Biased Monte Carlo Ray Tracing

Filtering, Irradiance Caching, and Photon Mapping

Henrik Wann Jensen

Stanford University

May 23, 2002

Unbiased and Consistent

Unbiased estimator:

$$E\{X\} = \int \dots$$

Consistent estimator:

$$\lim_{N\to\infty} E\{X\} \to \int \dots$$

Unbiased and Consistent

Unbiased estimator:

$$rac{1}{N}\sum_{i=1}^N f(\xi_i)$$

Consistent estimator:

$$\frac{1}{N+1} \sum_{i=1}^{N} f(\xi_i)$$

Unbiased Methods

- Variance (noise) is the only error
- This error can be analyzed using the variance (i.e. 95% of samples are within 2% of the correct result)

Path Tracing (Unbiased)

10 paths/pixel

Path Tracing (Unbiased)

10 paths/pixel

Path Tracing (Unbiased)

100 paths/pixel

How Can We Remove This Noise

The World is Diffuse!

Arnold Rendering

The World is Diffuse!

Arnold Rendering

The World is Diffuse!

Arnold Rendering

ullet More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)

- ullet More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)

- ullet More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)
- Adaptive sampling

- ullet More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)
- Adaptive sampling
- Filtering

- ullet More samples (slow convergence, $\sigma \propto 1/\sqrt{N}$)
- Better sampling (stratified, importance, qmc etc.)
- Adaptive sampling
- Filtering
- Caching and interpolation

Stratified Sampling

Latin Hypercube: 10 paths/pixel

Quasi Monte-Carlo

Halton-Sequence: 10 paths/pixel

Fixed (Random) Sequence

10 paths/pixel

Filtering: Idea

Noise is high frequency

Filtering: Idea

- Noise is high frequency
- Remove high frequency content

Unfiltered Image

10 paths/pixel

3x3 Lowpass Filter

10 paths/pixel

Unfiltered Image

10 paths/pixel

3x3 Median Filter

10 paths/pixel

Energy Preserving Filters

Energy Preserving Filters

Distribute noisy energy over several pixels

Energy Preserving Filters

Distribute noisy energy over several pixels

- Adaptive filter width
 [Rushmeier and Ward 94]
- Diffusion style filters[McCool99]
- Splatting style filters
 [Suykens and Willems 00]

Problems With Filtering

- Everything is filtered (blurred)
 - * Textures
 - * Highlights
 - * Caustics
 - * . . .

Caching Techniques

Caching Techniques

Irradiance caching:

Compute irradiance at selected points and interpolate.

Photon mapping:

Trace "photons" from the lights and store them in a photon map, that can be used during rendering.

Box: Direct Illumination

Box: Global Illlumination

Box: Indirect Irradiance

Irradiance Caching: Idea

"A Ray Tracing Solution for Diffuse Interreflection". Greg Ward, Francis Rubinstein and Robert Clear: Proc. SIGGRAPH'88.

Idea: Irradiance changes slowly -> interpolate.

Irradiance Sampling

$$E(x) = \int_{2\pi} L'(x, \omega') \cos \theta \, d\omega'$$

Irradiance Sampling

$$E(x) = \int_{2\pi} L'(x, \omega') \cos \theta \, d\omega'$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} L'(x, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi$$

Irradiance Sampling

$$E(x) = \int_{2\pi} L'(x, \omega') \cos \theta \, d\omega'$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} L'(x, \theta, \phi) \cos \theta \sin \theta \, d\theta \, d\phi$$

$$\approx \frac{\pi}{TP} \sum_{t=1}^{T} \sum_{p=1}^{P} L'(\theta_t, \phi_p)$$

$$heta_t = \sin^{-1}\left(\sqrt{rac{t-\xi}{T}}
ight)$$
 and $\phi_p = 2\pirac{p-\psi}{P}$

Irradiance Change

$$\epsilon(x) \leq \left| \frac{\partial E}{\partial x} (x - x_0) + \frac{\partial E}{\partial \theta} (\theta - \theta_0) \right|$$

position rotation

Irradiance Change

$$\epsilon(x) \leq \left|\frac{\partial E}{\partial x}(x-x_0) + \frac{\partial E}{\partial \theta}(\theta-\theta_0)\right|$$

$$\text{position rotation}$$

$$\leq E_0 \left(\frac{4||x-x_0||}{\pi} + \sqrt{2-2\vec{N}(x)\cdot\vec{N}(x_0)}\right)$$

$$\text{position rotation}$$

Irradiance Interpolation

$$w(x) = \frac{1}{\epsilon(x)} \approx \frac{1}{\frac{||x - x_0||}{x_{avg}} + \sqrt{1 - \vec{N}(x) \cdot \vec{N}(x_0)}}$$

$$E_i(x) = \frac{\sum_i w_i(x) E(x_i)}{\sum_i w_i(x)}$$

Irradiance Caching Algorithm

```
Find all irradiance samples with w(x) > q
if (samples found)
  interpolate
else
  compute new irradiance sample
```

Box: Irradiance Caching

1000 sample rays, w > 10

Box: Irradiance Cache Positions

1000 sample rays, w > 10

Box: Irradiance Caching

1000 sample rays, w > 20

Box: Irradiance Cache Positions

1000 sample rays, w > 20

Box: Irradiance Caching

5000 sample rays, w > 10

Box: Irradiance Cache Positions

5000 sample rays, w > 10

Caustics

Pathtracing – 1000 paths/pixel

A simple test scene

Rendering

Photon Tracing

Photons

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$
$$= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos \theta' dA} \cos \theta' d\omega$$

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$

$$= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos \theta' dA} \cos \theta' d\omega$$

$$= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA}$$

$$L(x,\vec{\omega}) = \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) L'(x,\vec{\omega}') \cos \theta' d\omega$$

$$= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{d\omega \cos \theta' dA} \cos \theta' d\omega$$

$$= \int_{\Omega} f_r(x,\vec{\omega}',\vec{\omega}) \frac{d\Phi^2(x,\vec{\omega}')}{dA}$$

$$\approx \sum_{p=1}^n f_r(x,\vec{\omega}',\vec{\omega}) \frac{\Delta\Phi_p(x,\vec{\omega}'_p)}{\pi r^2}$$

The photon map datastructure

The photons are stored in a left balanced kd-tree

Rendering: Caustics

Caustic from a Glass Sphere

Photon Mapping: 10000 photons / 50 photons in radiance estimate

Caustic from a Glass Sphere

Path Tracing: 1000 paths/pixel

Sphereflake Caustic

Reflection Inside A Metal Ring

50000 photons / 50 photons in radiance estimate

Caustics On Glossy Surfaces

340000 photons / \approx 100 photons in radiance estimate

HDR environment illumination

Using lightprobe from www.debevec.org

Cognac Glass

Cube Caustic

Global Illumination

100000 photons / 50 photons in radiance estimate

Global Illumination

500000 photons / 500 photons in radiance estimate

Fast estimate

200 photons / 50 photons in radiance estimate

Indirect illumination

10000 photons / 500 photons in radiance estimate

Global Illumination

Global Illumination

Photon tracing

- Photon emission
- Photon scattering
- Photon storing

Photon emission

Given Φ Watt lightbulb. Emit N photons. Each photon has the power $\frac{\Phi}{N}$ Watt.

 Photon power depends on the number of emitted photons. Not on the number of photons in the photon map.

What is a photon?

- Flux (power) not radiance!
- Collection of physical photons
 - * A fraction of the light source power
 - * Several wavelengths combined into one entity

Diffuse point light

Generate random direction Emit photon in that direction


```
// Find random direction
do {
    x = 2.0*random()-1.0;
    y = 2.0*random()-1.0;
    z = 2.0*random()-1.0;
} while ( (x*x + y*y + z*z) > 1.0 );
```

Example: Diffuse square light

- Generate random position p on square
- Generate diffuse direction d
- Emit photon from p in direction d

```
// Generate diffuse direction u = \text{random()}; v = 2*\pi*\text{random()}; d = \text{vector(} cos(v)\sqrt{u}, sin(v)\sqrt{u}, \sqrt{1-u});
```

Surface interactions

The photon is

- Stored (at diffuse surfaces) and
- Absorbed (A) or
- ullet Reflected (R) or
- Transmitted (T)

$$A + R + T = 1.0$$

Photon scattering

The simple way:

Given incoming photon with power Φ_p

Reflect photon with the power $R*\Phi_p$

Transmit photon with the power $T*\Phi_p$

Photon scattering

The simple way:

Given incoming photon with power Φ_p

Reflect photon with the power $R*\Phi_p$

Transmit photon with the power $T*\Phi_p$

- Risk: Too many low-powered photons wasteful!
- When do we stop (systematic bias)?
- Photons with similar power is a good thing.

- Statistical technique
- Known from Monte Carlo particle physics
- Introduced to graphics by Arvo and Kirk in 1990

Probability of termination: p

 $E\{X\}$

$$E\{X\} = p \cdot 0$$

$$E\{X\} = p \cdot 0 + (1-p)$$

$$E\{X\} = p \cdot 0 + (1-p) \cdot \frac{E\{X\}}{1-p}$$

$$E\{X\} = p \cdot 0 + (1-p) \cdot \frac{E\{X\}}{1-p} = E\{X\}$$

Probability of termination: p

$$E\{X\} = p \cdot 0 + (1-p) \cdot \frac{E\{X\}}{1-p} = E\{X\}$$

Terminate un-important photons and still get the correct result.

Russian Roulette Example

```
Surface reflectance: R = 0.5 Incoming photon: \Phi_p = 2 W
```

```
r = random();
if ( r < 0.5 )
  reflect photon with power 2 W
else
  photon is absorbed</pre>
```

Russian Roulette Intuition

Surface reflectance: R = 0.5 200 incoming photons with power: Φ_p = 2 Watt

Reflect 100 photons with power 2 Watt instead of 200 photons with power 1 Watt.

- Very important!
- Use to eliminate un-important photons
- Gives photons with similar power:)

Sampling a BRDF

$$f_r(x, \vec{\omega}_i, \vec{\omega}_o) = w_1 f_{r,1}(x, \vec{\omega}_i, \vec{\omega}_o) + w_2 f_{r,2}(x, \vec{\omega}_i, \vec{\omega}_o)$$

Sampling a BRDF

```
f_r(x, \vec{\omega}_i, \vec{\omega}_o) = w_1 \cdot f_{r,d} + w_2 \cdot f_{r,s}

\texttt{r} = \texttt{random()} \cdot (w_1 + w_2);

\texttt{if (r} < w_1)

\texttt{reflect diffuse photon}

\texttt{else}

\texttt{reflect specular}
```

Rendering

Direct Illumination

Specular Reflection

Caustics

Indirect Illumination

Rendering Equation Solution

$$L_{r}(x,\vec{\omega}) = \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega}) L_{i}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i}$$

$$= \int_{\Omega_{x}} f_{r}(x,\vec{\omega}',\vec{\omega}) L_{i,l}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i} +$$

$$\int_{\Omega_{x}} f_{r,s}(x,\vec{\omega}',\vec{\omega}) (L_{i,c}(x,\vec{\omega}') + L_{i,d}(x,\vec{\omega}')) \cos\theta_{i} d\omega'_{i} +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega}) L_{i,c}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i} +$$

$$\int_{\Omega_{x}} f_{r,d}(x,\vec{\omega}',\vec{\omega}) L_{i,d}(x,\vec{\omega}') \cos\theta_{i} d\omega'_{i}.$$

Features

- Photon tracing is unbiased
 - * Radiance estimate is biased but consistent
 - * The reconstruction error is local
- Illumination representation is decoupled from the geometry

Box

200000 global photons, 50000 caustic photons

Box: Global Photons

200000 global photons

Fractal Box

200000 global photons, 50000 caustic photons

Cornell Box

Indirect Illumination

Little Matterhorn

Mies house (swimmingpool)

Mies house (3pm)

Mies house (6pm)

More Information

http://graphics.stanford.edu/~henrik henrik@graphics.stanford.edu