reflects some light
diffusely. The modified (W2) states that samples from the diffuse component cannot be used to estimate the
specular contribution, since this corresponds to the situation where f(z) contains a Dirac distribution §(x —
Xp), but p(z) doesnot.)



262 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

functions are constant over the whole domain 2. This leads to the estimator

FX) o f(Xen) | (X))
wlpl(Xm) 2p2(X2,1) +w3p3<X3,1) ’
wherethe w; sumto one. Thisestimator issimply aweighted combination of the estimators
F; = f(Xi1)/pi(Xi1) that would be obtained by using each of the sampling techniques
alone. Unfortunately, this combination strategy does not work very well: if any of thegiven

F =

—+ w

sampling techniquesis bad (i.e. the corresponding estimator F; has high variance), then F°
will have high variance as well, since

V[F] = ’LU1V[F1] + UJQV[FQ] + ’LU3V[F3] .

Another possible combination strategy is to partition the domain among the sampling
techniques. To do this, theintegral iswritten in the form

[ i@ du) = 3 [ @) dute),

where the ©; are non-overlapping regions whose union is2. Theintegra isthen estimated
ineachregion €2; separately, using samplesfrom just onetechniquep;. Intermsof weighting
functions, thisis represented by letting

( ) 1 ifze Qi:
W;\Tr) =
0 otherwise.

This combination strategy is used a great deal in computer graphics, however, some-
times it does not work very well due to the simple partitioning rules that are used. For
example, it is common to evaluate the scattering equation by dividing the scene into light
source regions and non-light-source regions, which are sampled using different techniques
(e.g. sampling L. vs. sampling the BSDF). Depending on the geometry and materials of the
scene, thisfixed partitioning can lead to a much higher variance than necessary (as we saw
in the glossy highlights example).

Another combination technique that is often used in graphics is to write the integrand
asasum f = ¥ g;, and use a different sampling technique to estimate the contribution of
each g;. For example, this occurs when the BSDF is split into diffuse, glossy, and specular
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components, whose contributions are estimated separately (by sampling from density func-
tionsp; o g;). Asbefore, itisstraightforward to represent thisstrategy as a set of weighting
functions.

9.2.1.3 Generality of the multi-sample model

Thegenerality of thismodel can be seen moreeasily by rewriting the multi-sampl e estimator
(9.4) intheform

P =Y Y GxX), (©5)

where C;(X; ;) isthe called the sample contributionfor XX; ;. ThefunctionsC; arearbitrary,
except that in order for F' to be unbiased they must satisfy

n

3" i Ci(z) pi(z) = f(z) (9.6)

=1
at each point x € €. Inthisform, it is clear that the multi-sample model can represent any
unbiased combination strategy, subject only to the assumptions that al samples are taken
independently, and that our knowledgeof f and p; islimitedto point evaluation. (Thisforces
the estimator to be unbiased at each point = independently, as expressed by condition (9.6).)
To see that thisformulation of the multi-sample model is equivaent to the original one,
wesimply let
Ci(a) = WDl f@) ©7)
ni pi ()
It iseasy to verify that if the weighting functionsw; satisfy conditions (W1) and (W2), then
the corresponding contributions C; satisfy (9.6), and vice versa. The main reason for pre-
ferring the w; formulation is that the corresponding conditions are easier to satisfy.

9.2.2 Thebalance heuristic

The multi-samplemodel gives usalarge space of unbiased estimatorsto explore, and auni-
form way to represent them (as a set of weighting functions). Our goal is now to find the
estimator F' with minimum variance, by choosing the w; appropriately.
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We will show that the following weighting functions are a good choice:
N ;i pi(z)
wi(r) = =—————. 9.8
(@) >k N Pe() 5.5

We call this strategy the balance heuristic.? The key feature of the balance heuristic is that
no other combination strategy is much better, as stated by the following theorem:

Theorem 9.2. Let f, n;, andp; begiven, fori =1,...,n. Let F' beany unbiased estimator
of theform(9.4), and let F* bethe estimator that usestheweighting functions; (the balance
heuristic). Then

VIF] - VIF] < ( . ! )/f, (99)

min; n; i

wherey = E[F| = FE [F] isthe quantity to be estimated. (A proof isgivenin Appendix9.A.)

According to this result, no other combination strategy can significantly improve upon
the balance heuristic. That is, suppose that we let F* denote the best possible combination
strategy for a particular problem (i.e. for a given choice of the f, p;, and n;). In generd,
we have no way of knowing what this strategy is. for example, suppose that one of the p;
isexactly proportional to f, so that the best strategy isto ignore any samplestaken with the
other techniques, and use only the samples from p;. We cannot hope to discover this fact
from apractical point of view, since our knowledge of f and p; islimited to point sampling
and evaluation. Nevertheless, even compared to this unknown optimal strategy F'*, the bal-
ance heuristicisamost as good: itsvariance isworse by at most the term on the right-hand
side of (9.9).

To give someintuition about this upper bound on the “variance gap”, suppose that there
arejust two sampling techniques, and that n; = ny, = 4 samplesaretaken from each one. In
this case, the variance of the balance heuristic is optimal to within an additive term of 2/8.
In familiar graphics terms, this corresponds to the variance obtained by sending 8 shadow

2The name refersto the fact that the sample contributions are * balanced” so that they are the same for all
techniquesi:
) = B@I@ @
n; pi(z) >k Tk P()
That is, the contribution C; (X; ;) of asample X; ; does not depend on which techniques generated it.
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raysto an arealight source that is 50% occluded. Furthermore, notice that the variance gap
goesto zero asthe number of samplesfrom each techniqueisincreased. On the other hand,
if a poor combination strategy is used then the variance can be larger than optimal by an
arbitrary amount. Thisis essentially what we observed in the glossy highlights images of
Figure 9.2: if the wrong samples are used to estimate the integral, the variance can be tens
or hundreds of timeslarger than 2.

Furthermore, the balance heuristic is practical to implement. The main requirement for
evaluating the weighting functions w; isthat given any point x, we must be ableto evauate
the probability densities p,(x) for al k. This situation is different than for the usual esti-
mator f(X)/p(X), whereitisonly necessary to evaluate p( X ) for sample points generated
using p. The balance heuristic requires slightly more than this: given asample X; ; gener-
ated using technique p;, we also need to eval uate the probabilities p,. (X; ;) withwhich al of
the other n—1 techniquesgenerate that samplepoint. It isusually straightforward to dothis;
itisjust amatter of reorganizing the routines that compute probabilities, and expressing all
densities with respect to the same measure.

For example, consider the glossy highlights problem of Section 9.1. To evaluate the
weighting function w; for each sample point =, we compute the probability density for gen-
erating x using both sampling techniques. Thus if = was generated by sampling the light
source, then we also compute the probability density for generating the same point = by
sampling the BSDF (as discussed in Section 9.1.3). Note that the cost of computing these
extra probabilitiesis insignificant compared to the other calculations involved, such as ray
casting; detailswill be given in Section 9.3.

9.22.1 A simpleinterpretation of the balance heuristic

By writing the balance heuristic in a different form, we will show that it is actually avery
natural way to combine samples from multiple techniques.

To do this, we insert the weighting functions w; into the multi-sample estimator (9.4),
yielding

no1 oM N; Pi XZ ) f(Xi,j)
Z n. Z (Ek nk Pr(XG, )) pi(Xi ;)

i=1 " j=1
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_ vy Xi;)

B ;]2 knkplc<X i)

_ sy Xij)

S NLiT, ckpk(x ) (.10

where N = 3, n; isthetotal number of samples, and ¢, = ni /N isthefraction of samples
from py.

In this form, the balance heuristic corresponds to a standard Monte Carlo estimator of
the form f /p. This can be seen more easily by rewriting the denominator of (9.10) as

i ¢ pelz (9.12)

which we call the combined sample density. The quantity p(z) represents the probability
density for sampling the given point x, averaged over the entire sequence of N samples.®

Thus, the balance heuristic is natural way to combine the samples. It has the form of a
standard Monte Carlo estimator, where the denominator p represents the average distribu-
tion of the whole group of samplesto whichiit is applied. Pseudocode for this estimator is
givenin Figure 9.3. However, it isimportant to realize that the main advantage of this esti-
mator isnot that it issimpleor standard, but that it has provably good performance compared
to other combination strategies. Thisisthereason that we introduced the more complex for-
mulation in terms of weighting functions, so that we could compare it against a family of
other techniques.

9.2.3 Improved combination strategies

Although the balance heuristic is a good combination strategy, there is still some room for
improvement (within the bounds given by Theorem 9.2). In this section, we discuss two
families of estimatorsthat have lower variance than the balance heuristic in acommon spe-
cial case. These estimators are unbiased, and like the balance heuristic, they are provably
good compared to all other combination strategies.

3More precisely, it isthe density of arandom variable X that is equal to each X; ; with probability 1/N.
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function BALANCE-HEURISTIC()

N2 n,
fori< 1ton
for j « 1ton;
X « TAKESAMPLE(p;)
P = =1 (ne/N) pr(X)
F F+f(X)/p
return F/N

Figure 9.3: Pseudocode for the balance heuristic estimator.

We start by applying the balance heuristic to the glossy highlights problem of Sec-
tion 9.1. We show that it leads to more variance than necessary in exactly those caseswhere
the original sampling techniques did very well, e.g. where sampling the light source gave a
low-variance result. The problem isthat the additional variance due to the balance heuristic
is additive: thisis not significant when the optimal estimator already has substantial vari-
ance, but it is noticeable compared to an optimal estimator whose variance is very low.

We thus consider how to improve the performance of the balance heuristic on low-
variance problems, i.e. those for which one of the given sampling techniquesis an excellent
match for the integrand. We show that the balance heuristic can be improved in this case
by modifying its weighting functions dlightly. In particular, we show that it is desirable to
shar pen these weighting functions, by decreasing weightsthat are closeto zero, and increas-
ing weights that are close to one. We propose two general strategies for doing this, which
we call the cutoff and power heuristics. The balance heuristic can be obtained as alimiting
case of both these families of estimators.

Finally, we give some theoretical results showing that these new combination strategies
are provably closeto optimal. Thus, they are never much worse than the balance heuristic,
but for low-variance problems they can be noticeably better. Later in this chapter, we will
describe numerical teststhat verify these results (Section 9.3). Based on these experiments,
we havefound that one strategy in particular isagood choicein practice: namely, the power
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Figure 9.4: Thisimage was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heurigtic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent 5 = 2.

9.2.3.1 Low-variance problems. examplesand analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
Thisimage combinesthe samplesfrom Figure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that workswell over the entirerange of surface finishesand light source geometries.

In someregions of theimage, however, the bal ance heuristic does not work quiteaswell
asthebest of the given sampling techniques. Figure 9.5 demonstratesthis, by comparing the
bal ance heuristic against images that use the BSDF or light source samplesalone. Columns
(@), (b), and (c) show close-ups of theimagesin Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using
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(a) Sampling the BSDF (b) Sampling the lights (¢) The balance heuristic

Figure 9.5: These images show close-ups of the glossy highlights test scene, computed by
(a) sampling the BSDF, (b) sampling the light sources, and (c) the balance heuristic. Notice
that although the balance heuristic works much better than one of the two techniquesin each
region, it does not work quite as well as the other. These images were computed with one
sample per pixel from each technique (n; = ny = 1), as opposed to the four samples per
pixel used in Figures 9.2 and 9.4, in order to reveal the noise differences more clearly.

only one sample per pixel (as opposed to the four samples per pixel used in the source im-
ages.) Itisclear that although the balance heuristic works far better in each region than the
technique whose variance is high, it has some additional noise compared to the technique
whose variance is low.

The test casesin Figure 9.5 are examples of low-variance problems, which occur when
one of the given sampling techniques p; is an extremely good match for theintegrand f. In
thissituation it ispossibleto construct an estimator whose variance is nearly zero, by taking
samples using p; and applying the standard estimate f /p;. The balance heuristic can be no-
ticeably worsethan the results obtained in thisway, because Theorem 9.2 only statesthat the
variance of the balance heuristic is optimal to within an additive extraterm. Even though
this extra variance is guaranteed to be small on an absolute scale, it can still be noticeable
compared to an optimal variance that is practically zero (especiadly if only afew samples
are taken).

Unfortunately, thereis no way to reliably detect this situation under the point sampling
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Figure 9.6: Two density functions for sampling a simple integrand.

assumptions of the multi-sample model. Instead, our strategy is to take samples using all
of the given techniques, and compute weighting functions that automatically assign low
weightsto any irrelevant samples. In the case where one of the p; isagood match for f, the
ideal result would be to compute weighting functions such that w;(z) = 1 over the whole
domain, whileall of the other w; are zero. Thiswould achieve the same end result as using
p; alone, at the expense of taking several unnecessary samplesfrom the other p,;. However,
extra sampling is unavoidable if we do not know in advance which of the given sampling
techniques will work best.

We now consider how the bal ance heuristic can beimproved, sothat it performsbetter on
low-variance problems. To do this, we study the simpletest case of Figure 9.6, which shows
anintegrand f and two density functions p; and p, to be used for importance sampling. The
density function p; is proportional to f, while p, is a constant function. For this situation,
the optimal weighting functions are obviously

1

wi (@) :

wy(z) = 0,

since thiswould give an estimator F™* whose variance is zero.

The balance heuristic weighting functions w; are different than the optimal ones above,
and thus the balance heuristic will lead to additional variance. We now examine where this
extra variance comes from, to see how it can be reduced. We start by dividing the domain
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/‘ \ p2

B A B

Figure 9.7: Theintegration domain is divided into two regions A and B. Region A repre-
sents the set of points where p; > po, while region B represents the points where pa > p;.
The weights computed by the balance heuristic are considered in each region separately.

into two regions A and B, as shown in Figure 9.7. Region A represents the set of points
where p; > po, While region B represents the points where p, > p;. We will consider
the weights computed by the balance heuristic in each region separately. To simplify the
discussion, we assumethat n; = n, = 1 (i.e. asingle sampleistaken using each technique,
and their contributions are summed).

First consider the sample from p;, which islikely to occur in the central part of region
A. Since p; ismuch larger than p, in thisregion, the sampleweight @, = p;/(p1 + p2) Will
be close to one. This agrees with the optimal weighting function w} = 1, as desired.

Similarly, the sample from p, is likely to occur in region B, where its weight w, =
p2/(p1 + p2) iscloseto one. Nevertheless, the contribution of this sample will be small,
sincetheintegrand f isnearly zero inregion B. Therefore this situation is also closeto the
optimal one, in which the samples from p, are ignored.

However, there are two effects that |ead to additional variance. First, the samplefrom p,
sometimes occurs near the boundaries of region A (or eveninregion B), where its weight
w1 = p1/(p1 + po) issignificantly smaller than one. In this case, the sample makes a contri-
bution that is noticeably smaller than the optimal value f /p;. (Recall that p; is proportiona
to f, sothat f/p; isthe desired value i of theintegral.) In Figure 9.5, this effect shows up
asoccasiona pixelsthat are darker than they should be (e.g. in the top image of column (c)).

The second problem is that the sample from p, sometimes occurs in region A. When
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this happens, its weight @, = po/(p1 + p2) is smal. However, the contribution made by
thissampleis

gl =2 f_ 7
D2 P11+ P2 p2 P1+ D2
which is approximately equal to f/p; = p inthisregion. Sinceit islikely that the sample
fromp, asoliesinregion A (contributing another 1 toward the estimate), thisleadsto atotal
estimate of approximately 2. InFigure 9.5(c), thiseffect showsup asoccasiona pixelsthat
are approximately twice as bright as their neighbors.*

Thus, the additional noise of the balance heuristic can be attributed to two problems.
First, some of the samplesfrom p; have weightsthat are significantly smaller than one: this
happens near the boundary of region A, wherep, and p, have comparable magnitude. (Very
few of these sampleswill occur intheregionwherep, < po, SsSmply becausep, isvery small
there.) The second problem isthat some samples from p, make contributions of noticeable
size (i.e. asignificant fraction of 1). Most of these samples have small weights, because
they occur in region A where p; > p,. Some samples will also occur in the region where
p1 and p, have comparable magnitude; however, the samples where p, > p; do not cause
any problems, since the sample contribution f/(p; + p2) is negligible there.

9.2.3.2 Better strategiesfor low-variance problems

We now present two families of combination strategies that have better performance on
low-variance problems. These strategies are variations of the balance heuristic, where the
weighting functions have been sharpened by making large weights closer to one and small
weights closer to zero. Thisideais effective at reducing both sources of variance described
above.

The basic observation is that most samples from p; occur in region A, where p; > ps.
We would like all of these samples to have the optimal weight w; = 1. Since the balance
heuristic already assignsthese samplesaweight @, = p1/(p1 + p2) that isgreater than 1/2,
we can get closer to the optimal weighting functions by applying the sharpening strategy
mentioned above. For example, one way to do thiswould be to set w; = 1 (and wy = 0)

“Note that this situation is entirely different than the “ spikes’ of Figure 9.5(a) and (b), which are caused
by sample contributionsthat are hundreds of times larger than the desired mean value.
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whenever w; > 1/2.

Similarly, thisidea can reduce the variance caused by samplesfrom p, inregion A. The
optimal weight for these samplesis w} = 0, while the balance heuristic assigns them a
weight w, < 1/2, so that sharpening the weighting functions is once again an effective
strategy.®

We now describe two different combination strategies that implement this sharpening
idea, called the cutoff heuristic and the power heuristic. Each of these is actually afamily
of strategies, controlled by an additional parameter. For convenience in describing them,
we will drop the x argument on the functions w; and p;, and define a new symbol ¢; as the
product ¢; = n;p;. For example, in this notation the balance heuristic would be written as

"4
w; = .
>k Gk

Thecutoff heuristic. The cutoff heuristic modifies the weighting functions by discarding
samples with low weight, according to a cutoff threshold o € [0, 1]:

0 if Qi < O Qmax

otherwise
Ek {qk ‘ qk 2 QQmaX}

where gm.x = max; gx. Thethreshold o determines how small ¢; must be (compared to
Imax) beforeit is thrown away.

Thepower heuristic. Thepower heuristic modifies the weighting functionsin adifferent
way, by raising all of the weights to an exponent 3, and then renormalizing:
p

q
ok be

SNote that sharpening the weighting functions is not a perfect solution for low-variance problems, since
it does not address the extra variance due to samplesin region B (where po > pq). Inthisregion, sharpen-
ing the weighting functions has the effect of decreasing w; and increasing w-, which is opposite to what is
desired. The number of samples affected in thisway is relatively small, however, under the assumption that
most samples from p; occur where p; > ps.
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We have found the exponent 5 = 2 to be areasonable value. With this choice, the sample
contribution (w; f)/(n; p;) isproportional to p;, so that it decreases gradually asp; becomes
smaller relativeto the other p,. (Compare thiswith the balance heuristic, where asample at
agiven point x always makes the same contribution, no matter which sampling technique
generated it.)

Notice that the balance heuristic can be obtained as a limiting case of both strategies
(whena = 0 or 8 = 1). These two strategies a so share another limiting case, obtained by
setting o = 1 or 5 = oo. Thisspecial caseis called the maximum heuristic:

The maximum heuristic. The maximum heuristic partitions the domain into n regions,
according to which function ¢; islargest at each point x:
1 if i — {max
w = { %=1 (9.14)

0 otherwise.

In other words, samplesfrom p; are used to estimate theintegral only intheregion 2; where
w; = 1. Themaximum heuristic does not work aswell asthe other strategiesin practice; in-
tuitively, thisis because too many samplesarethrown away. However, it gives someinsight
into the other combination strategies, and has an elegant structure.

9.2.3.3 Variancebounds

The advantage of these strategies is reduced variance when one of the p; is a good match
for f. Their performance is otherwise similar to the balance heuristic; it is possible to show
they are never much worse. In particular, we have the following worst-case bounds:

Theorem 9.3. Let f, n;, andp; begiven, fori =1,...,n. Let F beany unbiased estimator
of theform (9.4), and let F' be one of the estimators described above. Then the variance of
F' satisfiesa bound of the form

VIF < eviF + (oo L),

min; n; 20N

where the constant c is given by the following table:
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Cutoff heuristic (with threshold ) c=1+a(n-1)
Power heuristic (with exponent (3) c=14+ 1/ ((n-1)(1-1/3))" "
Power heuristic (with exponent 3 = 2) c = (1/2) (1 + v/n)

In particular, these bounds hold when F” is compared against the unknown, optimal es-
timator F*. A proof of this theorem in given in Appendix 9.A. However, the true test of
these strategiesis how they perform on practical problems; measurements along these lines
are presented in Section 9.3.1.

9.2.4 Theone-sample model

We conclude by considering adifferent model for how the samples are taken and combined,
called the one-sample model. Under this model, the integral is estimated by choosing one
of the n sampling techniques at random, and then taking a single sample from it. Again
we consider how to minimize variance by weighting the samples, and we show that for this
model the balance heuristic is optimal: no other combination technique has smaller vari-
ance.

Let pq, ..., p, bethe density functions for the n given sampling techniques. To gen-
erate a sample, one of the density functions p; is chosen at random according to a given
set of probabilitiescy, . . ., ¢, (which sum to one). A single sample is then taken from the
chosen technique. This sampling model is often used in graphics: for example, it describes
algorithms such as path tracing, where sampling the BSDF may require a random choice
between different techniques for the diffuse, glossy, and specular components.

As before, we consider a family of unbiased estimators for the given integral
Jo f(x) du(x), where each estimator is represented by a set of weighting functions w,
..., wy,. The process of choosing a sampling technique, taking a sample, and computing a
weighted estimate is then expressed by the one-sampl e estimator

wr(Xr) f(Xr)
Cr pI(XI) ’

where € {1,...,n} isarandom variable distributed according to the probabilities c;, and

F = (9.15)
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X isasample from the corresponding technique p;. This estimator is unbiased under the
same conditions on the w; discussed in Section 9.2.1.

We now consider how to choose the weighting functions w;, to minimize the variance
of the resulting estimator. We can show that for thismodel, the balance heuristicis optimal:

Theorem 9.4. Let f, c¢;, and p; begiven,fori = 1,...,n. Let F beany unbiased estimator
of the form (9.15), and let £' be the corresponding estimator that uses the balance heuristic
weighting functions (9.8). Then

V[F] < V[F].

(A proof isgiven in Appendix 9.A.) Thus, for this sampling model the improved com-
bination strategies of Section 9.2.3 are unnecessary.

9.3 Reaults

In this section, we show how multiple importance sampling can be applied to two impor-
tant application areas: distribution ray tracing (in particular, the glossy highlights problem
from Section 9.1), and thefinal gather passof certain light transport algorithms. (In the next
chapter we will describe amore advanced example of our techniques, namely bidirectional
path tracing.)

9.3.1 Theglossy highlights problem

Our first test isthe computation of glossy highlightsfrom arealight sources (previously de-
scribed in Section 9.1). As can be seen in Figure 9.8(a) and (b), sampling the BSDF works
well for sharp reflections of large light sources, while sampling the light source works well
for fuzzy reflections of small light sources. In Figure 9.8(c), we have used the power heuris-
ticwith 8 = 2 to combine both kinds of samples. This method works very well for al light
source/BSDF combinations. Figure 9.8(d) isavisualization of the weighting functions that
were used to compute thisimage.

To compare the various combination strategies (the balance, cutoff, power, and maxi-
mum heuristics), we have measured the variance numerically as a function of the surface
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(a) Sampling the BSDF (b) Sampling the light sources

(c) The power heuristic with 5 = 2. (d) The weights used by the power heuristic.

Figure9.8: Multipleimportance sampling applied to the glossy highlights problem. (a) and
(b) arethe images from Figure 9.2, computed by sampling the BSDF and sampling the light
sources respectively. (c) was computed by combining the samples from (a) and (b) using the
power heuristic with 8 = 2. Findly, (d) isafase-color image showing the weights used to
compute (). Red represents sampling of the BSDF, while green represents sampling of the
light sources. Yellow indicates that both types of samples are assigned a significant weight.
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\\\\M///_ spherical
= = light
7

glossy surface

Figure 9.9: A scale diagram of the scene model used to measure the variance of the glossy
highlights calculation. The glossy surface isilluminated by a single spherical light source,
so that a blurred reflection of the light source is visible from the camera position. Variance
was measured by taking 100,000 samples along the viewing ray shown, which intersects the
center of the blurred reflection at an angle of 45 degrees. This calculation was repeated for
approximately 100 different values of the surface roughness parameter » (which controls
how sharp or fuzzy the reflections are), in order to measure the variance as a function of
surface roughness. The light source occupies a solid angle of 0.063 radians.

roughness parameter r. Figure 9.9 shows the test setup, and the results are summarized in
Figure 9.10. Three curves are shown in each graph: two of them correspond to the BSDF
and light source sampling techniques, while the third corresponds to the combination strat-
egy being tested (i.e. the balance, cutoff, power, or maximum heuristic). Each graph plots
therelative error o /1, asafunction of r, where o isthe standard deviation of asingle sample,
and p isthe mean.

Noticethat al four combination strategiesyield avariance that is close to the minimum
of the two other curves (on an absolute scale). This is in accordance with Theorem 9.2,
which guarantees that the variance o of the balance heuristic is within ;2 /2 of the vari-
ance obtained when either of the given sampling techniquesis used on its own. The plots
in Figure 9.10(a) are well within this bound.

At the extremes of the roughness axis there are significant differences among the var-
ious combination strategies. As expected, the balance heuristic (a) performs worst at the
extremes, since the other strategies were specifically designed to have better performance
in this case (i.e. the case when one of the given sampling techniquesis an excellent match
for theintegrand). The power heuristic (c) with 5 = 2 works especialy well over the entire
range of roughness values.



9.3. RESULTS

relative error o/pu

relative error  o/pu

\
\ /
S !
154 sample light , sample BSDF
\ /
\
14 \ !
\ /
051 balance \\//
: heuristic N
0 _ =
2 0

107 10 107 10
surface roughness r

(a) The balance heuristic.

\
\ !
\ /
1.5+ sample light | ; sample BSDF
\ /
\
11 \ !
\ /
\ /
0.5 power V
heuristic =
0 —

10 10 10" 10
surface roughness r

(c) The power heuristic (G = 2).
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(b) The cutoff heuristic (o« = 0.1).
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(d) The maximum heuristic.

Figure9.10: Variance measurementsfor the glossy highlights problem using different com-
bination strategies. Each graph plotstherelative error o /1 asafunction of the surface rough-
ness parameter » (Wwhere o2 represents the variance of asingle sample, and . isthe mean). A
fixed size, spherical light source was used (as shown in Figure 9.9). Thethree curvesin each
graph correspond to sampling the BSDF, sampling the light source, and a weighted combi-
nation of both sample types using the (a) balance, (b) cutoff, (c) power, and (d) maximum
heurigtics. (The three small circles on each graph are explained in Figure 9.11.)

Figure 9.11 shows how these numerical measurementstranslate into actual image noise.

Each image shows a glossy reflection of a spherical light source, using the same test setup

as for the graphs (see Figure 9.9). The three images in each group were computed using
different parameter values (namely » = 1075, » = 1073, and » = 10~!), which causes the
reflected light source to be blurred by varying amounts. The noise levels in these images

should be compared against the corresponding circled variance measurementsin the graphs

of Figure 9.10. Notice that the cutoff, power, and maximum heuristics substantially reduce

the noise at the extremes of the roughness axis.
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r=10"° r=10"% r=10"" r=10"° r=10"2% r=10""
(a) The balance heuristic. (b) The cutoff heuristic (e = 0.1).
r=107"° r=10"?% r=10" r=10"° r=10"?% r=10"
(c) The power heuristic (6 = 2). (d) The maximum heuristic.

Figure 9.11: Each of these test images corresponds to one of the circled points on the vari-
ance curves of Figure 9.10. Their purpose isto compare the different combination strategies
visually, by showing how the numerical variance measurements trandate into actual image
noise. Each image shows a glossy reflection of a spherical light source, as shown in Fig-
ure 9.9 (the same test setup used for the graphs). The three imagesin each group were com-
puted using different values of the surface roughness parameter r (with one sample per pixel,
box filtered), which causes the reflected light source to be blurred by varying amounts (the
sharpest reflections are on the left). The noise levels in these images should be compared
against the corresponding circled variance measurements shown in Figure 9.10. Notice in
particular that the improved weighting strategies (b), (c), and (d) give much better results
when r = 10~ 1, and significantly better results when r = 107°.

In all cases, the additional cost of multiple importance sampling was small. The total
time spent evaluating probabilities and weighting functionsin these tests was | ess than 5%.
For scenes of realistic complexity, the overhead would be even smaller (as afraction of the
total computation time).

We have a so made measurements of the cutoff and power heuristics using other values
of a and 8 (which represent the cutoff threshold and the exponent, respectively). In fact,
the graphs in Figure 9.10 aready give results for three values of o and /3 each, since the
bal ance and maximum heuristics are limiting cases of the other two strategies. Specificaly,
the cutoff heuristic for « = 0, « = 0.1, and o = 1 is represented by graphs (a), (b), and
(d), while the power heuristicfor 8 = 1, § = 2, and § = oo isrepresented by graphs (a),
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(¢), and (d). The graphs we have obtained at other parameter values are not significantly
different than what would be obtained by interpolating these results.

Related work. Shirley & Wang [1992] have aso compared BRDF and light source sam-
pling techniques for the glossy highlights problem. They anayze a specific Phong-like
BRDF and a specific light source sampling method, and derive an expression for when to
switch from one to the other (as a function of the Phong exponent, and the solid angle oc-
cupied by thelight source). Their methods work well, but they apply only to this particular
BSDF and sampling technique. In contrast, our methods work for arbitrary BSDF's and
sampling techniques, and can combine samples from any number of techniques.

9.3.2 Thefinal gather problem

In this section we consider a simple test case motivated by multi-pass light transport algo-
rithms. These algorithms typically compute an approximate solution using the finite ele-
ment method, followed by one or more ray tracing passes to replace parts of the solution
that are poorly approximated or missing. For example, some radiosity algorithmsuse alo-
cal passor final gather to recompute the basis function coefficients more accurately.

We examine avariation called per-pixel final gather. Theideaisto compute an approxi-
mate radiosity solution, and then useit to illuminate the visible surfaces during aray tracing
pass [Rushmeier 1988, Chen et al. 1991]. Essentially, thistype of fina gather is equivaent
to ray tracing with many area light sources (one for each patch, or onefor each link in ahi-
erarchical solution). That is, we would like to evaluate the scattering equation (9.2) where
L. isgiven by theinitial radiosity solution.

Aswiththeglossy highlights example, there are two common sampling techniques. The
brightest patchesaretypically reclassified as“light sources’ [Chen et al. 1991], and are sam-
pled using direct lighting techniques. For example, thismight consist of choosing one sam-
ple for each light source patch, distributed according to the emitted power per unit area.
The remaining patches are handling by sampling the BSDF at the point intersected by the
viewing ray, and casting rays out into the scene. If any ray hitsalight source patch, the con-
tribution of that ray is set to zero (to avoid counting the light source patches twice). Within
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(b)

Figure 9.12: A simple test scene consisting of one area light source (i.e. a bright patch,
in the radiosity context), and an adjacent diffuse surface. The images were computed by
(a) sampling the light source according to emitted power, using n; = 3 samples per pixd,
(b) sampling the BSDF with respect to the projected solid angle measure, using no = 6
samples per pixel, and (c) a weighted combination of samples from (a) and (b) using the
power heuristic with 5 = 2.

our framework for combining sampling techniques, thisis clearly apartitioning of the inte-
gration domain into two regions.

Given some classification of patches into light sources and non-light sources, we con-
sider alternative ways of combining the two types of samples. To test our combination
strategies, we used the extremely simple test scene of Figure 9.12, which consists of asin-
gle arealight source and an adjacent diffuse surface. Image (a) was computed by sampling
thelight source according to emitted power, whileimage (b) was computed by sampling the
BSDF and casting rays out into the scene. Twice as many samples were taken in image (b)
than (@); in practice this ratio would be substantially higher (i.e. the number of directional
samples, compared to the number of samples for any one light source).

Notice that the sampling techniquein Figure 9.12(a) does not work well for points near
thelight source, sincethistechnique does not take into account the 1 /r2 distance term of the
scattering equation (9.2). On the other hand Figure 9.12(b) does not work well for pointsfar
away from the light source, where the light subtends a small solid angle. In Figure 9.12(c),
the power heuristic is used to combine samplesfrom (a) and (b). As expected, this method
performswell at all distances. Although (¢) uses more samples (the sum of (a) and (b)), this
still isavalid comparison with the partitioning approach described above (which also uses
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relative error o/u
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Figure 9.13: A plot of the relative error o/, as a function of the distance from the light
source. Three curves are shown, corresponding to the three images of Figure 9.12. The
curves have been normalized to show the variance whenny = 1 and ny = 2 (the same
ratio of samples used in Figure 9.12).

both kinds of samples).

Variance measurementsfor these experimentsare plotted in Figure 9.13. Therearethree
curves, corresponding to thethreeimages of Figure 9.12. Each curve plotstherelative error
o /u asafunction of the distance from the light source. Notice that the combined curve (c)
awaysliesbelow the other two curves, indicating that both kinds of samplesare being used
effectively. Also, notice that unlike Figure 9.10, the variance curves do not approach zero
at the extremes of the distance axis (not even asthe distance d goestoinfinity). Thisimplies
that neither of the given sampling techniquesisan excellent match for the integrand, so that
the balance, cutoff, power, and maximum heuristics all perform similarly on this problem.
Thisiswhy we have only shown one graph, rather than four.

9.4 Discussion

There are several important issues that we have not yet discussed.

We start by considering how multiple importance sampling is related to the classical
Monte Carlo techniques of importance sampling and stratified sampling. We show that it
unifies and extends these ideas within asingle sampling model. Next, we consider the prob-
lem of choosing the n;, i.e. how to allocate a fixed number of samples among the given
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sampling techniques. We argue that this decision is not nearly asimportant as choosing the
weighting functions appropriately. Finally, we discuss some specia issues that arisein di-
rect lighting problems.

9.4.1 Reationship to classical Monte Carlo techniques

Multiple importance sampling can be viewed as a generalization of both importance sam-
pling and stratified sampling. It extends importance sampling to the case where more than
one sampling technique is used, while it extends stratified sampling to the case where the
strata are allowed to overlap each other. From the latter point of view, multiple importance
sampling consists of taking one or more samples in each of n given regions ;. These re-
gions do not need to be digoint; the only requirement is that their union must cover the
portion of the domain where f is non-zero.

This generalization of stratified sampling is useful, especialy when the integrand is a
sum of severa quantities. A good examplein graphicsisthe BSDF, which is often written
as asum of diffuse, glossy, and specular components (for reflection and/or transmission).
The process of taking one or more samples from each component is essentialy a form of
stratified sampling, where the strata overlap.

When stratified sampling is generalized in this way, however, there is more than one
way to compute an unbiased estimate of the integral (since when two strata overlap, sam-
plesfrom either or both strata can be used). To address this, multiple importance sampling
assigns an explicit representation to each possible unbiased estimator (as a set of weighting
functions w;). Furthermore it provides a reasonable way to select one of these estimators,
by showing that certain estimators perform well compared to al the rest.

9.4.2 Allocation of samples among the techniques

In this section, we consider how to choose the number of samplesthat are taken using each
technique p;. We show that this decision is not as important as it might seem at first: no
strategy is that much better than that of ssimply setting all the n; equal.

To seethis, supposethat atotal of N sampleswill betaken, and that these samples must
be allocated among the n sampling techniques. Let F' be an estimator that allocates these
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samplesin any way desired (provided that Y, n; = N), and uses any weighting functions
desired (provided that F' is unbiased). On the other hand, let £ be the estimator that takes
an equal number of samples from each p;, and combines them using the balance heuristic.
Then it is straightforward to show that

. 1
VIE] < nVI[F] + ”TM

whereasusual, © = E[F] isthe quantity to be estimated (see Theorem 9.5in Appendix 9.A
for a proof).

According to this result, changing the n; can improve the variance by at most a factor
of n, plusasmall additive term. In contrast, a poor choice of the w; can increase variance
by an arbitrary amount. Thus, the sample alocation is not as important as choosing a good
combination strategy.

Furthermore, the sample allocation is often controlled by other factors, so that the opti-
mal sampleallocationisirrelevant. For example, consider the glossy highlightsproblem. In
adistribution ray tracer, the samples used to estimate the glossy highlights are al so used for
other purposes. e.g. the light source samples are used to estimate the diffuse shading of the
surface, while the BSDF samples are used to compute glossy reflections of ordinary, non-
light-source objects. Oftenthese other purposeswill dictate the number of samplestaken, so
that the sample alocation for the glossy highlights cal culation cannot be chosen arbitrarily.
On the other hand, by computing an appropriate weighted combination of the samples that
need to be taken anyway, we can reduce the variance of the highlight cal culation essentially
for free.

Similarly, the sample allocation is aso constrained in bidirectional path tracing. In this
case, it isfor efficiency reasons: it is more efficient to take one sample from all the tech-
niques at once, rather than taking different numbers of samples using each strategy. (This
will be discussed further in Chapter 10.)

9.4.3 Issuesfor direct lighting problems

The glossy highlights and final gather test cases are both examples of direct lighting prob-
lems. They differ only in the terms of the scattering equation that cause high variance: in
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the case of glossy highlights, it was the BSDF and the emission function L., while for the
fina gather problem it was the 1/r? distance factor.

Although there are more sophisticated techniques for direct lighting that take into ac-
count morefactors of the scattering equation [Shirley et a. 1996], itisstill useful to combine
several kinds of samples. There are several reasons for this. First, sophisticated sampling
strategies are generally designed for a specific light source geometry (e.g. the light source
must beatriangle or asphere). Second, they are often expensive: for example, takingasam-
ple may involve numerical inversion of afunction. Third, none of these strategiesis perfect:
there are always some factors of the scattering equation that are not included in the approx-
imation (e.g. virtually all direct lighting strategies do not consider the BSDF or visibility
factors). Thus, in parts of the scene where these unconsidered factors are dominant, it can
be more efficient to use a simpler technique such as sampling the BSDF. Thus, combining
samples from two or more techniques can make direct lighting cal cul ations more robust.

9.5 Conclusionsand recommendations

As we have shown, multiple importance sampling can substantially reduce the variance
of Monte Carlo rendering calculations. These techniques are practical, and the additional
cost issmall — less than 5% of the timein our tests was spent eval uating probabilities and
weighting functions. There are also good theoretical reasonsto use these methods, sincewe
have shown strong bounds on their performancerelative to al other combination strategies.
For most Monte Carlo problems, the balance heuristic is an excellent choice for acom-
bination strategy: it has the best theoretical bounds, and is the simplest to implement. The
additional variance term of (1/ min; n; — 1/N) u? isnot an issue for integration problems
of reasonable complexity, because it is unlikely that any of the given density functions p;
will be an excellent match for f. Under these circumstances, even the optimal combination
F™* has considerable variance, so that the maximum improvement that can be obtained by
using some other strategy instead of the balance heuristic isa small fraction of the total.
On the other hand, if it is possible that the given integral isalow-variance problem (i.e.
oneof thep; isgood matchfor f), thenthepower heuristicwith 5 = 2 isan excellent choice.
It performssimilarly to the balance heuristic overall, but givesbetter resultson low-variance
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problems (which is exactly the case where better performance is most noticeable). Direct
lighting calculations are a good example of where this optimization is useful.

In effect, multiple importance sampling provides a new viewpoint on Monte Carlo inte-
gration. Unlike ordinary importance sampling, where the goa isto find a single “ perfect”
sampling technique, here the goal isto find a set of techniquesthat cover the important fea-
tures of the integrand. It does not matter if there are afew bad sampling techniques as well
— some effort will be wasted in sampling them, but the results will not be significantly af-
fected. Thus, multipleimportance sampling givesarecipefor making Monte Carlo software
more reliable: whenever there is some situation that is not handled well, then we can sim-
ply add another sampling technique designed for that situation alone. We believe that there
are many applicationsthat could benefit from this approach, both in computer graphicsand
elsewhere.
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Appendix 9.A Proofs

Proof of Theorem 9.2 (from p. 264).  Let F; ; be the random variable

[ w; (X 5) f(Xi ;)
,] — I
pi(Xi;)
and let p; be its expected value
pi = E[F;j]
= [ wila) (@) du(o)
(which does not depend on j). We can then write the variance of F' as
VIF] = V> — > F
i=1 """ j=1
= Z n2 Z V[Fm]
i=1 ' j=1
n 1 ng 9 n 1 ng 9
= |2 2 DB - | X 2 X EIF]
=1 "t j=1 =1 "t j=1
L [ wi) A e) ~1
= — pilx du(z - —5 Nq WYy

= ( > Mdu(w)) - (Z iu?) - (9.16)

= nipi(e) i=1
Notice that there are no covariance terms, because the X; ; are sampled independently.

We will bound the two parenthesized expressions separately. To minimize the first expression

w; (z) £(x)

30w g 047)
Q= ipi() ’

n

it is sufficient to minimize the integrand at each point = separately. Noting that £2(z) is a constant
and dropping = from our notation, we must minimize

>

D

=1 (W

3

subject to the condition >~, w; = 1. Using the method of Lagrange multipliers, the minimum value
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isattained when all n + 1 partial derivatives of the expression

S (£)

7 N Pi

are zero. Thisyields n equations of the form —2 w; = n; p; A, together with constraint ", w; = 1.

The solution of these equations is
N i Pi
v 2k Tk Pk
(the balance heuristic). Thusno other combination strategy can makethefirst variance term of (9.16)
any smaller.

We now consider the second variance term of (9.16), namely

Wewill prove an upper bound of (1/ min; n;) u? and alower bound of (1/ 3", n;) u?, such that these
bounds hold for any functionsw;. (Recall that x = E[F] isthe quantity to be estimated.) Combining
this with the previous result, we immediately obtain the theorem.

For the upper bound, we have

2

1, 1 ) 1 1,
— 2 < 2 < . —

Z n; Hi = min; n; ;M’ ~ min; n; (; Mz) min; niu ’

%

where the second inequality holds because all the 1; are non-negative.

For the lower bound, we minimize 3", 2 /n; subject to the constraint 3", u; = p. Using the
method of Lagrange multipliers, the minimum is attained when al n + 1 partia derivatives of the
expression

S (S )
0 .Nz M

are zero. Thisyieldsn + 1 equations whose solution is p; = (ni/ >, nk) i, S0 that the minimum
value of the second variance term of (9.16) is

1 ni 2 1,
> n) = Z
T T 2ok Tk 2ok Mk

asdesired. N
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Proof of Theorem 9.3 (from p. 274).  According to the arguments of the previous theorem, it is
sufficient to prove abound of the form

w?(z) f2(x W2 (z) f2(x
) z()f()SCZ i (@) f2(x)

7 n; pi() P n; pi()

at each point x, where the w; are the weighting functions given by one of the heuristics of Theo-
rem 9.3, and the w; are given by the balance heuristic. Dropping the argument z, letting ¢; = n;p;,

and substituting the definition
. i
W; = ,
' 2ok Gk

we must show that

wy 1/ ¢ \_ ¢
2y S C; i <Ekaz> Xk (5.18)

For the cutoff heuristic, we have

wy 1 g ’
22-: % Z ( Qk>

i|qi2a Gmax 4 Zk|qk2a gmax
1

Zi|¢1i20¢ gmax qi

Thus according to (9.18), we must find avalue of ¢ such that

1 c
<
Ei\ina Gmax q; Ek gk

= c D G2 Y

i‘qizaqrnax k
= =1 > @ = Da- >

1|¢i > gmax k t|gi > gmax
— c—1 > Ei\qi<a gmax

Ei‘%’za gmax 4

To find avaue of ¢ for which thisis true, it is sufficient to find an upper bound for the right-hand
side. Examining the numerator and denominator, we have

< = a(n—1).
Zi\ina Gmax qi Gmax

Thus the variance claim istrue whenever ¢ > 1+ «a(n — 1), asdesired.

Next, we consider the power heuristic with the exponent 8 = 2. Starting with the inequality
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(9.18), we have

w? 1 ¢\ oé
— = - ! = =% 9.19
; 0 2 (EM;%) Xk ) (5.19)
Thus we must find avalue of ¢ such that
3
D 45 < c
= Cia) (i) < e (Xpad)? (9.20)

Noticethat thisinequality is unchanged if all the ¢; are scaled by aconstant factor. Thuswithout loss
of generality we can assume that

Y@ =, (9.21)
so that our goal reduces to finding a value of ¢ such that
> (@) | (i) -

We proceed as before, by finding an upper bound for the right-hand side. Without loss of generality,
let g1 be the largest of the ¢;. Observing that

(Xi@) / (Xig)) < maxq = a1,
it is sufficient to find an upper bound for ¢;. According to (9.21), we have
—q Z qi — q1

Letting S denote the quantity on theright-hand side, wehave S < (1/4) (n—1), sincethe maximum
value of ¢; — ¢? isattained when ¢; = 1/2. Thus using the quadratic formula, we have

IN

(1/4)(n—1
/2) (1 +\/(~1)2 +4(1/4) (n — 1))
(/)(1+\/ﬁ)-

2
q1 — 41

IN

Thus, the original inequality (9.18) istrue for any value of ¢ larger than this.

For an exponent in therange 1 < 8 < oo, the argument is smilar. We find that

> () ) (S’
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(compare this with (9.19)), and we must find a value of ¢ for which

(20) (2) =< (54)

(compare with (9.20)). By scaling al the ¢; by a constant factor, we can assume without loss of

generality that
Yool = > a, 9.22)
s0 that we must find avalue of ¢ that satisfies
268—1
c > Zi q; —
Ei q;

Letting g1 bethe largest of the ¢;, atrivial upper bound for the right-hand side iSqlﬁ ~1 our strategy
will be to find an upper bound for this quantity, in terms of 3 and n.

Defining
S — Z i — %ﬁ (9.23)

and using the restriction (9.22), we have

@ -a = S
= @t = 14+ S/q:. (9.24)

Tofind an upper bound for the right-hand side, we must find an upper bound for .S, and alower bound
for ¢1. For ¢1, we have

CI? = g+
S
Sl/ﬂ7

I
R
Y

!
2
Y

and inserting thisin (9.24) yields
qf—l < 1481718, (9.25)
Now to find an upper bound for .S, from (9.23) we have

S < (n—1) sup(z — 2P). (9.26)
>0
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The maximum value of f(x) = = — =# occurswhen f/(z) = 0, yielding

1—B871 = 0
— v o= (1/8)VE.

Substituting thisin (9.26), we obtain an upper bound for S:

S < (-1 ((B)YE D — (1780 D)
= (n—1)(1/8)"YFD 1 -1/p).

Finally, we combine this with (9.25) to obtain an upper bound for q'f -

-1
a

14 51715
1+ [(n -1 (/80 (1 - 1/8)]”

= 1+ (/0 (- 1)(1 - 1/8)"

IN

—-1)/B

IN

as desired.

Notice that for the case 5 = 2, this argument gives a bound of
¢ = (1/2)2+Vn—1),

which isdightly larger than the bound of ¢ = (1/2) (1 + \/n) previousy shown. &

Tightnessof thebounds. For the cutoff heuristic, the constant ¢ cannot be reduced for any value
of a. (Toseethis letg; = 1,andlet ¢; = a —efordl i = 2,...,n, wheree > 0 can be made as
small asdesired.)

For the power heurigtic, the given bounds are tight when 8 = 1 and 8 = oo (corresponding to
the balance and maximum heuristics respectively, and yielding the constants ¢ = 1 and ¢ = n. For
other values of 3, the bounds are not tight. However, they are not as loose as might be expected,
considering the simplifications that were made to obtain them. For example, let ¢; = 1 + /n, and
g = 1fori=2,...,n. Substituting these values into the defining equation (9.20) for ¢, we obtain

c = (1/4)(3++vn).

Thus, theboundsc = (1/2) (14 +/n) and ¢ = (1/2) (2+ +/n — 1) proven above cannot be reduced
by more than afactor of two.
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Proof of Theorem 9.4 (from p. 276). Thevariance of F'is
V[F] = E[F?] — E[F).
Since E[F]? = p? is the same for al unbiased estimators, it is enough to show that the balance

heuristic minimizes the second moment E[F2]. We have

2.2
G pi\x

~ wi(z) (@)
/QE i pi() nt).

C

~ w?(z) f2(x
BIFY = Yo [ M ) duto
=1

Except for the substitution of ¢; for n;, thisexpression isidentical to the second moment term (9.17)
that was minimized in the proof of Theorem 9.2. Thus, the balance heuristic minimizes E[F?], and
wearedone. N

Thefollowing theorem concernsthe all ocation of samples among the given sampling techniques.
Before stating it, we first rewrite the multi-sample estimator (9.4) to allow for the possibility that
some n; are zero:

P i "Z wi(Xi ;) f(Xij) ’ (927)

aSE mpi(Xay)

where n; > 0 for al i. The possibility that n; = 0 aso requires a modification to condition (W2)
for F' to be unbiased:

(W2')  w;(xz) = 0whenever n;p;(x) = 0.

We now have the following theorem (which was informally summarized in Section 9.4.2):

Theorem 9.5. Let f, p1, ..., pn, and the total number of samples N be given, where N = kn for
someinteger k. Let F' be any unbiased estimator of the form (9.27), and let ¥ be the corresponding
estimator that uses the weighting functions
. n; pi ()
w; () = ———
( >k 1k Pr(T)
(the balance heuristic), and takes an equal number of samples from each p;. Then

n—1 ,

VIF] < nVIF) + S,

where i = E[F] is the quantity to be estimated.
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Proof. Given any unbiased estimator F, let F™ be the estimator that uses the same weighting
functions F (w;” = w;), but takes an equal number of samples using each sampling technique
(ni = N/n). Wewill show that V[F+] < nV[F]. Starting with equation (9.16) for V'[F], we
have

2(2) £2(2) o

[ w@f@, 1
VIFL = [ S ) - X

= i niz (/Q = (;)(g{) @) gy - u?)

=1

i 'LU2 X 2 X
> % (/Q — s (pi)(i)( ) du(z) — u?)

=1

v

n

1 ([ wie) )
> ¥ (/Q e du(m)—uf)

2

V[FT].

Sl= 3|+

We now compare the variance of F'* to the variance of F'. These two estimators take the same
number of samples from each p;, so that we can apply Theorem 9.2:

. 1 1
VIF] < VIFT] + (minn?" B ~n7|‘> w
1 1
< nVI[F] + (N—/n - N) s
-1
= nV[F] + 2

N H-
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